共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Irreversible thermal denaturation of Escherichia coli ribosomes 总被引:5,自引:0,他引:5
J W Bodley 《Biochemistry》1969,8(2):465-475
3.
4.
5.
Thermal denaturation of staphylococcal nuclease 总被引:5,自引:0,他引:5
The fully reversible thermal denaturation of staphylococcal nuclease in the absence and presence of Ca2+ and/or thymidine 3',5'-diphosphate (pdTp) from pH 4 to 8 has been studied by high-sensitivity differential scanning calorimetry. In the absence of ligands, the denaturation is accompanied by an enthalpy change of 4.25 cal g-1 and an increase in specific heat of 0.134 cal K-1 g-1, both of which are usual values for small globular proteins. The temperature (tm) of maximal excess specific heat is 53.4 degrees C. Each of the ligands, Ca2+ and pdTp, by itself has important effects on the unfolding of the protein which are enhanced when both ligands are present. Addition of saturating concentrations of these ligands raises the denaturational enthalpy to 5.74 cal g-1 in the case of Ca2+ and to 6.72 cal g-1 in the case of pdTp. The ligands raise the tm by as much as 11 degrees C depending on ligand concentration. From the variation of the denaturational enthalpies with ligand concentrations, binding constants at 53 degrees C equal to 950 M-1 and 1.4 X 10(4) M-1 are estimated for Ca2+ and pdTp, respectively, and from the enthalpies at ligand saturation, binding enthalpies at 53 degrees C of -15.0 and -19.3 kcal mol-1. 相似文献
6.
An experimental study on the thermal behaviour of erythrocyte carbonic anhydrase was carried out with the main aim to estimate the thermodynamic parameters that control the stability of the enzyme. The effects of thermal denaturation on the catalytic properties of the enzyme were also investigated. Below 60 degrees C the enzyme was found to be very stable, whereas between 60 and 65 degrees C a drastic decrease in the biological activity was observed. From the obtained results some considerations were made about the stabilization of the active form of the protein. 相似文献
7.
1. Soluble calf-skin collagen has been denatured thermally between 37° and 60° and the component proteins have been separated on carboxymethylcellulose. 2. Four main fractions have been separated; α and β (in the nomenclature in common usage) and two other fractions. (The α and β components are complex owing to the presence of α1, α2, β1 and β2 parts). 3. Fractions 3 and 4 undergo rapid denaturation between 39° and 40° whereafter fraction 4 remains virtually unchanged even at 60°. 4. That portion of fraction 4 which remains at 60° is thought to be identical with the fraction designated γ by other workers, this fraction being composed of three α-chains in covalent linkage (such bonds are alkali-labile). 5. The equilibrium between α, β and fractions 3 and 4 is apparently reversible since acid-soluble collagen after denaturation at 45° or 60° followed by cooling to 0° for 30min. was found to contain only fraction 4 when chromatographed at 37°. 相似文献
8.
Size exclusion chromatography and low-angle laser light scattering have been used for studying the evolution of schizophyllan polysaccharide during a thermal treatment (t > 100°C) in aerated solution. Thermal denaturation of the native triple helices into single chains is initiated above 135°C and is complete in 10 min at 160°C. Both conformations can coexist in the 130–140°C temperature range. In the presence of oxygen, both forms of the biopolymer undergo severe thermal degradation. The rate of degradation was found to be independent of chain length and conformation. An activation energy of 104 kJ mol−1 was determined. The reaction was base-catalyzed. Analysis of chromatographic patterns indicate that the degradation probably occurs through an ‘all-or-none’ process. 相似文献
9.
10.
Thermal denaturation of subchromosomal particles. 总被引:2,自引:0,他引:2
11.
H J Li 《Biopolymers》1972,11(4):835-847
Thermal denaturation of native or partially dehistonized nucleohistones shows two melting bands at 66 and 81° in 2.5 × 10?4 M EDTA, pH 8.0. These correspond to the melting of DNA segments bound by the less basic and the more basic half-molecules of histones, respectively. These two melting bands combine into a broad melting band from around 70 to 85° when these nucleohistones are pre-treated with formaldehyde. A formaldehyde reaction which fixes histones on DNA by covalent bonds account for the effect. Formaldehyde fixation also increases the melting temperature of some free DNA segments from around 42 to around 55°. This is interpreted as a result of closed or rigid boundaries between free DNA and formaldehyde-reacted histone-bound DNA segments. MgCl2 dissociates histones from DNA more effectively and leaves longer free DNA segments than does NaCl. Thermal denaturation of a formaldehyde-reacted nucleoprotein thus provides an effective tool for comparing the relative size of free DNA regions on nucleoproteins. The effect of reversible binding of ligands on helix-coil transition of DNA is descussed and found not adequate for thermal denaturation of nucleohistones. 相似文献
12.
13.
We have developed the technique of thermal fluctuation spectroscopy to measure the thermal fluctuations in a system. This technique is particularly useful to study the denaturation dynamics of biomolecules like DNA. Here we present a study of the thermal fluctuations during the thermal denaturation (or melting) of double-stranded DNA. We find that the thermal denaturation of heteropolymeric DNA is accompanied by large, non-Gaussian thermal fluctuations. The thermal fluctuations show a two-peak structure as a function of temperature. Calculations of enthalpy exchanged show that the first peak comes from the denaturation of AT rich regions and the second peak from denaturation of GC rich regions. The large fluctuations are almost absent in homopolymeric DNA. We suggest that bubble formation and cooperative opening and closing dynamics of basepairs causes the additional fluctuation at the first peak and a large cooperative transition from a partially molten DNA to a completely denatured state causes the additional fluctuation at the second peak. 相似文献
14.
