首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two dense meadows of the seagrass Thalassodendron ciliatum (Forssk.) den Hartog were sampled during the Indonesian—Dutch Snellius II expedition to Eastern Indonesia. Production data were obtained from one of these meadows. The production of leaf biomass was measured by the leaf marking technique of Zieman and by the plastochrone interval method. The two methods reached comparable results. The production of leaf tissue was 4.2 mg ADW shoot?1 day?1. The production of rhizome biomass was calculated in a similar way, based on the plastochrone interval of rhizome nodes. The production of the meadow, exclusive of the production of roots and fruits, amounted to 4.5 g ADW m?2 day?1. A significant correlation between the growth rates of rhizomes and leaves was observed. Biomass data from the second site are given.  相似文献   

2.
Conservation of seagrasses meadows is important, because these habitats are ecologically important and under threat. Monitoring and modelling are essential tools for assessing seagrass condition and potential threats, however there are many seagrass indicators to choose from, and differentiating between natural variability and declining conditions poses a serious challenge. Tropical seagrass meadows in the Indo-Pacific, in contrast to most temperate meadows, are characterized by a multi-species composition and a year-round growth. Differences in characteristics between species growing within one meadow could induce uncertainty in the assessment of the dynamics of these meadows if variation in productivity and related biomass turnover timescales are not taken into consideration. We present data on biomass distribution, production and turnover timescales of above- and belowground tissues for three key tropical seagrass species (Thalassia hemprichii, Cymodocea rotundata and Halodule uninervis) in two mixed-species meadows in the Spermonde Archipelago, Indonesia. Seagrass leaf turnover time scales were comparable for the three studied seagrass species and varied between 25 and 30 days. Variation in leaf and rhizome turnover timescales were small (or insignificant) between the two meadows. In contrast, rhizome turnover time scales were around ten times longer than leaf turnover timescales, and large differences in rhizome turnover time scales (200–500 days) were observed between the species. The late-successional species T. hemprichii had much slower rhizome turnover compared to the two early successional species. Furthermore, since rhizome biomass has a much longer turnover time compared to leaf biomass, changes in rhizome biomass reflect effects on seagrass meadows on a much longer timescale compared to changes in leaf biomass for these tropical meadows. We conclude that belowground biomass dynamics are an important proxy to assess long-term effects of environmental stressors on seagrass ecosystems and should be included in tropical seagrass management programmes.  相似文献   

3.
Posidonia oceanica is an endemic Mediterranean seagrass species that has often been assumed to contain low levels of genetic diversity. Random amplified polymorfic DNA (RAPD) markers were used to assess genetic diversity among five populations from three geographical regions (north, central, and south) of the western Mediterranean Sea. Stranded germinating seeds from one of the central populations were also included in the analysis. Forty-one putative genets were identified among 76 ramets based on 28 RAPD markers. Genotypic diversity strongly depended on the spatial structure, age, and maturity of the meadows. The lowest clonal diversity was found in the less structured and youngest prairies. Conversely, a high genotypic diversity was found in the highly structured meadows. The genotypic diversity in these meadows was at the same level as in P. australis and higher than previously reported data for P. oceanica populations in the Tyrrhenian Sea near the coast of Italy.  相似文献   

4.
The recovery capacity of meadows of the Mediterranean seagrass Posidonia oceanica (L.) Delile in an area affected by illegal trawling were assessed after protection by anti-trawling reefs. The differences in vegetative growth between two impacted and two undisturbed localities were tested using growth, shoot balance, aborted branches, and leaf and rhizome production of both plagiotropic and orthotropic rhizomes. The organic matter in sediments, silt clay fraction and light intensity incident on the bottom were also measured in order to evaluate the physical conditions. Environmental and plant variables were measured in three sites placed inside each locality. The vegetative growth was positive in both impacted and control meadows but growth rates were lower in impacted than in control meadows. Average growth, production and shoot balance were greater in plagiotropic rhizomes from undisturbed localities (40.7±1.75 vs. 28.4±1.34 mm/year, 1133±0.06 vs. 708±0.04 mg DW/shoot/year, 1.36±0.08 vs. 0.96±0.06 shoots/year, respectively). Significantly greater values were also found in undisturbed localities for orthotropic rhizomes in terms of shoot balance and rhizome production (0.07±0.01 vs. 0.01±0.003 shoots/shoot/year and 155 vs. 124 mg DW/shoot/year, respectively). Of the physical parameters measured, only light intensity differed significantly between impacted and undisturbed localities. This parameter was 15.5% to 67.6% lower in impacted localities than in undisturbed localities, and this is the factor that causes the retardation of vegetative growth. The results show that recovery of P. oceanica meadows is possible after eliminating the cause of the impact. However, the very low rates of vegetative growth may prolong the time to total recuperation to almost 100 years. Therefore, effective management of P. oceanica meadows should aim to prevent meadow loss.  相似文献   

