首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ischemia depresses tissue excitability more rapidly in the ventricular epicardium than in the endocardium. We hypothesized that this would provide the substrate for transmural reentry originating in the epicardium. We mapped transmural conduction in isolated and perfused wedges taken from canine left ventricles during global ischemia while pacing alternately between the epicardium and endocardium. Ischemia reduced conduction velocity more in the epicardium than in the endocardium. We observed that the epicardial-initiated activation penetrated the ventricular wall transmurally while failing to conduct laterally along the epicardium, then conducted laterally along the endocardium and midmyocardium, and reentered the epicardium in 9 of 16 wedges during epicardial stimulation after 600 +/- 182 s of ischemia. Endocardial stimulation applied immediately before or after the epicardial stimulation initiated activation that spread quickly along the endocardium and then transmurally to the epicardium without reentry in six of the nine wedges. The transmural asymmetric conduction was not observed in four separate wedges after the endocardium was removed. Therefore, ischemia-induced transmural gradient of excitability provided the substrate for reentry during epicardial stimulation.  相似文献   

2.
Vulnerability is an effective index to evaluate increased risk for unidirectional conduction block and reentry in hearts. Recent reports in animal experiments have indicated an opposite characteristics of the vulnerability in normal and ischemic transmural tissues. In order to clarify the differences and to investigate the mechanisms, a computer simulation method was used in this study to investigate the vulnerability relative to the premature pacing sites in normal and ischemic transmural tissues. Endo-, mid- and epi-cardial myocytes incorporating different severities of ischemia were developed across a tissue strand. The sodium channel inactivation gating variable h was calculated to provide the degree of sodium current recovery preceding the premature pacing. In the normal tissue, the measured vulnerable window was demonstrated to be wider by delivering an endocardial premature beat than that by applying an epicardial premature pacing. On the contrary, during ischemia the epicardium showed a wider vulnerable window than the endocardium. The results illustrated that during ischemia h decreased with accumulation of [K?]o, and action potential duration dispersion was obviously altered due to anoxia. In contrast, the elevated [K?]o was suggested to play an important role in the difference of the location-dependent vulnerability in normal and ischemic tissues.  相似文献   

3.
A change in activation sequence electrically remodels ventricular myocardium, causing persistent changes in repolarizing currents (T-wave memory). However, the underlying mechanism for triggering activation sequence-dependent remodeling is unknown. Optical action potentials were mapped with high resolution from the epicardial surface of the arterially perfused canine wedge preparation (n = 23) during 30 min of baseline endocardial stimulation, followed by 40 min of epicardial stimulation, and, finally, restoration of endocardial stimulation. Immediately after the change from endocardial to epicardial stimulation, phase 1 notch amplitude of epicardial cells was attenuated by 74 +/- 8% (P < 0.001) compared with baseline and continued to diminish during the period of epicardial pacing, suggesting progressive remodeling of the transient outward current (Ito). When endocardial pacing was restored, notch amplitude did not immediately recover but remained attenuated by 23 +/- 10% (P < 0.001), also consistent with a remodeling effect. Peak Ito current measured from isolated epicardial myocytes changed by 12 +/- 4% (P < 0.025), providing direct evidence for Ito remodeling occurring on a surprisingly short time scale. The mechanism for triggering remodeling of Ito was a significant reduction (by 14 +/- 4%, P < 0.001) of upstroke amplitude in epicardial cells during epicardial stimulation. Reduction in upstroke amplitude during epicardial pacing was explained by electrotonic load on epicardial cells by fully repolarized downstream endocardial cells. These data suggest a novel mechanism for triggering electrical remodeling in the ventricle. Electrotonic load imposed by a change in activation sequence reduces upstroke amplitude, which, in turn, attenuates Ito according to its known voltage-dependent properties, triggering downregulation of current.  相似文献   

