首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously reported that nitric oxide (NO) stimulates apoptosis in different human neoplastic lymphoid cell lines through mitochondrial damage (including degradation of cardiolipin, a major mitochondrial lipid) followed by activation of caspases. Here we demonstrate that Jurkat human leukemia cells which survive after 24 h treatment with NO form subpopulations with higher and lower cardiolipin content (designated as NAO(high) and NAO(low), respectively). Sorted NAO(high) cells were found to survive in culture whereas sorted NAO(low) cells died. Moreover, NAO(high) cells acquired an increased resistance to the exposure to NO donors which remained unchanged during long-term culture. These cells showed a similar cardiolipin content and expressed the same level of anti-apoptotic proteins Bcl-2 and Bcl-x(L) as APO-S unsorted cells but contained significantly higher concentration of the antioxidant glutathione. Depletion of glutathione in these cells with buthionine-sulfoximine (BSO) correlated with a significant stimulation of NO-mediated apoptosis whereas the exposure of NO-sensitive APO-S cells to the glutathione precursor N-acetylcysteine (NAC) resulted in a substantial suppression of this effect. Our data suggest a complex mechanism of the resistence to NO-induced apoptosis in Jurkat human leukemia cells in which glutathione plays an important role.  相似文献   

2.
3.
4.
Deformability of erythrocyte was found to fundamentally alter the wetting dynamics of red blood cell (RBC) suspensions during their invasion into capillaries. Normal RBC suspensions failed to penetrate more than 1 cm into a glass capillary when the capillary radius was smaller than a critical value that is dependent on the erythrocyte concentration (about 50 microm for whole blood). In contrast, suspensions of rigidified RBCs, after cross-linking with different concentrations of glutaraldehyde or incubating with 100 ng/mL of an endotoxin, could penetrate any capillary larger than the erythrocyte dimension. The effect of RBC deformability on penetration was attributed to the enhanced shear-induced migration of normal deformable RBCs toward the capillary centreline, which imparted a higher average velocity to the RBCs than the average plasma velocity. As a result, the erythrocytes advanced into the capillary faster than the wetting meniscus, packing behind it to form a concentrated slug. This tightly packed slug had a high hydrodynamic resistance that could arrest the penetrating flow of concentrated suspensions into the small capillaries.  相似文献   

5.

Background

Inosine triphosphatase (ITPase) is encoded by the polymorphic gene ITPA and maintains low intracellular levels of the inosine nucleotides ITP and dITP. The most frequently reported polymorphisms are ITPA c.94C>A (rs 1127354) and ITPA c. 124+21 A>C (rs7270101). Some nucleoside-analogues used in the treatment of HIV-seropositive (HIV+) patients are potential substrates for ITPase. Therefore, the frequency of ITPA SNPs and ITPase activity were studied in a population of HIV+-patients.

Methods

The study population consisted of 222 patients, predominantly Caucasian males, >95% using HAART. Erythrocyte ITPase activity was determined by measuring the formation of IMP from ITP. ITPA genotype was determined by sequencing genomic DNA. Distribution of ITPase activity, genotype-phenotype correlation and allele frequencies were compared to 198 control subjects. The effect of nucleoside analogues on ITPase activity was studied using lymphoblastic T-cell cultures and human recombinant ITPase. Enzyme kinetic experiments were performed on erythrocyte ITPase from HIV+ patients and controls.

