首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Smooth muscle membrane potential is determined, in part, by K(+) channels. In the companion paper to this article, we demonstrated that superior mesenteric arteries from rats made hypertensive with N(omega)-nitro-l-arginine (l-NNA) are depolarized and express less K(+) channel protein compared with those from normotensive rats. In the present study, we used patch-clamp techniques to test the hypothesis that l-NNA-induced hypertension reduces the functional expression of K(+) channels in smooth muscle. In whole cell experiments using a Ca(2+)-free pipette solution, current at 0 mV, largely due to voltage-dependent K(+) (K(V)) channels, was reduced approximately 60% by hypertension (2.7 +/- 0.4 vs. 1.1 +/- 0.2 pA/pF). Current at +100 mV with 300 nM free Ca(2+), largely due to large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels, was reduced approximately 40% by hypertension (181 +/- 24 vs. 101 +/- 28 pA/pF). Current blocked by 3 mM 4-aminopyridine, an inhibitor of many K(V) channel types, was reduced approximately 50% by hypertension (1.0 +/- 0.4 vs. 0.5 +/- 0.2 pA/pF). Current blocked by 1 mM tetraethylammonium, an inhibitor of BK(Ca) channels, was reduced approximately 40% by hypertension (86 +/- 14 vs. 53 +/- 19 pA/pF). Differences in BK(Ca) current magnitude are not attributable to changes in single-channel conductance or Ca(2+)/voltage sensitivity. The data support the hypothesis that l-NNA-induced hypertension reduces K(+) current in vascular smooth muscle. Reduced molecular and functional expression of K(+) channels may partly explain the depolarization and augmented contractile sensitivity of smooth muscle from l-NNA-treated rats.  相似文献   

2.
Endurance exercise training increases smooth muscle L-type Ca(2+) current density in both resistance and proximal coronary arteries of female miniature swine. The purpose of the present study was to determine 1) whether gender differences exist in coronary smooth muscle (CSM) L-type Ca(2+) current density and 2) whether endurance training in males would demonstrate a similar adaptive response as females. Proximal, conduit (approximately 1.0 mm), and resistance [~200 microm (internal diameter)] coronary arteries were obtained from sedentary and treadmill-trained swine of both sexes. CSM were isolated by enzymatic digestion (collagenase plus elastase), and voltage-gated Ca(2+)-channel current (I(Ca)) was determined by using whole cell voltage clamp during superfusion with 75 mM tetraethylammonium chloride and 10 mM BaCl(2). Current-voltage relationships were obtained at test potentials from -60 to 70 mV from a holding potential of -80 mV, and I(Ca) was normalized to cell capacitance (pA/pF). Endurance treadmill training resulted in similar increases in heart weight-to-body weight ratio, endurance time, and skeletal muscle citrate synthase activity in male and female swine. I(Ca) density was significantly greater in males compared with females in both conduit (-7.57 +/- 0.58 vs. -4.14 +/- 0.47 pA/pF) and resistance arteries (-11.25 +/- 0.74 vs. -6.49 +/- 0.87 pA/pF, respectively). In addition, voltage-dependent activation of I(Ca) in resistance arteries was shifted to more negative membrane potentials in males. Exercise training significantly increased I(Ca) density in both conduit and resistance arteries in females (-7.01 +/- 0.47 and -9.73 +/- 1.13 pA/pF, respectively) but had no effect in males (-8.61 +/- 0.50 and -12.04 +/- 1.07 pA/pF, respectively). Thus gender plays a significant role in determining both the magnitude and voltage dependence of I(Ca) in CSM and the adaptive response of I(Ca) to endurance training.  相似文献   