4.
Although, sodium channel blockers have the ability to suppress nonsustained ventricular arrhythmias, an excessive drug-associated arrhythmic death rate has been reported in patients with coronary heart disease (CHD). Sodium channel blockers should prevent initiation of reentry activation by reducing directional differences in cardiac conduction (anisotropy). However, in vitro data demonstrated, that reduction of membrane excitability, e.g. by lowering the inward Na+ current, increases the risk for conduction failure and associated reentry arrhythmias. In 11 dogs the effects of myocardial ischemia, premature epicardial stimulation (PES) and propafenone on anisotropic conduction properties were tested using three-dimensional mapping techniques. The epicardial (longitudinal and transverse to fiber orientation) and transmural (oblique and straight) spread of activation was reconstructed during constant and PES. At baseline, conduction velocities (CV) were higher along (1.20 +/- 0.41 m/s) than across (0.91 +/- 0.19 m/s; p < 0.05) epicardial muscle fibers as well as along oblique (1.77 +/- 0.75 m/s) compared to straight (0.39 +/- 0.09 m/s, p < 0.05) transmural pathways. Acute ischemia did not significantly reduce tissue anisotropy. PES and additional administration of propafenone epicardially eliminated and transmurally profoundly reduced tissue anisotropy (longitudinal 0.58 +/- 0.09 m/s, transverse 0.69 +/- 0.08 m/s, oblique 0.69 +/- 0.28 m/s, straight 0.27 +/- 0.07 m/s). However, reduced anisotropy was associated with a higher probability for conduction block along myocardial fibers in the epicardium and along oblique transmural pathways. Our data show, that propafenone exhibits both potential pro- and antiarrhythmic effects in dogs with acute myocardial ischemia. These results possibly provide more insights in mechanisms underlying the excessive drug-associated arrhythmic death rate in patients with CHD.  相似文献   

5.
Macroscopic T wave alternans (TWA) associated with increased occurrence of ventricular arrhythmias has been reported in patients with Brugada syndrome. However, the mechanisms in this syndrome are still unclear. We evaluated the hypothesis that TWA in Brugada syndrome was caused by the dynamic instability and heterogeneity of action potentials (APs) in the right ventricle. Using an optical mapping system, we mapped APs on the epicardium or transmural surfaces of 28 isolated and arterially perfused canine right ventricular preparations having drug-induced Brugada syndrome (in micromol/l: 2.5-15 pinacidil, 5.0 terfenadine, and 5.0-13 pilsicainide). Bradycardia at cycle length (CL) of 2,632 +/- 496 ms (n = 19) induced alternating deep and shallow T waves in the transmural electrocardiogram. Compared with the shallow T waves, deep T waves were associated with epicardial APs having longer durations and larger domes. Adjacent regions having APs with alternating domes, with constant domes, and without domes coexisted simultaneously in the epicardium and caused TWA. In contrast to the alternating epicardial APs, midmyocardial and endocardial APs did not change during TWA. Alternans could be terminated by rapid (CL: 529 +/- 168 ms, n = 7) or very slow (CL: 3,000 ms, n = 7) pacing. The heterogeneic APs during TWA augmented the dispersion of repolarization both within the epicardium and from the epicardium to the endocardium and caused phase 2 reentry. In this drug-induced model of Brugada syndrome, heterogeneic AP contours and dynamic alternans in the dome of right ventricular epicardial, but not midmyocardial or endocardial, APs caused TWA and heightened arrhythmogenicity in part by increasing the dispersion of repolarization.  相似文献   

6.
The vulnerability of the infarcted hearts to ventricular fibrillation (VF) was tested in in situ canine hearts during nicotine infusion. The activation pattern was mapped with 477 bipolar electrodes in open-chest anesthetized dogs (n = 8) 5-6 wk after permanent occlusion of the left anterior descending coronary artery. Nicotine (129 +/- 76 ng/ml) lengthened (P < 0.01) the pacing cycle length at which VF was induced from 171 +/- 8.9 to 210 +/- 14. 7 ms. Nicotine selectively amplified the magnitude of conduction time and monophasic action potential (MAP) amplitude and duration (MAPA and MAPD, respectively) alternans in the epicardial border zone (EBZ) but not in the normal zone. With critical reduction of the MAPA and MAPD in the EBZ, conduction block occurred across the long axis of the EBZ cells. Block led immediately to reentry formation in the EBZ with a mean period of 105 +/- 10 ms, which, after one to two rotations, degenerated to VF. Nicotine widened the range of diastolic intervals over which the dynamic MAPD restitution curve had a slope >1. We conclude that nicotine facilitates conduction block, reentry, and VF in hearts with healed myocardial infarction by increasing the magnitude of depolarization and repolarization alternans consistent with the restitution hypothesis of vulnerability to VF.  相似文献   