Results

No difference was observed in the allele frequencies between the HIV+-cohort (± HAART) and the control population. HIV+ carriers of the wild type and ITPA c.94C>A had significantly lower ITPase activities than control subjects with the same genotype (p<0.005). This was not observed in ITPA c. 124+21 A>C carriers. Nucleoside analogues did not affect ITPase activity in cell culture and human recombinant ITPase. Conclusion: ITPA population genetics were identical in HIV+ and control populations. However, the majority of HIV+-patients had decreased erythrocyte ITPase activity compared to controls, probably due to decreased amounts of ITPase protein. It seems unlikely that ITPase activity is decreased due to nucleoside analogues (HAART). Long-term effects of HIV-infection altering ITPase protein expression or stability may explain the phenomenon observed.  相似文献   

6.
With the use of the cecal ligation and puncture model in mice, this study tested whether sepsis-induced decreased erythrocyte deformability is restricted to a subpopulation of cells. Erythrocyte subpopulations were isolated by centrifugal elutriation. Lineweaver-Burk conversion of deformability-response curves to shear stress was used to determine the shear stress at half-maximal cell elongation (K(EI)) and maximal cell elongation (EI(max)). Sepsis decreased erythrocyte deformability in whole blood. K(EI) values were elevated (2.7 vs. 2.1 Pa) and EI(max) values decreased (0.56 vs. 0.50) in sepsis compared with sham mice. K(EI) values for cells eluted at 7 ml/min (smallest and oldest cells) were similar; however, K(EI) values for cells eluted at 8 ml/min were greater in septic than sham animals (2.50 vs. 2.10). Younger and larger subpopulations of erythrocytes (eluted at 9, 10, and 11 ml/min) also showed a tendency of decreased deformability in sepsis. Mean corpuscular hemoglobin content was decreased in cells eluted at 7 and 8 ml/min in sepsis (4.5 and 10.2 pg) compared to sham (7.4 and 11.4 pg) mice. This study indicates that an erythrocyte subpopulation that represents 20% of circulating cells shows the most pronounced decrease in cell deformability during sepsis. Increased rigidity together with decreased corpuscular hemoglobin content in these cells may contribute to microcirculatory dysfunction and immune modulation during sepsis.  相似文献   

7.
betaII protein kinase C (betaPKC) is activated during acute and chronic hyperglycemia and may alter endothelial cell function. We determined whether blockade of betaPKC protected in vivo endothelial formation of NO, as measured with NO-sensitive microelectrodes in the rat intestinal vasculature. NaCl hyperosmolarity, a specific endothelial stimulus to increase NO formation, caused approximately 20% arteriolar vasodilation and approximately 30% increase in NO concentration ([NO]). After topical 300 mg/dl hyperglycemia for 45 min, both responses were all but abolished. In comparison, pretreatment with LY-333531, a specific betaPKC inhibitor, maintained vasodilation and [NO] responses to NaCl hyperosmolarity after hyperglycemia. The betaPKC inhibitor alone had no significant effects on resting diameter or [NO] or their responses to NaCl hyperosmolarity. In separate rats, after topical hyperglycemia had suppressed dilation to ACh, LY-333531 restored approximately 70% of the dilatory response. These data demonstrated that activation of betaPKC during acute hyperglycemia depressed in vivo endothelial formation of NO at rest and during stimulation. This abnormality can be minimized by inhibition of betaPKC before hyperglycemia and can be substantially reversed by PKC inhibition after hyperglycemia-induced abnormalities have occurred.  相似文献   

8.
Iron and copper and essential microminerals that are intimately related. The present study was performed to determine the effect of iron-deficiency anemia (IDA) and treatment with iron on laboratory indicators of copper status. Hemoglobin, mean corpuscular volume erythrocyte Zn protoporphyrin, serum ferritin, serum copper, serum ceruloplasmin, and erythrocyte CuZn-superoxide dismutase (SOD) activity were studied in 12 adult women with IDA before and after iron treatment for 60–90 d (100 mg/d Fe, as ferric polymaltose) and in 27 women with normal iron status. Prior to treatment with iron, serum copper and ceruloplasmin were not different between the groups and treatment with iron did not affect these measures. IDA women, before and after treatment with iron, presented a 2.9- and 2-fold decrease in erythrocyte CuZn-SOD activity compared to women with normal iron status (p <0.001). Treatment with iron increased erythrocyte CuZn-SOD activity of the IDA group; however, this change was not statistically significant. in conclusion, CuZn-SOD activity is decreased in IDA. Measurement of this enzyme activity is not useful for evaluating copper nutrition in iron-deficient subjects.  相似文献   

9.
10.
11.