3.
Exposure to microgravity leads to a sustained elevation in transmural pressure across the cerebral vasculature due to removal of hydrostatic pressure gradients. We hypothesized that ion channel remodeling in cerebral vascular smooth muscle cells (VSMCs) similar to that associated with hypertension may occur and play a role in upward autoregulation of cerebral vessels during microgravity. Sprague-Dawley rats were subjected to 4-wk tail suspension (Sus) to simulate the cardiovascular effect of microgravity. Large-conductance Ca(2+)-activated K(+) (BK(Ca)), voltage-gated K(+) (K(V)), and L-type voltage-dependent Ca(2+) (Ca(L)) currents of Sus and control (Con) rat cerebral VSMCs were investigated with a whole cell voltage-clamp technique. Under the same experimental conditions, K(V), BK(Ca), and Ca(L) currents of cerebral VSMCs from adult spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were also investigated. K(V) current density decreased in Sus rats vs. Con rats [1.07 +/- 0.14 (n = 22) vs. 1.31 +/- 0.28 (n = 16) pA/pF at +20 mV (P < 0.05)] and BK(Ca) and Ca(L) current densities increased [BK(Ca): 1.70 +/- 0.37 (n = 23) vs. 0.88 +/- 0.22 (n = 19) pA/pF at +20 mV (P < 0.05); Ca(L): -2.17 +/- 0.21 (n = 35) vs. -1.31 +/- 0.10 (n = 26) pA/pF at +10 mV (P < 0.05)]. Similar changes were also observed in SHR vs. WKY cerebral VSMCs: K(V) current density decreased [1.03 +/- 0.33 (n = 9) vs. 1.62 +/- 0.64 (n = 9) pA/pF at +20 mV (P < 0.05)] and BK(Ca) and Ca(L) current densities increased [BK(Ca): 2.54 +/- 0.47 (n = 11) vs. 1.12 +/- 0.33 (n = 12) pA/pF at +20 mV (P < 0.05); Ca(L): -3.99 +/- 0.53 (n = 12) vs. -2.28 +/- 0.20 (n = 10) pA/pF at +20 mV (P < 0.05)]. These findings support our hypothesis, and their impact on space cardiovascular research is discussed.  相似文献   

4.
This study tested whether activation of protein kinase A (PKA) and G (PKG) pathways would attenuate the ability of RhoA to suppress the delayed rectifier K(+) (K(DR)) current and limit agonist-induced depolarization and constriction. Smooth muscle cells from rat cerebral arteries were enzymatically isolated, and whole cell K(DR) currents were monitored with conventional patch-clamp electrophysiology. The K(DR) current averaged 21.2 +/- 2.3 pA/pF (mean +/- SE) at +40 mV and was potently inhibited by UTP. Current suppression was eliminated in the presence of C3 exoenzyme, confirming that this modulation is dependent on RhoA. Activation of PKA (dibutyryl-cAMP, forskolin) or PKG (dibutyryl-cGMP, sodium nitroprusside, nitric oxide) similarly abolished the ability of UTP to suppress K(DR) and did so without effect on baseline current. Using pressure myography techniques, we stripped cerebral arteries of endothelium and preconstricted them with UTP; these were subsequently shown to hyperpolarize and dilate to both forskolin and sodium nitroprusside. An increase in K(V) channel activity was found to partly underlie these associated changes, as constriction to 4-aminopyridine (K(DR) channel blocker) was greater after PKA or PKG activation. We conclude from our electrophysiological and functional observations that the PKA and PKG pathways attenuate the ability of UTP to depolarize and constrict cerebral arteries in part by minimizing the RhoA-mediated suppression of the K(DR) current.  相似文献   

5.
We examined the effects of acute hypoxia on Ba2+-sensitive inward rectifier K+ (K(IR)) current in rabbit coronary arterial smooth muscle cells. The amplitudes of K(IR) current was definitely higher in the cells from small-diameter (<100 microm) coronary arterial smooth muscle cells (SCASMC, -12.8 +/- 1.3 pA/pF at -140 mV) than those in large-diameter coronary arterial smooth muscle cells (>200 microm, LCASMC, -1.5 +/- 0.1 pA pF(-1)). Western blot analysis confirmed that Kir2.1 protein was expressed in SCASMC but not LCASMC. Hypoxia activated much more KIR currents in symmetrical 140 K+. This effect was blocked by the adenylyl cyclase inhibitor SQ-22536 (10 microM) and mimicked by forskolin (10 microM) and dibutyryl-cAMP (500 microM). The production of cAMP in SCASMC increased 5.7-fold after 6 min of hypoxia. Hypoxia-induced increase in KIR currents was abolished by the PKA inhibitors, Rp-8-(4-chlorophenylthio)-cAMPs (10 microM) and KT-5720 (1 microM). The inhibition of G protein with GDPbetaS (1 mM) partially reduced (approximately 50%) the hypoxia-induced increase in KIR currents. In Langendorff-perfused rabbit hearts, hypoxia increased coronary blood flow, an effect that was inhibited by Ba2+. In summary, hypoxia augments the KIR currents in SCASMC via cAMP- and PKA-dependent signaling cascades, which might, at least partly, explain the hypoxia-induced coronary vasodilation.  相似文献   