7.
Left ventricular (LV) epicardial pacing acutely reduces wall thickening at the pacing site. Because LV epicardial pacing also reduces transverse shear deformation, which is related to myocardial sheet shear, we hypothesized that impaired end-systolic wall thickening at the pacing site is due to reduction in myocardial sheet shear deformation, resulting in a reduced contribution of sheet shear to wall thickening. We also hypothesized that epicardial pacing would reverse the transmural mechanical activation sequence and thereby mitigate normal transmural deformation. To test these hypotheses, we investigated the effects of LV epicardial pacing on transmural fiber-sheet mechanics by determining three-dimensional finite deformation during normal atrioventricular conduction and LV epicardial pacing in the anterior wall of normal dog hearts in vivo. Our measurements indicate that impaired end-systolic wall thickening at the pacing site was not due to selective reduction of sheet shear, but rather resulted from overall depression of fiber-sheet deformation, and relative contributions of sheet strains to wall thickening were maintained. These findings suggest lack of effective end-systolic myocardial deformation at the pacing site, most likely because the pacing site initiates contraction significantly earlier than the rest of the ventricle. Epicardial pacing also induced reversal of the transmural mechanical activation sequence, which depressed sheet extension and wall thickening early in the cardiac cycle, whereas transverse shear and sheet shear deformation were not affected. These findings suggest that normal sheet extension and wall thickening immediately after activation may require normal transmural activation sequence, whereas sheet shear deformation may be determined by local anatomy.  相似文献   

8.
Cardiac resynchronization therapy has been most typically achieved by biventricular stimulation. However, left ventricular (LV) free-wall pacing appears equally effective in acute and chronic clinical studies. Recent data suggest electrical synchrony measured epicardially is not required to yield effective mechanical synchronization, whereas endocardial mapping data suggest synchrony (fusion with intrinsic conduction) is important. To better understand this disparity, we simultaneously mapped both endocardial and epicardial electrical activation during LV free-wall pacing at varying atrioventricular delays (AV delay 0-150 ms) in six normal dogs with the use of a 64-electrode LV endocardial basket and a 128-electrode epicardial sock. The transition from dyssynchronous LV-paced activation to synchronous RA-paced activation was studied by constructing activation time maps for both endo- and epicardial surfaces as a function of increasing AV delay. The AV delay at the transition from dyssynchronous to synchronous activation was defined as the transition delay (AVt). AVt was variable among experiments, in the range of 44-93 ms on the epicardium and 47-105 ms on the endocardium. Differences in endo- and epicardial AVt were smaller (-17 to +12 ms) and not significant on average (-5.0 +/- 5.2 ms). In no instance was the transition to synchrony complete on one surface without substantial concurrent transition on the other surface. We conclude that both epicardial and endocardial synchrony due to fusion of native with ventricular stimulation occur nearly concurrently. Assessment of electrical epicardial delay, as often used clinically during cardiac resynchronization therapy lead placement, should provide adequate assessment of stimulation delay for inner wall layers as well.  相似文献   