5.
Previous studies have shown that most leaf production (>90%) of the seagrass Posidonia oceanica is shed after senescence and that a substantial percentage (up to 80%) may thereafter be exported off the seagrass meadows by waves and currents. It has also been reported that P. oceanica meadows can accumulate large stocks of belowground detritus due to slow decomposition rates. However, the generality of these results across broad spatial scales is poorly known. In this report, we examine the fate of leaf production and the magnitude and dynamics of belowground detritus in 16 P. oceanica meadows distributed along the Spanish Mediterranean. Herbivores removed a small percentage of leaf production in all the meadows (≤13%), with most leaf production (>85%) being shed after senescence. Most shed leaves (>90%) were exported off the meadows by physical agents, such as waves and currents. The amount of belowground detritus stored within 10–15 cm from the sediment surface varied from ca. 70 to 7500 g DW m−2 among the meadows examined, and they accumulated at rates ranging from ca. 65 to 650 g DW m−2 per year. These values are large when compared to other communities of aquatic and terrestrial macrophytes. Our results show that P. oceanica meadows in the Spanish Mediterranean support high values of secondary production in other systems by exporting large amounts of leaf detritus as well as acting as substantial carbon sinks by accumulating large reservoirs of belowground detritus. Therefore, the increasing anthropogenic threats on P. oceanica could entail an important loss of secondary production and carbon storage in Mediterranean coastal ecosystems.  相似文献   

6.
A precise knowledge of the temporal and spatial distributions of cell division and tissue expansion is essential for appropriate leaf sampling in omics studies and for analyses of plant–environment relations. Elongating leaves of rice were studied during their whole development for elongation rate, distribution of cell length, cell production rate and spatial distribution of growth in the leaf. In seven genotypes, the pattern of leaf elongation rate followed three phases: (1) an exponential increase before leaf appearance; (2) a short phase (2–4 d at 20 °C) with a stable leaf elongation rate around leaf appearance; and (3) a phase of 8–10 d with a progressive decrease in elongation rate. The profile of cell length along the leaf changed with time during the first and last phases, but was time invariant around appearance. We propose a method adapted to non-steady elongation based on anatomical measurements, which was successfully tested by comparing it with the pricking method. It allowed analysis of the change with time in the spatial distribution of growth from initiation to end of leaf growth. The length of leaf zones with cell division and tissue elongation varied with time, with maximums of 21 and 60 mm respectively around leaf appearance.  相似文献   

7.
The response of Posidonia oceanica (Linnaeus) Delile to the warm-water episode of summer 1999 was studied by means of the technique of lepidochronology. Study sites include three sites affected by the mass mortality event of benthic invertebrates and one not affected. The results showed a significant decline in some parameters (number of leaves and/or rhizome growth) for the three sites affected by the mass mortality event for the year following the warm-water episode (1999-2000). A similar decline was not observed for the unaffected site. The fact that high temperatures could have a negative impact on deep Posidonia oceanica near its cold limit of distribution is an unexpected result.  相似文献   