Background

Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury, yet the effects on normal cardiac mechanical performance are poorly understood.

Methods

Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen) for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting.

Results

CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05). Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P < 0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero.

Conclusion

These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance.  相似文献   

12.
Sepsis-induced nitric oxide (NO) overproduction has been implicated in a redistribution of flow from the pancreas making it vulnerable to ischemic injury in septic shock. To test this hypothesis in a remote injury model of normotensive sepsis, we induced Pseudomonas pneumonia in the rat and used intravital video microscopy (IVVM) of the pancreas to measure functional capillary density, capillary hemodynamics [red blood cell (RBC) velocity, lineal density, and supply rate], and lethal cellular damage (propidium iodine staining) at 6 and 24 h after the induction of pneumonia. With pneumonia, plasma nitrite/nitrate [NO2(-)/NO3(-)(NOx(-))] levels were doubled by 21 h (P < 0.05). To assess the effect of NO overproduction on microvascular perfusion, N6-(1-iminoethyl)-L-lysine (L-NIL) was administered to maintain NOx(-) levels at baseline. Pneumonia did cause a decrease in RBC velocity of 23% by 6 h, but by 24 h RBC velocity and supply rate had increased relative to sham by 22 and 38%, respectively (P < 0.05). L-NIL treatment demonstrated that this increase was due to NO overproduction. With pneumonia, there was no change in functional capillary density and only modest increases in cellular damage. We conclude that, in this normotensive pneumonia model of sepsis, NO overproduction was protective of microvascular perfusion in the pancreas.  相似文献   

13.
There is evidence that nitric oxide (NO) is required for the normal increases in skeletal muscle glucose uptake during contraction, but the mechanisms involved have not been elucidated. We examined whether NO regulates glucose uptake during skeletal muscle contractions via cGMP-dependent or cGMP-independent pathways. Isolated extensor digitorum longus (EDL) muscles from mice were stimulated to contract ex vivo, and potential NO signaling pathways were blocked by the addition of inhibitors to the incubation medium. Contraction increased (P < 0.05) NO synthase (NOS) activity (~40%) and dichlorofluorescein (DCF) fluorescence (a marker of oxidant levels; ~95%), which was prevented with a NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA), and antioxidants [nonspecific antioxidant, N-acetylcysteine (NAC); thiol-reducing agent, DTT], respectively. L-NMMA and NAC both attenuated glucose uptake during contraction by ~50% (P < 0.05), and their effects were not additive. Neither the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, which prevents the formation of cGMP, the cGMP-dependent protein (PKG) inhibitor Rp-8-bromo-β-phenyl-1,N2-ethenoguanosine 3',5'-cyclic monophosphorothioate sodium salt nor white light, which breaks S-nitrosylated bonds, affects glucose uptake during contraction; however, DTT attenuated (P < 0.05) contraction-stimulated glucose uptake (by 70%). NOS inhibition and antioxidant treatment reduced contraction-stimulated increases in protein S-glutathionylation and tyrosine nitration (P < 0.05), without affecting AMPK or p38 MAPK phosphorylation. In conclusion, we provide evidence to suggest that NOS-derived oxidants regulate skeletal muscle glucose uptake during ex vivo contractions via a cGMP/PKG-, AMPK-, and p38 MAPK-independent pathway. In addition, it appears that NO and ROS may regulate skeletal muscle glucose uptake during contraction through a similar pathway.  相似文献   

