首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermal tolerance, climatic variability and latitude   总被引:19,自引:0,他引:19  
The greater latitudinal extents of occurrence of species towards higher latitudes has been attributed to the broadening of physiological tolerances with latitude as a result of increases in climatic variation. While there is some support for such patterns in climate, the physiological tolerances of species across large latitudinal gradients have seldom been assessed. Here we report findings for insects based on published upper and lower lethal temperature data. The upper thermal limits show little geographical variation. In contrast, the lower bounds of supercooling points and lower lethal temperatures do indeed decline with latitude. However, this is not the case for the upper bounds, leading to an increase in the variation in lower lethal limits with latitude. These results provide some support for the physiological tolerance assumption associated with Rapoport's rule, but highlight the need for coupled data on species tolerances and range size.  相似文献   

2.
In this paper we demonstrate how broad scale comparative physiology has an important role to play in informing a variety of assumptions made in macroecology. We do so by examining large-scale geographic variation in insect development, thermal tolerance and metabolic rate. From these studies, and those from the literature on insect water loss and thermoregulation, we show that there is often a bias to the geographic extent of available empirical data. Studies of cold hardiness are most usually undertaken at high latitudes, while investigations of upper thermal tolerances and water loss are most common in warm arid regions. Likewise, we demonstrate that much variation in insect physiological tolerances is partitioned at higher taxonomic levels, which has important implications for comparative physiology. Intriguingly, data on the full range of variables we review are available for only three species. We also show that, despite its importance, body size is regularly reported in only some kinds of investigations (metabolic rate, water loss rate), whereas in others (upper lethal temperature, cold hardiness, development) this variable is often ignored. In short, although large-scale comparative physiology can contribute considerable understanding to both physiology and ecology, there is much that remains to be done.  相似文献   

3.
Despite considerable work on the upper and lower lethal limits of insects, several major taxa have received little attention. We investigated the lower and upper thermal tolerances and cold hardiness strategy of Antarctopsocus jeanneli Badonnel (Psocoptera: Elipsocidae) from sub-Antarctic Marion Island. A. jeanneli is freeze intolerant and, more specifically, moderately chill tolerant. Field fresh A. jeanneli had a mean supercooling point (SCP) of –11.1°C, whereas LT50 was –7.7°C, indicating pre-freeze mortality. A. jeanneli responds to acclimation: mean SCP increased from –15.8°C at a treatment temperature of 0 to –7.3°C at 15°C, as a result of a shift in the proportion of individuals in the high and low groups of the bimodal SCP distribution. A. jeanneli has upper thermal tolerances that are lower than those of other insect species on Marion Island, but within the range of expected microhabitat temperatures. Further study will establish whether freeze intolerance is characteristic of Psocoptera.  相似文献   

4.
Aim Within clades, most taxa are rare, whilst few are common, a general pattern for which the causes remain poorly understood. Here we investigate the relationship between thermal performance (tolerance and acclimation ability) and the size of a species’ geographical range for an assemblage of four ecologically similar European diving beetles (the Agabus brunneus group) to examine whether thermal physiology relates to latitudinal range extent, and whether Brown’s hypothesis and the environmental variability hypothesis apply to these taxa. Location Europe. Methods In order to determine the species tolerances to either low or high temperatures we measured the lethal thermal limits of adults, previously acclimated at one of two temperatures, by means of thermal ramping experiments (± 1°C min?1). These measures of upper and lower thermal tolerances (UTT and LTT respectively) were then used to estimate each species’ thermal tolerance range, as total thermal tolerance polygons and marginal UTT and LTT thermal polygons. Results Overall, widespread species have higher UTTs and lower LTTs than restricted ones. Mean upper lethal limits of the Agabus brunneus group (43 to 46°C), are similar to those of insects living at similar latitudes, whilst mean lower lethal limits (?6 to ?9°C) are relatively high, suggesting that this group is not particularly cold‐hardy compared with other mid‐temperate‐latitude insects. Widespread species possess the largest thermal tolerance ranges and have a relatively symmetrical tolerance to both high and low temperatures, when compared with range‐restricted relatives. Over the temperature range employed, adults did not acclimate to either high or low temperatures, contrasting with many insect groups, and suggesting that physiological plasticity has a limited role in shaping distribution. Main conclusions Absolute thermal niche appears to be a good predictor of latitudinal range, supporting both Brown’s hypothesis and the environmental variability hypothesis. Restricted‐range species may be more susceptible to the direct effect of climate change than widespread species, notwithstanding the possibility that even ‘thermally‐hardy’, widespread species may be influenced by the indirect effects of climate change such as reduction in habitat availability in Mediterranean areas.  相似文献   