15.
Thermal denaturation of very homogeneous preparations of core particles from chicken erythrocyte chromatin is studied by several techniques. The change in absorbance, which is very closely paralleled by changes in heat capacity, which is very closely paralleled by changes in heat capacity, is a biphasic process with inflexions at 60 degrees C and 74 degrees C. In contrast, isolated DNA of the same length denatures in a single transition around 44 degrees C. Monitoring the circular dichroism of the cores during thermal denaturation reveals biphasic changes in the secondary structure of the DNA, preceding the base unstacking by 10 degrees C in the first and 3 degrees C in the second phase. However, measurable alterations in the secondary structure of the histones are confined to the second phase with a melting temperature at 71 degrees C. Increase in the ionic strength of the buffer from 1 mM to 10 mM leads to almost monophasic melting curves as measured by absorbance and CD, while not causing any measurable conformational changes at room temperature. The melting of core particles is interpreted as a denaturation of about 40 base pairs in the first phase, followed by a massive breakdown of the native structure of a tight histone-DNA complex, which frees the remaining 100 base pairs for unstacking. 相似文献
16.
Thermal denaturation of iso-1-cytochrome c variants: comparison with solvent denaturation. 下载免费PDF全文
L. M. Herrmann B. E. Bowler 《Protein science : a publication of the Protein Society》1997,6(3):657-665
Thermal denaturation studies as a function of pH were carried out on wild-type iso-1-cytochrome c and three variants of this protein at the solvent-exposed position 73 of the sequence. By examining the enthalpy and Tm at various pH values, the heat capacity increment (delta Cp), which is dominated by the degree of change in nonpolar hydration upon protein unfolding, was found for the wild type where lysine 73 is normally present and for three variants. For the Trp 73 variant, the delta Cp value (1.15 +/- 0.17 kcal/mol K) decreased slightly relative to wild-type iso-1-cytochrome c (1.40 +/- 0.06 kcal/mol K), while for the Ile 73 (1.65 +/- 0.07 kcal/mol K) and the Val 73 (1.50 +/- 0.06 kcal/mol K) variants, delta Cp increased slightly. In previous studies, the Trp 73, Ile 73, and Val 73 variants have been shown to have decreased m-values in guanidine hydrochloride denaturations relative to the wild-type protein (Hermann L, Bowler BE, Dong A, Caughey WS. 1995. The effects of hydrophilic to hydrophobic surface mutations on the denatured state of iso-1-cytochrome c: Investigation of aliphatic residues. Biochemistry 34:3040-3047). Both the m-value and delta Cp are related to the change in solvent exposure upon unfolding and other investigators have shown a correlation exists between these two parameters. However, for this subset of variants of iso-1-cytochrome c, a lack of correlation exists which implies that there may be basic differences between the guanidine hydrochloride and thermal denaturations of this protein. Spectroscopic data are consistent with different denatured states for thermal and guanidine hydrochloride unfolding. The different response of m-values and delta Cp for these variants will be discussed in this context. 相似文献
17.
18.
Thermal denaturation of Japanese-radish peroxidase [EC 1.11.1.7] was investigated with respect to its spectrophotometric properties and effect on the enzymatic activity. Inactivation of the peroxidase occurred at temperatures higher than 60degrees and involved three processes, i.e., dissociation of protohemin from the holoperoxidase, a conformation change in the apperoxidase, and the modification or degradation of protohemin. The splitting process of protohemin from holoperoxidase as followed by the change in the absorption spectrum at high temperatures coincided with the degrease in the activity, and it was found to be at least biphasic. The regeneration of peroxidase on cooling to room temperature was essentially reversible at neutral pH, while at pH 5 and pH 9 these processes were irreversible. The irreversibility at acidic pH was mainly due to an irreversible change in the conformation of the apoenzyme. The difference spectrum of heat-treated apoperoxidase exhibited a denaturation blueshift with negative maxima at 287 and 294 nm, and the total protein fluorescence quantum yield. qprotein, increased by 20% compared to that of the untreated apoenzyme. On the other hand, the irreversibility at alkaline pH was largely attributable to the modification of protohemin. Apoperoxidase was more resistnat to heat denaturation but the modification or degradation of protohemin in heated enzyme was greater at alkaline pH than at acidic pH. The pyridine-ferrohemochrome spectrum of peroxidase exhibited slight shifts of the maxima of the alpha-band to shorter wavelength on heat treatment, and the paper chromatogram showed the presence of a new derivative other than protohemin. The modified product is probably (2(4)-vinyl-4(2)-hydroxyethyldeuterohemin. 相似文献
19.
A system is described for measuring thermal denaturation of nucleic acid fractions directly in polyacrylamide gels. Total nucleic acids were fractionated by disc gel electrophoresis. The buffer within the gel was then exchanged for one commonly used in denaturation studies. Thermal denaturation profiles of DNA and ribosomal RNA in the gel were determined using a specially constructed Gel Carriage to position the appropriate fraction during spectrophotometric measurements. These profiles were compared with denaturation patterns obtained by classical methods in free solution; the two methods yielded similar patterns.Thermal denaturation profiles were also obtained for chloroplast light ribosomal RNA resolved by gel electrophoresis of total plant nucleic acids. Thus, denaturation patterns of individual, minor components present in complex nucleic acid mixtures can be directly measured in gels. 相似文献