14.
Induction of radioresistance by a nitric oxide-mediated bystander effect   总被引:7,自引:0,他引:7  
To elucidate whether nitric oxide secreted from irradiated cells affects cellular radiosensitivity, we examined the accumulation of inducible nitric oxide synthase, TP53 and HSP72, the concentration of nitrite in the medium of cells after X irradiation, and cellular radiosensitivity using two human glioblastoma cell lines, A-172, which has a wild-type TP53 gene, and a transfectant of A-172 cells, A-172/mp53, bearing a mutated TP53 gene. Accumulation of inducible nitric oxide synthase was caused by X irradiation of the mutant TP53 cells but not of the wild-type TP53 cells. Accumulation of TP53 and HSP72 in the wild-type TP53 cells was observed by cocultivation with irradiated mutant TP53 cells, and the accumulation was abolished by the addition of an inhibitor for inducible nitric oxide synthase, aminoguanidine, to the medium. Likewise, accumulation of these proteins was observed in the wild-type TP53 cells after exposure to conditioned medium from irradiated mutant TP53 cells, and the accumulation was abolished by the addition of a specific nitric oxide scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, to the medium. The radiosensitivity of wild-type TP53 cells was reduced when the cells were cultured in conditioned medium from irradiated mutant TP53 cells compared to conventional fresh growth medium. Collectively, these findings indicate the potential importance of an intercellular signal transduction pathway initiated by nitric oxide in the cellular response to ionizing radiation.  相似文献   

15.
16.
Transgenic sickle mice expressing human beta(S)- and beta(S-Antilles)-globins show intravascular sickling, red blood cell adhesion, and attenuated arteriolar constriction in response to oxygen. We hypothesize that these abnormalities and the likely endothelial damage, also reported in sickle cell anemia, alter nitric oxide (NO)-mediated microvascular responses and hemodynamics in this mouse model. Transgenic mice showed a lower mean arterial pressure (MAP) compared with control groups (90 +/- 7 vs. 113 +/- 8 mmHg, P < 0.00001), accompanied by increased endothelial nitric oxide synthase (eNOS) expression. N(G)-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of NOS, caused an approximately 30% increase in MAP and approximately 40% decrease in the diameters of cremaster muscle arterioles (branching orders: A2 and A3) in both control and transgenic mice, confirming NOS activity; these changes were reversible after L-arginine administration. Aminoguanidine, an inhibitor of inducible NOS, had no effect. Transgenic mice showed a decreased (P < 0.02-0.01) arteriolar dilation in response to NO-mediated vasodilators, i.e., ACh and sodium nitroprusside (SNP). Indomethacin did not alter the responses to ACh and SNP. Forskolin, a cAMP-activating agent, caused a comparable dilation of A2 and A3 vessels ( approximately 44 and 70%) in both groups of mice. Thus in transgenic mice, an increased eNOS/NO activity results in lower blood pressure and diminished arteriolar responses to NO-mediated vasodilators. Although the increased NOS/NO activity may compensate for flow abnormalities, it may also cause pathophysiological alterations in vascular tone.  相似文献   

17.
A Coulter Counter was modified to allow the photographing of erythrocytes as they exist the sizing orifice. These photographs provide the necessary information to determine the shape of individual cells. This data was combined on a cell-by-cell basis with the corresponding impedance signal to determine accurately both the cell size and deformed state of each cell. The particle shape is required if the size is to be determined accurately. Normal, diabetic and sickle cell samples were used in this study. The cell size was corrected according to theory that relates the impedance signal with cell shape. Although there was no objective test to determine the efficacy of this calculation in terms of improving the size measured, the reduction in the associated distribution width is taken as indicative of an improvement in the measuring process. The data presented represent the first attempt to relate cell size with deformed state on a cell-by-cell basis and indicates the potential usefulness of multiparameter deformability and size measurements.  相似文献   