9.
Spiral-wave (SW) reentry is a major organizing principle of ventricular tachycardia/fibrillation (VT/VF). We tested a hypothesis that pharmacological modification of gap junction (GJ) conductance affects the stability of SW reentry in a two-dimensional (2D) epicardial ventricular muscle layer prepared by endocardial cryoablation of Langendorff-perfused rabbit hearts. Action potential signals were recorded and analyzed by high-resolution optical mapping. Carbenoxolone (CBX; 30 μM) and rotigaptide (RG, 0.1 μM) were used to inhibit and enhance GJ coupling, respectively. CBX decreased the space constant (λ) by 36%, whereas RG increased it by 22-24% (n = 5; P < 0.01). During centrifugal propagation, there was a linear relationship between the wavefront curvature (κ) and local conduction velocity (LCV): LCV = LCV(0) - D·κ (D, diffusion coefficient; LCV(0), LCV at κ = 0). CBX decreased LCV(0) and D by 27 ± 3 and 57 ± 3%, respectively (n = 5; P < 0.01). RG increased LCV(0) and D by 18 ± 3 and 54 ± 5%, respectively (n = 5, P < 0.01). The regression lines with and without RG crossed, resulting in a paradoxical decrease of LCV with RG at κ > ~60 cm(-1). SW reentry induced after CBX was stable, and the incidence of sustained VTs (>30 s) increased from 38 ± 4 to 85 ± 4% after CBX (n = 18; P < 0.01). SW reentry induced after RG was characterized by decremental conduction near the rotation center, prominent drift and self-termination by collision with the anatomical boundaries, and the incidence of sustained VTs decreased from 40 ± 5 to 17 ± 6% after RG (n = 13; P < 0.05). These results suggest that decreased intercellular coupling stabilizes SW reentry in 2D cardiac muscle, whereas increased coupling facilitates its early self-termination.  相似文献   

10.

Background

Little is known about the effect of cardiac resynchronization therapy (CRT) on endo- and epicardial ventricular activation. Noninvasive imaging of cardiac electrophysiology (NICE) is a novel imaging tool for visualization of both epi- and endocardial ventricular electrical activation.

Methodology/Principal Findings

NICE was performed in ten patients with congestive heart failure (CHF) undergoing CRT and in ten patients without structural heart disease (control group). NICE is a fusion of data from high-resolution ECG mapping with a model of the patient''s individual cardiothoracic anatomy created from magnetic resonance imaging. Beat-to-beat endocardial and epicardial ventricular activation sequences were computed during native rhythm as well as during ventricular pacing using a bidomain theory-based heart model to solve the related inverse problem. During right ventricular (RV) pacing control patients showed a deterioration of the ventricular activation sequence similar to the intrinsic activation pattern of CHF patients. Left ventricular propagation velocities were significantly decreased in CHF patients as compared to the control group (1.6±0.4 versus 2.1±0.5 m/sec; p<0.05). CHF patients showed right-to-left septal activation with the latest activation epicardially in the lateral wall of the left ventricle. Biventricular pacing resulted in a resynchronization of the ventricular activation sequence and in a marked decrease of total LV activation duration as compared to intrinsic conduction and RV pacing (129±16 versus 157±28 and 173±25 ms; both p<0.05).

Conclusions/Significance

Endocardial and epicardial ventricular activation can be visualized noninvasively by NICE. Identification of individual ventricular activation properties may help identify responders to CRT and to further improve response to CRT by facilitating a patient-specific lead placement and device programming.  相似文献   