6.
Y M Bae  K S Kim  J K Park  E Ko  S Y Ryu  H J Baek  S H Lee  W K Ho  Y E Earm 《Life sciences》2001,69(21):2451-2466
The membrane potential in vascular smooth muscle cells contributes to the regulation of cytosolic [Ca2+], which in turn regulates membrane potential by means of Ca2+i-dependent ionic currents. We investigated the characteristics of Ca2+i-dependent currents in rabbit coronary and pulmonary arterial smooth muscle cells. Ca2+i-dependent currents were recorded using the whole-cell patch-clamp technique while cytosolic [Ca2+] was increased by caffeine. The reversal potentials of caffeine-induced currents were between -80 and -10 mV under normal ionic conditions, whereas they were about 0 mV when K+-free NaCl solutions were used both in pipette and bath. The total substitution of extracellular Na+ with membrane-impermeable cation N-Methyl-D-glucamine did not affect caffeine-induced currents, implying no significant contribution of Na+ as a permeant ion to the currents. The substitution of extracellular NaCl with sucrose reduced outward component of the currents and shifted the reversal potentials according to the change in Cl- equilibrium potential. Upon application of the niflumic acid under K+-free conditions, most of the current induced by caffeine was inhibited. Taken together, the results of the present study indicate that K+ and Cl- currents are major components of Ca2+i-dependent currents in vascular smooth muscles isolated from coronary and pulmonary arteries of the rabbit, and the relative contribution of each type of current to total currents are not different between the two arteries.  相似文献   

7.
This study examined whether, and by what signaling and ionic mechanisms, pyrimidine nucleotides constrict rat cerebral arteries. Cannulated cerebral arteries stripped of endothelium and pressurized to 15 mmHg constricted in a dose-dependent manner to UTP. This constriction was partly dependent on the depolarization of smooth muscle cells and the activation of voltage-operated Ca(2+) channels. The depolarization and constriction induced by UTP were unaffected by bisindolylmaleimide I, a PKC inhibitor that abolished phorbol ester (PMA)-induced constriction in cerebral arteries. In contrast, the Rhokinase inhibitor Y-27632 attenuated the ability of UTP to both constrict and depolarize cerebral arteries. With patch-clamp electrophysiology, a voltage-dependent delayed rectifying K(+) (K(DR)) current was isolated and shown to consist of a slowly inactivating 4-aminopyridine (4-AP)-sensitive and an -insensitive component. The 4-AP-sensitive K(DR) current was potently suppressed by UTP through a mechanism that was not dependent on PKC. This reflects observations that demonstrated that 1) a PKC activator (PMA) had no effect on K(DR) and 2) PKC inhibitors (calphostin C or bisindolylmaleimide I) could not prevent the suppression of K(DR) by UTP. The Rho kinase inhibitor Y-27632 abolished the ability of UTP to inhibit the K(DR) current, as did inhibition of RhoA with C3 exoenzyme. Cumulatively, these observations indicate that Rho kinase signaling plays an important role in eliciting the cerebral constriction induced by pyrimidine nucleotides. Moreover, they demonstrate for the first time that Rhokinase partly mediates this constriction by altering ion channels that control membrane potential and Ca(2+) influx through voltage-operated Ca(2+) channels.  相似文献   