5.
Geographic variation is characteristic of many physiological traits at the population and species levels. However, several recent studies have suggested that population-level variation is either limited or that it is mostly a consequence of phenotypic plasticity. Here we show that there is considerable physiological inertia in cold hardiness, upper thermal tolerance limits and desiccation resistance in caterpillars of the sub-Antarctic moth Embryonopsis halticella Eaton, such that populations from two climatically different islands are physiologically very similar. Both populations are moderately chill tolerant, with no difference in the supercooling points of caterpillars (-17 to -20 degrees C). Within their host plants caterpillars of both populations freeze at substantially higher, and statistically equivalent temperatures (-9.5 to -11.5 degrees C). The populations also have similar upper lethal limits (38 degrees C), and survival times of dry conditions (6-170 h depending on mass). The previously inexplicably low freezing point of caterpillars at the climatically less severe Marion Island seems likely a consequence of physiological inertia given that the freezing point of caterpillars within their hosts is only a few degrees below absolute minima at the older, and colder, Heard Island. Lack of adaptive geographic variation in physiological traits has consequences for models of range limits, and highlights the importance of exploring phenotypic plasticity as a response to climatic variation.  相似文献   

6.
Palmer CM  Siebke K  Yeates DK 《BioTechniques》2004,37(2):212-4, 216-7
Insects can survive subzero temperatures by two main strategies: freeze tolerance and freeze avoidance. An array of techniques have been used to investigate the physiological limits of insects to low temperatures, such as differential scanning calorimetry, temperature-controlled cooling apparatus, thermocouples, and computer-controlled chart recording equipment. However, these techniques require animals to be stationary, precluding behavioral data. We used infrared video thermography to investigate cold adaptation in an alpine insect, expanding such investigations to include behavioral response as an indicator of physiological stress. This technique is noninvasive and provides a large amount of physiological information, such as supercooling points, lower lethal temperatures, and hemolymph melting points. Insect supercooling points in response to a constant cooling rate were variable; however, temperatures at the initiation of behavioral stress response were less variable. Assessments of supercooling points and lower lethal temperatures obtained in this way are more biologically meaningful because allowing unhindered movement of insects more closely resembles natural environments.  相似文献   

7.
The relationships between macro-ecological patterns and physiological investigations in insects, especially those dealing with respiratory metabolism, are assessed in an attempt to encourage the development of the interaction between macroecology and physiological ecology. First, we demonstrate that although physiological ecology has been explicitly concerned with a number of issues relating to species boundaries, many questions remain unanswered. We argue that there are essentially two ways in which the relationship between physiological tolerances and species range boundaries have been investigated. The correlational approach involves physiological inference, physiological prediction, isocline analyses and climatic matching, and has often been criticized for a lack of rigour, while the experimental approach seeks to examine experimentally the relationships between physiological variables and range edges. Second, we use the recent debate on processes underlying latitudinal patterns in body size to caution against the conflation of patterns and processes operating at intraspecific and interspecific levels, the dangers inherent in invoking single explanatory variables, and an undue focus on adaptationist (e.g. optimization) rather than nonadaptationist explanations or some combination of the two. We show that both positive and negative relationships between body size and latitude have been found at the intraspecific level and suggest that interactions between temperature-induced heterochrony, and the relationship between habitat durational stability, growing season length, and generation time can be used to explain these differences. Similar variation in documented patterns is demonstrated at the interspecific level, and the mechanisms usually proffered to explain such clines (especially the starvation/desiccation-resistance hypothesis) are discussed. Interactions between various environmental factors, such as host-plant quality, and their effects on size clines are also discussed. Third, we argue that respiratory metabolism, as a measure of ATP cost, and its spatio-temporal variation are critical to many explanations of macroecological patterns. Adaptive changes in metabolism reputedly involve both depression (stress resistance) and elevation of metabolic rate, although recent studies are increasingly calling these ideas into question. In particular, flow-through respirometry is revolutionizing results by allowing careful separation of resting (or standard) and active metabolic rates. These techniques have rarely been applied to studies of metabolic cold adaptation in insects, one of the most polemical adaptations ascribed to high-latitude and high-altitude species. We conclude by arguing that physiological investigations of species tolerances are important in the context of macroecology, especially species distributional patterns and the possible impact of climate change thereon. However, we caution that relationships between abiotic variables, species tolerances, and distributional ranges may be non-linear and subject to considerable modification by the presence of other species, and that many of the pressing questions posed by macroecology have not been addressed by insect physiologists. Nonetheless, we suggest that because an understanding of the dynamics of species distributions is of considerable importance, especially in the context of current conservation problems, insect physiological ecology has much future scope.  相似文献   