8.
Human disturbances, such as anchoring and dredging, can cause physical removal of seagrass rhizomes and shoots, leading to the fragmentation of meadows. The introduced green alga, Caulerpa racemosa, is widely spread in the North-West Mediterranean and, although it can establish in both degraded and pristine environments, its ability to become a dominant component of macroalgal assemblages seems greater in the former. The aim of this study was to estimate whether the spread of C. racemosa depends on the intensity of disturbance to the canopy structure of Posidonia oceanica. A field experiment was started in July 2010 when habitat complexity of a P. oceanica meadow was manipulated to simulate mechanical disturbances of different intensity: rhizome damage (High disturbance intensity = H), leaf removal (Low disturbance intensity = L), and undisturbed (Control = C). Disturbance was applied within plots of different size (40 × 40 cm and 80 × 80 cm), both inside and at the edge of the P. oceanica meadow, according to an orthogonal multifactorial design. In November 2011 (16 months after the start of the experiment), no C. racemosa was found inside the seagrass meadow, while, at the edge, the cover of the seaweed was dependent on disturbance intensity, being greater where the rhizomes had been damaged (H) than in leaf removal (L) or undisturbed (C) plots. The results of this study indicate that physical disturbance at the margin of seagrass meadows can promote the spread of C. racemosa.  相似文献   

9.
The seedling of Nelurnbo nucifera is erect and its internodes are very short with four Alternately arranged floating leaves. During the juvenile stage, the shoot elongates remarkably and forms the horizontal rhizome. Each leaf grows out from the dorsal side of the node of the rhizome. There are two kinds of terminal buds in the juvenile shoot. (1) vegetative bud and (2) mixed bud. The axillary scale is the derivative part of the leaf. It forms an ochrea around the terminal bud. The winter buds on the annual shoot are all mixed buds. The vessels are absent in the rhizome and no cambium exists. During tile early growth of the rhizome, the rib meristems contribute mainly to the internode elongation. Later however, divisions are seen to commence in the parenchymatous tissue of the internode. As a result of these divisions the internode becomes elongated. The tuberization of the rhizome is built up from cell divisions of three kinds of tissues: (1) primary thickening meristems, (2) cells of the vascular bundles and (3) parenchyma of cortex. But, the growth in thickness of the rhizome seems to be chiefly due to the enlargement of parenchymatous cells.  相似文献   

10.
The areas of seagrass meadows in Cockburn Sound, a marine embayment in Western Australia, were estimated from historical aerial photographs supplemented by ground surveys, studies on meadows in adjoining areas, and coring for rhizome remains. Ten species of seagrasses with different habitat tolerances are recorded for the area, with Posidonia sinuosa Cambridge et Kuo forming the most extensive meadows. It is estimated that from 1954 to 1978 the meadow area was reduced from some 4200 to 900 ha. Based on measurements of aboveground productivity at several sites, this represents a reduction of leaf detritus production from 23 000 to 4000 t (dry wt.) y−1. The major loss of seagrass occurred during a period of industrial development on the shore, and the discharge of effluents rich in plant nutrients.  相似文献   

11.
The temperature dependence of seed germination and seedling growth was analyzed in Dioscorea tokoro, an East Asian summer-green perennial. Seeds were able to germinate fully only at 11-20 degrees C. At around 17-20 degrees C the first leaf petiole of the seedling elongated and quickly set the first leaf blade at a position enabling photosynthesis. At temperatures higher than 20 degrees C petiole elongation was retarded, and seedlings formed a rhizome and established as a perennial. The rhizome size increased with temperature up to 29 degrees C. Thus, during growth immediately after germination, temperature appears to be a key factor in determining whether the plant establishes as a perennial or grows rapidly without rhizome thickening.  相似文献   

12.
莲的根茎构造,伸长与增粗   总被引:8,自引:0,他引:8  
莲 (Nelumbo nucifera)种苗的茎短而直立,叶互生。幼苗期茎延伸成横卧根茎,其上生有营养芽及混合芽。腋生鳞片为叶的衍生部分,形如叶鞘状,包着预芽。年苗上的冬芽内全为混合芽。根茎内的维管束分散排列,无导管及形成层存在。节间延长通过肋状分生组织及节间内的薄壁组织细胞分裂与增长来完成。根茎可由初生加厚分生组织,维管束细胞,皮层薄壁细胞等的细胞分裂,使层次增加,但增粗主要是由皮层薄壁细胞体积显著增大而引起的。  相似文献   