11.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide, which may also elicit severe ventricular arrhythmias. The aims of our study were to compare the effects of total left anterior descending coronary artery (LAD) occlusion to intracoronary (ic.) ET-1 administration and to investigate the pathomechanism of ET-1 induced arrhythmias in 3 groups of anesthetized, open-chest mongrel dogs. In group A (n=10) a total LAD occlusion was carried out for 30 min, followed by a 60 min reperfusion period. In groups B and C ET-1 was administered into LAD for 30 min at a rate of 30 pmol/min (n=6) and 60 pmol/min (n=8). Epi- and endocardial monophasic action potential (MAP) recordings were performed to detect electrophysiologic changes and ischemia Blood samples for lactate measurements were collected from the coronary sinus (CS) and from the femoral artery. Infrared imaging was applied to follow epimyocardial heat emission changes. At the end of the ET-1 infusion period coronary blood flow (CBF) was reduced significantly in groups B and C (deltaCBF30MIN B: 21+/-2%, p<0.05; C: 35+/-2%, p<0.05), paralleled by a significant epimyocardial temperature decrease in group C (deltaT30MIN: -0.65+/-0.29 degrees C, p<0.05). Two dogs died of ventricular fibrillation (VF) in the reperfusion period in group A. Ventricular premature contractions and non-sustained ventricular tachycardic episodes appeared in group B, whereas six dogs died of VF in group C. Significant CS lactate level elevation indicating ischemia was observed only in group A from the 30th min occlusion throughout the reperfusion period (control vs. 30 min: 1.3+/-0.29 vs. 2.2+/-0.37 mmol/l, p<0.05). Epi- and endocardial MAP durations (MAPD90) and left ventricular epicardial (LV(EPI)) upstroke velocity decreased significantly in group A in the occlusion period. ET-1 infusion significantly increased LV(EPI) MAPD90 in group B and both MAPD90-s in group C. In conclusion, ischemic MAP and CS lactate changes were observed only in group A. Although ET-1 reduced CBF significantly in groups B and C, neither MAP nor lactate indicated ischemic alterations. ET-1 induced major ventricular arrhythmias appeared before signs of myocardial ischemia developed, though reduced CBF presumably contributed to sustaining the arrhythmias.  相似文献   

12.
Cardiac ischemia reduces excitability in ventricular tissue. Acidosis (one component of ischemia) affects a number of ion currents. We examined the effects of extracellular acidosis (pH 6.6) on peak and late Na(+) current (I(Na)) in canine ventricular cells. Epicardial and endocardial myocytes were isolated, and patch-clamp techniques were used to record I(Na). Action potential recordings from left ventricular wedges exposed to acidic Tyrode solution showed a widening of the QRS complex, indicating slowing of transmural conduction. In myocytes, exposure to acidic conditions resulted in a 17.3 ± 0.9% reduction in upstroke velocity. Analysis of fast I(Na) showed that current density was similar in epicardial and endocardial cells at normal pH (68.1 ± 7.0 vs. 63.2 ± 7.1 pA/pF, respectively). Extracellular acidosis reduced the fast I(Na) magnitude by 22.7% in epicardial cells and 23.1% in endocardial cells. In addition, a significant slowing of the decay (time constant) of fast I(Na) was observed at pH 6.6. Acidosis did not affect steady-state inactivation of I(Na) or recovery from inactivation. Analysis of late I(Na) during a 500-ms pulse showed that the acidosis significantly reduced late I(Na) at 250 and 500 ms into the pulse. Using action potential clamp techniques, application of an epicardial waveform resulted in a larger late I(Na) compared with when an endocardial waveform was applied to the same cell. Acidosis caused a greater decrease in late I(Na) when an epicardial waveform was applied. These results suggest acidosis reduces both peak and late I(Na) in both cell types and contributes to the depression in cardiac excitability observed under ischemic conditions.  相似文献   

13.
We hypothesized that partial cellular uncoupling produced by low concentrations of heptanol increases the vulnerability to inducible atrial fibrillation (AF). The epicardial surface of 12 isolated-perfused canine left atria was optically mapped before and after 1-50 microM heptanol infusion. At baseline, no sustained (>30 s) AF could be induced in any of the 12 tissues. However, after 2 microM heptanol infusion, sustained AF was induced in 9 of 12 tissues (P < 0.001). Heptanol >5 microM caused loss of 1:1 capture during rapid pacing, causing no AF to be induced. AF was initiated by conduction block across the fiber leading to reentry, which broke up after one to two rotations into two to four independent wavelets that sustained the AF. Heptanol at 2 microM had no effect on the cellular action potential duration restitution or on the maximal velocity rate over time of the upstroke. The effects of heptanol were reversible. We conclude that partial cellular uncoupling by heptanol without changing atrial active membrane properties promotes wavebreak, reentry, and AF during rapid pacing.  相似文献   