8.
The female sex is associated with longer electrocardiographic QT intervals and increased proarrhythmic risks of QT-prolonging drugs. This study examined the hypothesis that sex differences in repolarization may be associated with differential transmural ion-current distribution. Whole cell patch-clamp and current-clamp were used to study ionic currents and action potentials (APs) in isolated canine left ventricular cells from epicardium, midmyocardium, and endocardium. No sex differences in AP duration (APD) were found in cells from epicardium versus endocardium. In midmyocardium, APD was significantly longer in female dogs (e.g., at 1 Hz, female vs. male: 288 +/- 21 vs. 237 +/- 8 ms; P < 0.05), resulting in greater transmural APD heterogeneity in females. No sex differences in inward rectifier K+ current (I(K1)) were observed. Transient outward K+ current (I(to)) densities in epicardium and midmyocardium also showed no sex differences. In endocardium, female dogs had significantly smaller I(to) (e.g., at +30 mV, female vs. male: 2.5 +/- 0.2 vs. 3.5 +/- 0.3 pA/pF; P < 0.05). Rapid delayed-rectifier K+ current (I(Kr)) density and activation voltage-dependence showed no sex differences. Female dogs had significantly larger slow delayed-rectifier K+ current (I(Ks)) in epicardium and endocardium (e.g., at +40 mV; tail densities, female vs. male; epicardium: 1.3 +/- 0.1 vs. 0.8 +/- 0.1 pA/pF; P < 0.001; endocardium: 1.2 +/- 0.1 vs. 0.7 +/- 0.1 pA/pF; P < 0.05), but there were no sex differences in midmyocardial I(Ks). Female dogs had larger L-type Ca2+ current (I(Ca,L)) densities in all layers than male dogs (e.g., at -20 mV, female vs. male, epicardium: -4.2 +/- 0.4 vs. -3.2 +/- 0.2 pA/pF; midmyocardium: -4.5 +/- 0.5 vs. -3.3 +/- 0.3 pA/pF; endocarium: -4.5 +/- 0.4 vs. -3.2 +/- 0.3 pA/pF; P < 0.05 for each). We conclude that there are sex-based transmural differences in ionic currents that may underlie sex differences in transmural cardiac repolarization.  相似文献   

9.
Vasoactive intestinal peptide (VIP) stimulates active Cl- secretion by the intestinal epithelium, a process that depends upon the maintenance of a favorable electrical driving force established by a basolateral membrane K+ conductance. To demonstrate the role of this K- conductance, we measured short-circuit current (I(SC)) across monolayers of the human colonic secretory cell line, T84. The serosal application of VIP (50 nM) increased I(SC) from 3 +/- 0.4 microA/cm2 to 75 +/- 11 microA/cm2 (n = 4), which was reduced to a near zero value by serosal applications of Ba2+ (5 mM). The chromanol, 293B (100 microM), reduced I(SC) by 74%, but charybdotoxin (CTX, 50 nM) had no effect. We used the whole-cell voltage-clamp technique to determine whether the K+ conductance is regulated by cAMP-dependent phosphorylation in isolated cells. VIP (300 nM) activated K+ current (131 +/- 26 pA, n = 15) when membrane potential was held at the Cl- equilibrium potential (E(Cl-) = -2 mV), and activated inward current (179 +/- 28 pA, n = 15) when membrane potential was held at the K+ equilibrium potential (E(K+) = -80 mV); however, when the cAMP-dependent kinase (PKA) inhibitor, PKI (100 nM), was added to patch pipettes, VIP failed to stimulate these currents. Barium (Ba2+ , 5 mM), but not 293B, blocked this K+ conductance in single cells. We used the cell-attached membrane patch under conditions that favor K + current flow to demonstrate the channels that underlie this K+ conductance. VIP activated inwardly rectifying channel currents in this configuration. Additionally, we used fura-2AM to show that VIP does not alter the intracellular Ca2+ concentration, [Ca2 +]i. Caffeine (5 mM), a phosphodiesterase inhibitor, also stimulated K+ current (185 +/- 56 pA, n = 8) without altering [Ca2+]i. These results demonstrate that VIP activates a basolateral membrane K+ conductance in T84 cells that is regulated by cAMP-dependent phosphorylation.  相似文献   