18.
In this report, we tested the hypothesis that cellular content of non-heme iron determined whether cytotoxic levels of nitric oxide (NO) resulted in apoptosis versus necrosis. The consequences of NO exposure on cell viability were tested in RAW264.7 cells (a cell type with low non-heme iron levels) and hepatocytes (cells with high non-heme iron content). Whereas micromolar concentrations of the NO donor S-nitroso-N-acetyl-DL-penicillamine induced apoptosis in RAW264.7 cells, millimolar concentrations were required to induce necrosis in hepatocytes. Caspase-3 activation and cytochrome c release were evident in RAW264.7 cells, but only cytochrome c release was detectable in hepatocytes following high dose S-nitroso-N-acetyl-DL-penicillamine exposure. Pretreating RAW264.7 cells with FeSO(4) increased intracellular non-heme iron to levels similar to those measured in hepatocytes and delayed NO-induced cell death, which then occurred in the absence of caspase-3 activation. Iron loading was also associated with the formation of intracellular dinitrosyl-iron complexes (DNIC) upon NO exposure. Cytosolic preparations containing DNIC as well as pure preparations of DNIC suppressed caspase activity. These data suggest that non-heme iron content is a key factor in determining the consequence of NO on cell viability by regulating the chemical fate of NO.  相似文献   

19.
Low flow postural tachycardia syndrome (POTS), is associated with reduced nitric oxide (NO) activity assumed to be of endothelial origin. We tested the hypothesis that cutaneous microvascular neuronal NO (nNO) is impaired, rather than endothelial NO (eNO), in POTS. We performed three sets of experiments on subjects aged 22.5 +/- 2 yr. We used laser-Doppler flowmetry response to sequentially increase acetylcholine (ACh) doses and the local cutaneous heating response of the calf as bioassays for NO. During local heating we showed that when the selective neuronal nNO synthase (nNOS) inhibitor N(omega)-nitro-L-arginine-2,4-L-diaminobutyric amide (N(omega), 10 mM) was delivered by intradermal microdialysis, cutaneous vascular conductance (CVC) decreased by an amount equivalent to the largest reduction produced by the nonselective NO synthase (NOS) inhibitor nitro-L-arginine (NLA, 10 mM). We demonstrated that the response to ACh was minimally attenuated by nNOS blockade using N(omega) but markedly attenuated by NLA, indicating that eNO largely comprises the receptor-mediated NO release by ACh. We further demonstrated that the ACh dose response was minimally reduced, whereas local heat-mediated NO-dependent responses were markedly reduced in POTS compared with control subjects. This is consistent with intact endothelial function and reduced NO of neuronal origin in POTS. The local heating response was highly attenuated in POTS [60 +/- 6 percent maximum CVC(%CVC(max))] compared with control (90 +/- 4 %CVC(max)), but the plateau response decreased to the same level with nNOS inhibition (50 +/- 3 %CVC(max) in POTS compared with 47 +/- 2 %CVC(max)), indicating reduced nNO bioavailability in POTS patients. The data suggest that nNO activity but not NO of endothelial NOS origin is reduced in low-flow POTS.  相似文献   

20.
Nitric oxide (NO) has been suggested to have many physiological functions in the vertebrate retina, including a role in light-adaptive processes. The aim of this study was to examine the influence of the NO-donor sodium nitroprusside (SNP) on the activity of arylalkylamine-N-acetyltransferase (AA-NAT; EC. 2.3.1.87), the activity of which responds to light and reflects the changes in retinal melatonin synthesis—a key feature of light-adaptive responses in photoreceptors. Incubation of dark-adapted and dark-maintained retinas with SNP lead to the NO-specific suppression of AA-NAT activity, with NO suppressing AA-NAT activity to a level similar to that seen in the presence of dopaminergic agonists or light. Increased levels of cGMP appeared to be causally involved in the suppression of AA-NAT activity by SNP, as non-hydrolysable analogues of cGMP and the cGMP-specific phosphodiesterase (PDE) inhibitor zaprinast also significantly suppressed AA-NAT activity, while an inhibitor of soluble guanylate cyclase blocked the effect of SNP. While this chain of events may not be part of the normal physiology of the retina, it could be important in pathological circumstances that are associated with marked increase in levels of cGMP, as is found to be the case in certain forms photoreceptor degeneration, which are produced by defects in cGMP phosphodiesterase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号