14.
We have previously shown that an intravenous infusion of adenosine and lidocaine (AL) solution protects against death and severe arrhythmias and reduces infarct size in the in vivo rat model of regional ischemia. The aim of this study was to examine the relative changes of myocardial high-energy phosphates (ATP and PCr) and pH in the left ventricle during ischemia-reperfusion using 31P NMR in AL-treated rats (n = 7) and controls (n = 6). The AL solution (A: 305 microg.(kg body mass)-1.min-1; L: 608 microg.(kg body mass)-1.min-1) was administered intravenously 5 min before and during 30 min coronary artery ligation. Two controls died from ventricular fibrillation; no deaths were recorded in AL-treated rats. In controls that survived, ATP fell to 73% +/- 29% of baseline by 30 min ischemia and decreased further to 68% +/- 28% during reperfusion followed by a sharp recovery at the end of the reperfusion period. AL-treated rats maintained relatively constant ATP throughout ischemia and reperfusion ranging from 95% +/- 6% to 121% +/- 10% of baseline. Owing to increased variability in controls, these results were not found to be significant. In contrast, control [PCr] was significantly reduced in controls compared with AL-treated rats during ischemia at 10 min (68% +/- 7% vs. 99% +/- 6%), at 15 min (68% +/- 10% vs. 93% +/- 2%), and at 20 min (67% +/- 15% vs. 103% +/- 5%) and during reperfusion at 10 min (56% +/- 22% vs. 99% +/- 7%), at 15 min (60% +/- 10% vs. 98% +/- 7%), and at 35 min (63% +/- 14% vs. 120% +/- 11%) (p < 0.05). Interestingly, changes in intramyocardial pH between each group were not significantly different during ischemia and fell by about 1 pH unit to 6.6. During reperfusion, pH in AL-treated rats recovered to baseline in 5 min but not in controls, which recovered to only around pH 7.1. There was no significant difference in the heart rate, mean arterial pressure, and rate-pressure product between the controls and AL treatment during ischemia and reperfusion. We conclude that AL cardioprotection appears to be associated with the preservation of myocardial high-energy phosphates, downregulation of the heart at the expense of a high acid-load during ischemia, and with a rapid recovery of myocardial pH during reperfusion.  相似文献   

15.
In systemic organs, ischemia-reperfusion injury is thought to occur during reperfusion, when oxygen is reintroduced to hypoxic ischemic tissue. In contrast, the ventilated lung may be more susceptible to injury during ischemia, before reperfusion, because oxygen tension will be high during ischemia and decrease with reperfusion. To evaluate this possibility, we compared the effects of hyperoxic ischemia alone and hyperoxic ischemia with normoxic reperfusion on vascular permeability in isolated ferret lungs. Permeability was estimated by measurement of filtration coefficient (Kf) and osmotic reflection coefficient for albumin (sigma alb), using methods that did not require reperfusion to make these measurements. Kf and sigma alb in control lungs (n = 5), which were ventilated with 14% O2-5% CO2 after minimal (15 +/- 1 min) ischemia, averaged 0.033 +/- 0.004 g.min-1.mmHg-1.100 g-1 and 0.69 +/- 0.07, respectively. These values did not differ from those reported in normal in vivo lungs of other species. The effects of short (54 +/- 9 min, n = 10) and long (180 min, n = 7) ischemia were evaluated in lungs ventilated with 95% O2-5% CO2. Kf and sigma alb did not change after short ischemia (Kf = 0.051 +/- 0.006 g.min-1.mmHg-1.100 g-1, sigma alb = 0.69 +/- 0.07) but increased significantly after long ischemia (Kf = 0.233 +/- 0.049 g.min-1 x mmHg-1 x 100 g-1, sigma alb = 0.36 +/- 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The purpose of this study was to test if HBOC-201, a hemoglobin-based oxygen-carrying solution, can decrease infarct size (or Inf) during acute, severe myocardial ischemia and reperfusion. To test the impact of HBOC-201 on infarct size, ischemia was produced in 18 dogs by coronary stenosis to achieve 80-95% flow reduction for 195 min along with pacing 10% above the spontaneous heart rate, followed by 180 min of reperfusion. Animals were randomized to intravenous infusion of HBOC-201 (1 g/kg) (n=6), normal saline (NS) (n=6), or phenylephrine (Phe) (n=6, as a control for the increased blood pressure seen with HBOC-201), given 15 min after the start of ischemia. Amount of infarct was quantified as the ratio between area at risk (AAR) and Inf after Evans blue and 2,3,5-triphenyltetrazolium chloride staining. Hearts were divided into five layers from base (layer A) to apex (layer E) and photographed for digital image analysis of AAR and Inf. Regional myocardial function (RMF) was also measured after 60 min of ischemia and 15 min of reperfusion. Inf/AAR was significantly reduced after HBOC-201 therapy (4.4+/-2.2%) vs. NS (26.0+/-3.6%) and Phe (25.7+/-4.1%) (both, P<0.05). RMF after reperfusion was restored to 92% of baseline with HBOC-201 compared with 11% of baseline after NS (P<0.05) and 49% after Phe (P=not significant). HBOC-201 administration after induction of severe myocardial ischemia by acute coronary stenosis reduces infarct size and improves myocardial viability.  相似文献   