10.
11.
Mechanism(s) underlying activation of store-operated Ca2+ entry currents, ISOC, remain incompletely understood. F-actin configuration is an important determinant of channel function, although the nature of interaction between the cytoskeleton and ISOC channels is unknown. We examined whether the spectrin membrane skeleton couples Ca2+ store depletion to Ca2+ entry. Thapsigargin activated an endothelial cell ISOC (-45 pA at -80 mV) that reversed at +40 mV, was inwardly rectifying when Ca2+ was the charge carrier, and was inhibited by La3+ (50 microM). Disruption of the spectrin-protein 4.1 interaction at residues A207-V445 of betaSpIISigma1 decreased the thapsigargin-induced global cytosolic Ca2+ response by 50% and selectively abolished the endothelial cell ISOC, without altering activation of a nonselective current through cyclic nucleotide-gated channels. In contrast, disruption of the spectrin-actin interaction at residues A47-K186 of betaSpIISigma1 did not decrease the thapsigargin-induced global cytosolic Ca2+ response or inhibit ISOC. Results indicate that the spectrin-protein 4.1 interaction selectively controls ISOC, indicating that physical coupling between calcium release and calcium entry is reliant upon the spectrin membrane skeleton.  相似文献   

12.
Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4- 10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization.  相似文献   

13.
目的:SK通道存在于心肌细胞上,其中SK2亚型主要表达在心房。SK2通道对胞内游离钙离子高度敏感,可快速将钙离子浓度的变化转换成细胞膜电位变化。本实验应用穿孔膜片钳技术记录人心肌细胞SK2电流,观察心房肌细胞SK2电流在窦性患者和心房颤动患者之间的差别,以及电极液中不同的钙浓度对两组细胞SK2电流的影响。方法:将接受体外循环手术的患者分为两组:心房颤动组和窦性心律组。以心房肌细胞为研究对象,用穿孔膜片钳技术记录人心肌细胞电流,观察窦性组与房颤组SK2通道电流的差异以及两组细胞SK2电流对电极液中钙敏感性的不同。结果:在全细胞穿孔膜片钳模式下,电极液中游离钙离子浓度为5×10-7mol/L时,记录到房颤组SK2通道电流明显大于窦性组,尤其是在超极化水平。膜电位在-130 mV时,窦性组与房颤组的SK2通道电流密度分别为(-2.92±0.35)pA/pF(n=6),(-6.83±0.19)pA/pF(n=3,P〈0.05)。在电极液游离钙离子浓度分别为0 mol/L、5×10-7mol/L、10-6mol/L,膜电位为-130 mV时,窦性组SK2通道电流密度分别为(-1.43±0.33)pA/pF(n=7),(-2.92±0.35)pA/pF(n=6),(-10.11±2.15)pA/pF(n=8,P〈0.05);房颤组SK2通道电流密度分别为(-2.17±0.40)pA/pF(n=4)(-6.83±0.19)pA/pF(n=3)(-14.47±2.89)pA/pF(n=4)(P〈0.05)。结论:人心房肌细胞SK2通道具有电压不敏感、内向整流、apamin敏感的特性。电极液中钙浓度相同的情况下,房颤组的SK2电流密度明显大于窦性组,SK2通道电流对钙离子的敏感性高于窦性组,提示SK2通道钙敏感性增加可能与心房颤动的发生发展密切相关。  相似文献   

14.
Coexpression of the serum and glucocorticoid inducible kinase 1 (SGK1) up-regulates Kv channel activity in Xenopus oocytes and human embryonic kidney cells. To investigate the physiological impact of SGK1 dependent Kv channel regulation, we recorded whole-cell currents in lung fibroblasts from SGK1 knockout mice (sgk1-/-) and wild-type littermates (sgk1+/+). Serum-grown mouse lung fibroblasts (MLF) from both genotypes exhibited voltage-gated outwardly rectifying K(+)-currents with time-dependent activation (tau(act) approximately 3 msec), slow inactivation (tau(inact) approximately 700 msec), use-dependent inactivation, and (partial) inhibition by K(+) channel blockers TEA, 4-AP, and margatoxin. In serum grown MLF peak Kv current density at +100 mV was significantly lower in sgk1-/- (14 +/- 2 pA/pF, n = 13) than in sgk1+/+ (31 +/- 4 pA/pF, n = 16). PCR amplification of different Kv1 and Kv3 subunits from mouse fibroblasts demonstrated the expression of Kv1.1-1.7, Kv3.1, and Kv3.3 mRNA in both sgk1+/+ and sgk1-/- cells. Upon serum deprivation Kv currents almost disappeared in sgk1+/+ (4 +/- 1 pA/pF, n = 11) but not in sgk1-/- (10 +/- 1 pA/pF, n = 6) MLF. Accordingly, following serum deprivation Kv current density was significantly lower in sgk1+/+ than in sgk1-/-. Stimulation of serum-depleted cells with dexamethasone (dex) (1 microM, 1 day), IGF-1 (6.7 microM, 4-6 h) or both, significantly activated Kv currents in sgk1+/+ but not in sgk1-/- MLF. In the presence of both, dex and IGF-1, the Kv current density was significantly larger in sgk1+/+ (27 +/- 3 pA/pF, n = 12) than in sgk1-/- (13 +/- 3 pA/pF, n = 10) cells. Similar to MLF, Kv currents were significantly higher in sgk1+/+ mouse tail fibroblasts (MTF). In sgk1+/+ but not sgk1-/- MTF the Kv currents were inhibited upon serum deprivation and reincreased after stimulation of serum deprived MTF with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h). According to Fura-2-fluorescence capacitative Ca(2+) entry was lower in sgk1-/- MTF compared to sgk1+/+ MTF. Upon serum deprivation capacitative Ca(2+) entry decreased significantly in sgk1+/+ but not in sgk1-/- MTF. Stimulation of depleted cells with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h) reincreased capacitative Ca(2+) entry in sgk1+/+ MTF, whereas in sgk1-/- cells it remained unchanged. In conclusion, lack of SGK1 does not abrogate Kv channel activity but abolishes regulation of those channels by serum, glucocorticoids and IGF-1, an effect influencing capacitative Ca(2+) entry.  相似文献   