8.
The role of ecology in phenotypic and species diversification is widely documented. Nonetheless, numerous nonadaptive processes can shape realized niches and phenotypic variation in natural populations, complicating inferences about adaptive evolution at macroevolutionary scales. We tested for evolved differences in thermal tolerances and their association with the realized thermal niche (including metrics describing diurnal and seasonal patterns of temperature extremes and variability) across a genus of tropical freshwater fishes reared in a standardized environment. There was limited evolution along the thermal niche axis associated with variation in maximum temperature and in upper thermal limits. In contrast, there was considerable diversification along the first major axis of the thermal niche associated with minimum temperatures and in lower thermal limits. Across our adaptive landscape analyses, 70% of species exhibited evidence of divergence in thermal niches. Most importantly, the first two major axes of thermal niche variation were significantly correlated with variation in lower thermal limits. Our results indicate adaptation to divergent thermal niches and adaptive evolution of related functional traits, and highlight the importance of divergence in lower thermal limits for the evolution of tropical biodiversity.  相似文献   

9.
Cuticular hydrocarbons (CHCs) have two fundamental functions in insects. They protect terrestrial insects against desiccation and serve as signaling molecules in a wide variety of chemical communication systems. It has been hypothesized that these pivotal dual traits for adaptation to both desiccation and signaling have contributed to the considerable evolutionary success of insects. CHCs have been extensively studied concerning their variation, behavioral impact, physiological properties, and chemical compositions. However, our understanding of the genetic underpinnings of CHC biosynthesis has remained limited and mostly biased towards one particular model organism (Drosophila). This rather narrow focus has hampered the establishment of a comprehensive view of CHC genetics across wider phylogenetic boundaries. This review attempts to integrate new insights and recent knowledge gained in the genetics of CHC biosynthesis, which is just beginning to incorporate work on more insect taxa beyond Drosophila. It is intended to provide a stepping stone towards a wider and more general understanding of the genetic mechanisms that gave rise to the astonishing diversity of CHC compounds across different insect taxa. Further research in this field is encouraged to aim at better discriminating conserved versus taxon-specific genetic elements underlying CHC variation. This will be instrumental in greatly expanding our knowledge of the origins and variation of genes governing the biosynthesis of these crucial phenotypic traits that have greatly impacted insect behavior, physiology, and evolution.Subject terms: Chemical genetics, Genetics, Evolutionary genetics, Evolutionary ecology  相似文献   

10.
Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate‐related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade‐off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change‐related range shifts and extinctions.  相似文献   

11.
连续温度梯度下昆虫趋温性的研究现状与展望   总被引:7,自引:2,他引:5  
马春森  马罡  杜尧  杨和平 《生态学报》2005,25(12):3390-3397
昆虫作为一种能够自由活动的生物,可以通过运动主动选择对其有利的环境温度。大多数研究中昆虫被迫接受人为设定的恒温或变温,并未体现出昆虫本身对适宜温度的主动选择性。连续温度梯度是在某一介质的两端产生由高到低连续变化的温度范围。在一定温度梯度中昆虫趋温行为的研究揭示了其主动选择的适宜温度,这对了解昆虫的空间动态、提高测报准确性和开发防治新方法有重要意义。总结了产生连续温度梯度的各种装置,致冷、加热和温度测量方法以及昆虫趋温行为的观察装置和方法,包括在植物体上(内)及空气、下垫面、粮食和土壤等介质中产生温度梯度的方法及装置。各装置以水浴或电器设备制冷或加热,肉眼观察手工记录或以摄像机、声音信号采集系统等方法记录昆虫的行为。综述了多种昆虫生长发育、栖息、产卵或取食的偏好温度,总结了性别、发育阶段和生态型等生理因素及光照、湿度和预适应温度等环境因子对昆虫偏好温度变化的影响。昆虫的趋温性因种而异,同种昆虫不同发育阶段或不同生命活动所趋温度不同。多数种类昆虫雄性成虫的偏好温度比雌性略高。某些昆虫的多型现象可能导致其种内不同生态型的偏好温度存在差异。光照和湿度的变化会影响某些昆虫对温度的反应。有些昆虫经预适应温度训练后,其偏好温度发生改变。某些昆虫对温度的偏好呈现出一定的日变化和季节变化规律。饥饿条件下昆虫的偏好温度降低。温度梯度的有无及其方向、温度的高低、温差的大小等因素都会影响昆虫的活动性。最后分析了本类研究中存在的问题和不足,并展望了未来的研究方向,指出开展对重要农林作物害虫和天敌趋温行为及其生理学机制,外界环境因素影响昆虫趋温性等方面的探索将是未来该领域研究的重点内容。  相似文献   