17.
Although transmural heterogeneity of action potential duration (APD) is established in single cells isolated from different tissue layers, the extent to which it produces transmural gradients of repolarization in electrotonically coupled ventricular myocardium remains controversial. The purpose of this study was to examine the relative contribution of intrinsic cellular gradients of APD and electrotonic influences to transmural repolarization in rabbit ventricular myocardium. Transmural optical mapping was performed in left ventricular wedge preparations from eight rabbits. Transmural patterns of activation, repolarization, and APD were recorded during endocardial and epicardial stimulation. Experimental results were compared with modeled data during variations in electrotonic coupling. A transmural gradient of APD was evident during endocardial stimulation, which reflected differences previously seen in isolated cells, with the longest APD at the endocardium and the shortest at the epicardium (endo: 165 ± 5 vs. epi: 147 ± 4 ms; P < 0.05). During epicardial stimulation, this gradient reversed (epi: 162 ± 4 vs. endo: 148 ± 6 ms; P < 0.05). In both activation sequences, transmural repolarization followed activation and APD shortened along the activation path such that significant transmural gradients of repolarization did not occur. This correlation between transmural activation time and APD was recapitulated in simulations and varied with changes in intercellular coupling, confirming that it is mediated by electrotonic current flow between cells. These data suggest that electrotonic influences are important in determining the transmural repolarization sequence in rabbit ventricular myocardium and that they are sufficient to overcome intrinsic differences in the electrophysiological properties of the cells across the ventricular wall.  相似文献   