15.
Lu JY  Wu DM  Wu BW  Chai WX  Kang CS  Li TL 《生理学报》1999,51(5):588-592
本文观察了心肌肥厚对大鼠心肌细胞Na /Ca2 交换电流的影响。我们采用Goldblatt两肾一夹方法诱发大鼠心肌肥厚,应用全细胞膜片钳技术记录电流。结果表明:肥厚心肌细胞的Ni2 -敏感Na /Ca2 交换电流密度大于正常细胞。在钳制电压为+50mV时,正常细胞的外向交换电流密度为1.53±0.31pA/pF,而肥厚细胞则为2.62±0.53pA/pF(P<0.01);钳制电压为-100mV时,正常细胞的内向交换电流密度为0.42±0.14pA/pF,肥厚细胞达1.12±0.33pA/pF(P<0.001)。这些结果提示,肥厚心肌细胞的Na /Ca2 交换电流发生了改变,其意义有待进一步探讨。  相似文献   

16.
The origin of Ibetanull, the Ca2+ current of myotubes from mice lacking the skeletal dihydropyridine receptor (DHPR) beta1a subunit, was investigated. The density of Ibetanull was similar to that of Idys, the Ca2+ current of myotubes from dysgenic mice lacking the skeletal DHPR alpha1S subunit (-0.6 +/- 0.1 and -0.7 +/- 0.1 pA/pF, respectively). However, Ibetanull activated at significantly more positive potentials. The midpoints of the GCa-V curves were 16.3 +/- 1.1 mV and 11.7 +/- 1.0 mV for Ibetanull and Idys, respectively. Ibetanull activated significantly more slowly than Idys. At +30 mV, the activation time constant for Ibetanull was 26 +/- 3 ms, and that for Idys was 7 +/- 1 ms. The unitary current of normal L-type and beta1-null Ca2+ channels estimated from the mean variance relationship at +20 mV in 10 mM external Ca2+ was 22 +/- 4 fA and 43 +/- 7 fA, respectively. Both values were significantly smaller than the single-channel current estimated for dysgenic Ca2+ channels, which was 84 +/- 9 fA under the same conditions. Ibetanull and Idys have different gating and permeation characteristics, suggesting that the bulk of the DHPR alpha1 subunits underlying these currents are different. Ibetanull is suggested to originate primarily from Ca2+ channels with a DHPR alpha1S subunit. Dysgenic Ca2+ channels may be a minor component of this current. The expression of DHPR alpha1S in beta1-null myotubes and its absence in dysgenic myotubes was confirmed by immunofluorescence labeling of cells.  相似文献   