12.
Abstract.  1. Insect communities on 26 species of manzanita Arctostaphylos spp. (Ericaceae) were sampled in order to examine the effects of variation in foliar pubescence traits on a community of folivorous insects. Manzanitas vary widely in pubescence density, length, and glandularity both within and between species.
2. Linear models were fitted and evaluated to determine whether pubescence traits are associated with the species richness and abundance of folivorous insects after accounting for the effects of other relevant habitat and host-plant related characteristics.
3. Pubescence traits were clearly associated with both community-wide and guild-specific variation in the structure of the folivorous insect community of manzanitas, however the effects of pubescence were manifested primarily as effects on the abundance of folivores not on species richness. The species richness of folivorous insects on manzanitas was not associated with pubescence density or length but was associated positively with glandularity.
4. The abundance of all guilds except leaf-mining insects was lower on manzanitas having longer pubescence. In contrast, the abundance of external-chewing insects was higher on plants having denser pubescence and on plants having glandular pubescence.
5. Overall, the results suggest that both longer pubescence and the amount of contact between an insect and pubescence act quantitatively to decrease the abundance of external-feeding guilds of folivorous insects. The abundance of species in internal-feeding guilds that oviposit directly on leaves is unrelated to foliar pubescence traits in the host plant.  相似文献   

13.
Mika Sipura 《Oecologia》1999,121(4):537-545
Insectivorous birds can increase plant growth by consuming herbivorous insects and reducing insect damage. However, plant traits such as the level of chemical defense may affect the quantity and quality of insects, and alter the foraging behavior of birds. Therefore, I predicted that plant traits can also modify the effect of birds on leaf damage and plant growth. This study compared the effect of insectivorous birds on the herbivory and growth of two chemically different willow species, weakly defended Salix phylicifolia and strongly defended S. myrsinifolia under two fertilization levels. Half of the willows were protected from birds using a translucent gill-net, which did not limit access by insects. The effect of birds on the densities of leaf-chewing insects and leaf damage was considerable on unfertilized S. phylicifolia but less obvious on fertilized ones. The effect of bird predation was negligible on S. myrsinifolia, which had very low insect densities in all treatments. Birds increased the growth of the experimental willows, but the effect was clear only in unfertilized S. phylicifolia. I suggest that birds avoided foraging on willows with low populations of insects and little visible damage. The study shows that bird predation can alter the patterns of insect densities we see on willows, emphasizing the importance of considering multitrophic effects when studying plant-insect interactions. Received: 25 May 1999 / Accepted: 9 August 1999  相似文献   

14.
Understanding how quickly physiological traits evolve is a topic of great interest, particularly in the context of how organisms can adapt in response to climate warming. Adjustment to novel thermal habitats may occur either through behavioural adjustments, physiological adaptation or both. Here, we test whether rates of evolution differ among physiological traits in the cybotoids, a clade of tropical Anolis lizards distributed in markedly different thermal environments on the Caribbean island of Hispaniola. We find that cold tolerance evolves considerably faster than heat tolerance, a difference that results because behavioural thermoregulation more effectively shields these organisms from selection on upper than lower temperature tolerances. Specifically, because lizards in very different environments behaviourally thermoregulate during the day to similar body temperatures, divergent selection on body temperature and heat tolerance is precluded, whereas night-time temperatures can only be partially buffered by behaviour, thereby exposing organisms to selection on cold tolerance. We discuss how exposure to selection on physiology influences divergence among tropical organisms and its implications for adaptive evolutionary response to climate warming.  相似文献   