13.
Posidonia oceanica supports mainly saprophytic marine flora, comprising predominantly lignicolous fungi. The frequency of occurrence of species recorded on this marine angiosperm, was high, indicating that they play a major role in the biological degradation of the sea grass Posidonia oceanica. In vitro experiments with Corollospora maritima (isolated from leaf material) were conducted in order to evaluate their role in the degradation of leaf material. Corollospora maritima actively degrade leaf material. Biophysical and biochemical changes (particle detritus formation, C and N variation), enzymatic activity involved and sterol production were studied during the transformation process of leaves to mycelial biomass.  相似文献   

14.
The role of plant community structure and plant functional traits for above- and belowground carbon (C) fluxes was studied for 2 years in a mesocosm experiment with grassland monoliths, using continuous gas exchange measurements and soil analyses. Here we test the response-and-effect trait hypothesis, by applying a mathematical framework used to predict changes in C fluxes after a change in disturbance through the community response ( R ) and effect ( E ) traits. Monoliths were extracted from two contrasted long-term field treatments (high vs. low grazing disturbance) and exposed to both low and high (simulated grazing) disturbance during a 2 years experiment. Carbon dioxide exchanges were measured continuously in an open flow system. Net ecosystem productivity and ecosystem C balance were positively correlated at low disturbance with plant species richness. Aboveground net primary productivity (ANPP) and soil C sequestration were, however, unrelated to these variables. Community aggregated leaf (specific leaf area, leaf dry-matter content) and root and rhizome (specific length, tissue density, diameter) traits responded ( R ) significantly to changes in disturbance, indicating an increased dominance of conservative plant growth strategies at low compared with high disturbance. Applying the mathematical framework, ANPP was predicted by distribution of leaf traits within the community (functional divergence), while mean root and rhizome traits had significant effects ( E ) on soil C sequestration, irrespective of the experimental disturbance and of the year. According to highly significant linear regression models, between 6% and 61% of the transient changes in soil C sequestration resulted from community root and rhizome (response-and-effect) traits after a change in disturbance.  相似文献   

15.
16.
Abstract Procedures used to detect environmental impacts that occur as a result of planned disturbances are often inadequate. Widely used designs for univariate measures, such as the abundance of a population, lack proper spatial replication and have unjustified patterns of temporal sampling. Asymmetrical analyses of variance derived from repeated measures models can be used to detect many types of impact that are not identifiable using widely recommended BACI (Before/After, Control/Impact) sampling. These asymmetrical, beyond BACI designs are also more logical because of spatial replication. The mechanics of these procedures are discussed, including worked examples of calculations, considerations of their power to detect impacts of a specified magnitude and the integration of various temporal and spatial scales into the design. Related issues are briefly discussed concerning optimization of sampling and how to proceed when no data are available before a disturbance.  相似文献   

17.
Temporal and spatial variation in density, biomass and body size of littoral fish species associated with nearshore Posidonia oceanica meadows was studied over an annual cycle in an area of the eastern Mediterranean Sea. A total of 109,350 littoral fishes were collected, belonging to 34 families and 88 species. Density of fishes peaked during the summer due to high numbers of juveniles. Season was a significant factor determining density, although number of species and biomass did not show any obvious seasonal pattern. Throughout the study, schooling planktivorous fish species such as the picarel Spicara smaris, the bogue Boops boops and the damselfish Chromis chromis were dominant, both in terms of density (80%) and biomass (70%). Temporal variation in density and body size of fishes was used to assess the seasonal and ontogenetic habitat use of each species, with their affinity to seagrass assessed by comparing their respective distribution on sand. Four functional guilds were created (juvenile migrants, seagrass residents, seasonal migrants and occasional visitors) to describe the habitat use of P. oceanica meadows by each species. Several species associated with P. oceanica meadows used this habitat mainly as juveniles during summer, although many others were present concurrently as adults and as juveniles. Among the species encountered, 11 were non-indigenous of Indo-Pacific origin, of which three used seagrasses mainly as juveniles and four as residents. The non-indigenous silverstripe blaasop Lagocephalus sceleratus ranked among the 10 most dominant species in terms of biomass (2%) and was classified as a seagrass resident.  相似文献   