18.
The aim of the study was to investigate the pathological role of free radicals during myocardial reperfusion. Low (0.5 mg/kg body weight) and high doses (5 mg/kg) of superoxide dismutase (SOD) were infused into the left atrium of mongrel dogs for 4 min starting 29 min after ligation and 1 min before reperfusion of the left anterior descending coronary artery (LAD). Arterial blood pressure, heart rate, electrocardiogram, and the regional contractile force of the left ventricle were monitored throughout the ligation (30 min) and reperfusion periods (20 min). Concentrations of creatine kinase (CK) and malondialdehyde (MDA) in the coronary sinus blood were determined before (0 min) and during ligation (15 and 25 min) and during reperfusion of the LAD (2, 7, and 20 min). In other groups of dogs, the effect of the two doses of SOD on epicardial blood flow was investigated during ligation and reperfusion by the measurement of epicardial temperature using a thermocardiograph. Experimental subjects were mongrel dogs of either sex (n = 25), weight 10-35 kg. Compared to controls (mean +/- SEM, 43.1 +/- 1.2; n = 7), the number of ventricular extrasystoles during the first 5 min of reperfusion was significantly (p < .001) decreased in dogs treated with the high dose (15.01 +/- 2.14; n = 5), but not in those receiving the low dose of the drug (34.6 +/- 5.66; n = 5). The concentrations of CK increased gradually until the end of reperfusion without differences among the different groups. Plasma MDA was the highest in control dogs 7 min after reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Liu K  Lin Y  Xiang L  Yu P  Su L  Mao L 《Neurochemistry international》2008,52(6):1247-1255
Information on the change in extracellular ascorbic acid (AA) during the acute period of cerebral ischemia is of great importance in the early therapeutic intervention of the cerebral ischemic injury since AA is known to be involved into most kinds of neurochemical changes in the cerebral ischemia. This study describes a fast and efficient method through integration of in vivo microdialysis with on-line electrochemical detection for continuous monitoring cerebral AA, allowing comparative study of the change in the extracellular AA level in different brain ischemia/reperfusion models. The method exhibits a high specificity for AA measurements, bearing a good tolerance against the fluctuation in the brain anoxia and acidity induced by cerebral ischemia/reperfusion. In the global two-vessel occlusion (2-VO) ischemia model, the striatum AA did not change with statistic significance until 60 min after occlusion and was decreased to be 91+/-3% (n=5, P<0.05) of the basal level (8.05+/-0.23 microM) at the time point of 60 min after occlusion. In the 2-VO ischemia/reperfusion model, AA remained unchanged during the 10 min of ischemia, and was sharply increased to be 267+/-74% (n=5, P<0.05) of the basal level after the initial 15 min of reperfusion, and then decreased to be 122+/-33% (n=5, P<0.05) of the basal level after 50 min of reperfusion. Extracellular AA was largely increased after 5 min of left middle cerebral artery occlusion (LMCAO) and was then gradually increased to be 257+/-49% (n=5, P<0.05) of the basal level after 60 min of LMCAO ischemia. In the LMCAO ischemia/reperfusion model, AA was greatly increased during 10 min of ischemia and then gradually increased to be 309+/-69% (n=5, P<0.05) of the basal level after the consecutive 50 min of reperfusion. The results demonstrated here may be useful for understanding the neurochemical processes in the acute period of cerebral ischemia and could thus be important for neuroprotective therapeutics for cerebral ischemic injury.  相似文献   

20.

Background

Because of the optical features of heart tissue, optical and electrical action potentials are only moderately associated, especially when near-infrared dyes are used in optical mapping (OM) studies.

Objective

By simultaneously recording transmural electrical action potentials (APs) and optical action potentials (OAPs), we aimed to evaluate the contributions of both electrical and optical influences to the shape of the OAP upstroke.

Methods and Results

A standard glass microelectrode and OM, using an near-infrared fluorescent dye (di-4-ANBDQBS), were used to simultaneously record transmural APs and OAPs in a Langendorff-perfused rabbit heart during atrial, endocardial, and epicardial pacing. The actual profile of the transmural AP upstroke across the LV wall, together with the OAP upstroke, allowed for calculations of the probing-depth constant (k ~2.1 mm, n = 24) of the fluorescence measurements. In addition, the transmural AP recordings aided the quantitative evaluation of the influences of depth-weighted and lateral-scattering components on the OAP upstroke. These components correspond to the components of the propagating electrical wave that are transmural and parallel to the epicardium. The calculated mean values for the depth-weighted and lateral-scattering components, whose sum comprises the OAP upstroke, were (in ms) 10.18 ± 0.62 and 0.0 ± 0.56 for atrial stimulation, 9.37 ± 1.12 and 3.01 ± 1.30 for endocardial stimulation, and 6.09 ± 0.79 and 8.16 ± 0.98 for epicardial stimulation; (n = 8 for each). For this dye, 90% of the collected fluorescence originated up to 4.83 ± 0.18 mm (n = 24) from the epicardium.

Conclusions

The co-registration of OM and transmural microelectrode APs enabled the probing depth of fluorescence measurements to be calculated and the OAP upstroke to be divided into two components (depth-weighted and lateral-scattering), and it also allowed the relative strengths of their effects on the shape of the OAP upstroke to be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号