15.
Temperature and salinity tolerances were determined for larval California grunion, Leuresthes tenuis (Ayres), and compared with previous data for Gulf of California grunion, L. sardina (Jenkins & Evermann). Larvae of similar age and acclimation history showed little interspecific difference in thermal tolerance, as measured by half-hour LT50 values for 20–30 day old late postlarvae acclimated at various temperatures, and by upper and lower incipient lethal temperatures for 18°C-acclimated prolarvae. The upper incipient lethal temperature differed by 1 deg.-C (32°C for L. tenuis, 31°C for L. sardina), while the lower incipient lethal temperature for the 18°C acclimated prolarvae of both species was 7.5°C. L. tenuis larvae were much less euryhaline than L. sardina, with incipient lethal salinities of 4.2–41 %. for prolarvae and 8.6–38 %. for 20-day-old postlarvae; comparable values for L. sardina are 4–67.5 %. and 5–57.5 %. Both species show a decrease in temperature and salinity tolerance with age. The larvae of these disjunct congeners show a significant physiological divergence in euryhalinity but not in overall temperature tolerance. These tolerances are discussed in relation to the respective geographic ranges and behavioral responses of the two species.  相似文献   

16.
17.
Fitness-related patterns of genetic variation in rhesus macaques   总被引:2,自引:0,他引:2  
Blomquist GE 《Genetica》2009,135(2):209-219
  相似文献   

18.
Predicting how species will respond to increased environmental temperatures is key to understanding the ecological consequences of global change. The physiological tolerances of a species define its thermal limits, while its thermal affinity is a summary of the environmental temperatures at the localities at which it actually occurs. Experimentally derived thermal limits are known to be related to observed latitudinal ranges in marine species, but accurate range maps from which to derive latitudinal ranges are lacking for many marine species. An alternative approach is to combine widely available data on global occurrences with gridded global temperature datasets to derive measures of species‐level “thermal affinity”—that is, measures of the central tendency, variation, and upper and lower bounds of the environmental temperatures at the locations at which a species has been recorded to occur. Here, we test the extent to which such occupancy‐derived measures of thermal affinity are related to the known thermal limits of marine species using data on 533 marine species from 24 taxonomic classes and with experimentally derived critical upper temperatures spanning 2–44.5°C. We show that thermal affinity estimates are consistently and positively related to the physiological tolerances of marine species, despite gaps and biases in the source data. Our method allows thermal affinity measures to be rapidly and repeatably estimated for many thousands more marine species, substantially expanding the potential to assess vulnerability of marine communities to warming seas.  相似文献   

19.
Phenotypic variation is ubiquitous in nature and a precondition for adaptive evolution. However, theory predicts that the extent of phenotypic variation should decrease with increasing strength of selection on a trait. Comparative analyses of trait variability have repeatedly used this expectation to infer the type or strength of selection. Yet, the suggested influence of selection on trait variability has rarely been tested empirically. In the present study, I compare estimates of sexual selection strength and trait variability from published data. I constricted the analysis to acoustic courtship traits in amphibians and insects with known variability and corresponding results of female binary choice experiments on these traits. Trait variability and strength of sexual selection were significantly correlated, and both were correlated with signal duration. Because traits under stronger selection had lower variation even after the effect of signal duration was eliminated, I conclude that traces of the strength of selection can be observed with respect to variation of acoustic signaling traits in insects and amphibians. The analysis also shows that traits under stabilizing selection have significantly lower phenotypic variability than traits under directional selection.  相似文献   

20.
Understanding the potential for organisms to tolerate thermal stress through physiological or evolutionary responses is crucial given rapid climate change. Although climate models predict increases in both temperature mean and variance, such tolerances are typically assessed under constant conditions. We tested the effects of temperature variability during development on male fitness in the rainforest fly Drosophila birchii, by simulating thermal variation typical of the warm and cool margins of its elevational distribution, and estimated heritabilities and genetic correlations of fitness traits. Reproductive success was reduced for males reared in warm (mean 24 °C) fluctuating (±3 °C) vs. constant conditions but not in cool fluctuating conditions (mean 17 °C), although fluctuations reduced body size at both temperatures. Male reproductive success under warm fluctuating conditions was similar to that at constant 27 °C, indicating that briefly exceeding critical thermal limits has similar fitness costs to continuously stressful conditions. There was substantial heritable variation in all traits. However, reproductive success traits showed no genetic correlation between treatments reflecting temperature variation at elevational extremes, which may constrain evolutionary responses at these ecological margins. Our data suggest that even small increases in temperature variability will threaten tropical ectotherms living close to their upper thermal limits, both through direct effects on fitness and by limiting their adaptive potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号