18.
何淑嫱  李伟  程希平  谭芮  松卫红 《生态学报》2019,39(6):2063-2070
高寒草甸具有重要的生态服务功能,然而固有脆弱性使其极易遭受气候变化和人为干扰等多重因素的影响。作为滇西北旅游资源中重要的组分之一,高寒草甸吸引了大批游客前往开展徒步旅行活动,但伴随着的践踏干扰作用会不可避免地对高寒草甸生态系统带来负面影响。然而,目前关注践踏干扰对滇西北高寒草甸植被的影响,特别是植被功能性状和功能多样性如何发生变化方面的研究还十分欠缺。以云南省香格里拉市碧塔海自然保护区内的典型高寒草甸生态系统为研究对象,采用实验践踏的方式(一共5种不同强度的践踏处理)来模拟旅游活动对草甸植被的干扰作用,并以草甸植被的茎叶性状特征为切入点,重点探讨践踏干扰对茎叶性状的平均大小和变异程度的影响,以及物种丰富度(以物种形态分类为基础)和功能丰富度(以功能性状为基础)之间的关系。研究结果显示,随着践踏强度的增加,植株高度和叶片大小的平均值,而不是茎叶性状的变异程度,出现明显下降趋势。此外,物种丰富度和功能丰富度均随践踏强度的增强而减小,且两者之间呈现显著正相关关系。然而,较之轻度践踏实验组,重度践踏实验组中的功能均匀度和功能分离度水平均有所增加,表明践踏干扰可能会在短期内打破优势种对资源的绝对占有格局和减少物种间的生态位重叠程度。尽管高寒草甸对人类践踏活动有一定的承受能力,但气候变化和人为干扰等多重因素势必会改变和影响高寒草甸群落的结构和功能可持续性,这也对高寒草甸的保护与管理工作提出了更加紧迫的要求。  相似文献   

19.
Posidonia oceanica is an endemic seagrass species in the Mediterranean Sea. In order to assess levels of genetic structure in this species, the microsatellite polymorphism was analysed from meadows collected in several localities, along the coasts of the Tyrrhenian Sea (Mediterranean Sea). The existence of single population units and the recruitment of seedlings collected in some localities were investigated. Moreover, genetic structure at different spatial scales and biogeographic relationships among populations were also assessed. Our analysis showed the existence of clear patterns of genetic structure in P. oceanica in the area considered in the analysis. P. oceanica, in fact, is present in separate meadows that represent discrete populations, characterized by low genetic diversity. Comparable levels of genetic variability between mature meadows and seedlings were found. Patterns of genetic relatedness among populations seem to be in accord with direction of dominant current flux in the whole area, separating South Tyrrhenian from North Tyrrhenian populations. Moderate levels of gene flow between populations and genetic substructure within populations, together with the finding of the limited role of sexual reproduction in increasing genetic variability, should be a cause for concern for the persistence of this essential resource in the Mediterranean basin.  相似文献   

20.
采用石蜡切片法对苦豆子(Sophora alopecuroides L.)根、茎、横走茎及叶的发育过程进行了研究,并利用组织化学的方法对生物碱在苦豆子各营养器官中的分布规律进行了测定.苦豆子根、茎及横走茎的初生生长与一般双子叶植物的发育规律一致,但在次生生长时,部分维管形成层细胞平周分裂只形成薄壁组织,从而将次生维管组织也分离成束.茎与横走茎的功能及生活环境不同,所以在结构上也存在一定的差异.叶是等面叶,上下表皮内都有栅栏组织的分布,其组织分化和发育过程与双子叶植物叶的发育规律一致.在茎、横走茎及叶主脉中,韧皮部的外侧都包围有纤维束,其来源都是原生韧皮部.应用硅钨酸、碘化铋钾及I-KI溶液进行沉淀反应,测定出生物总碱在苦豆子根、茎、横走茎及叶的薄壁组织细胞中均存在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号