17.
The Ca2+ currents, charge movements, and intracellular Ca2+ transients of mouse dihydropyridine receptor (DHPR) beta 1-null myotubes expressing a mouse DHPR beta 1 cDNA have been characterized. In beta 1-null myotubes maintained in culture for 10-15 days, the density of the L-type current was approximately 7-fold lower than in normal cells of the same age (Imax was 0.65 +/- 0.05 pA/pF in mutant versus 4.5 +/- 0.8 pA/pF in normal), activation of the L-type current was significantly faster (tau activation at +40 mV was 28 +/- 7 ms in mutant versus 57 +/- 8 ms in normal), charge movements were approximately 2.5-fold lower (Qmax was 2.5 +/- 0.2 nC/microF in mutant versus 6.3 +/- 0.7 nC/microF in normal), Ca2+ transients were not elicited by depolarization, and spontaneous or evoked contractions were absent. Transfection of beta 1-null cells by lipofection with beta 1 cDNA reestablished spontaneous or evoked contractions in approximately 10% of cells after 6 days and approximately 30% of cells after 13 days. In contracting beta 1-transfected myotubes there was a complete recovery of the L-type current density (Imax was 4 +/- 0.9 pA/pF), the kinetics of activation (tau activation at +40 mV was 64 +/- 5 ms), the magnitude of charge movements (Qmax was 6.7 +/- 0.4 nC/microF), and the amplitude and voltage dependence of Ca2+ transients evoked by depolarizations. Ca2+ transients of transfected cells were unaltered by the removal of external Ca2+ or by the block of the L-type Ca2+ current, demonstrating that a skeletal-type excitation-contraction coupling was restored. The recovery of the normal skeletal muscle phenotype in beta 1-transfected beta-null myotubes shows that the beta 1 subunit is essential for the functional expression of the DHPR complex.  相似文献   

18.
There have been periodic reports of nonclassic (4-aminopyridine insensitive) transient outward K+ current in guinea pig ventricular myocytes, with the most recent one describing a novel voltage-gated inwardly rectifying type. In the present study, we have investigated a transient outward current that overlaps inward Ca2+ current (I(Ca,L)) in myocytes dialyzed with 10 mM K+ solution and superfused with Tyrode's solution. Although depolarizations from holding potential (Vhp) -40 to 0 mV elicited relatively small inward I(Ca,L) in these myocytes, removal of external K+ or addition of 0.2 mM Ba2+ more than doubled the amplitude of the current. The basis of the enhancement of I(Ca,L) was the suppression of a large transient outward K+ current. Similar enhancement was observed when Vhp was moved to -80 mV and test depolarizations were preceded by short prepulses to -40 mV. Investigation of the time and voltage properties of the outward K+ transient indicated that it was inwardly rectifying and unlikely to be carried by voltage-gated channels. The outward transient was attenuated in myocytes dialyzed with high-Mg2+ solution, accelerated in myocytes dialyzed with 100 microM spermine solution, and abolished with time in myocytes dialyzed with ATP-free solution. These and other findings suggest that the outward transient is a component of classic "time-independent" inwardly rectifying K+ current.  相似文献   

19.
Hypercholesterolemia (HC) is a mary risk factor for the development of coronary heart disease. Coronary ion regulation, especially calcium, is thought to be important in coronary heart disease development; however, the influence of high dietary fat and cholesterol on coronary arterial smooth muscle (CASM) ion channels is unknown. The purpose of this study was to determine the effect of diet-induced HC on CASM voltage-gated calcium current (I(Ca)). Male miniature swine were fed a high-fat, high-cholesterol diet (40% kcal fat, 2% wt cholesterol) for 20-24 wk, resulting in elevated serum total and low-density lipoprotein cholesterol. Histochemistry indicated early atherosclerosis in large coronary arteries. CASM were isolated from the right coronary artery (>1.0 mm ID), small arteries ( approximately 200 microm), and large arterioles ( approximately 100 microm). I(Ca) was determined by whole cell voltage clamp. L-type I(Ca) was reduced approximately 30% by HC compared with controls in the right coronary artery (-5.29 +/- 0.42 vs. -7.59 +/- 0.41 pA/pF) but not the microcirculation (small artery, -8.39 +/- 0.80 vs. -10.13 +/- 0.60; arterioles, -10.78 +/- 0.93 vs. -11.31 +/- 0.95 pA/pF). Voltage-dependent activation was unaffected by HC in both the macro- and microcirculation. L-type voltage-gated calcium channel (Ca(v)1.2) mRNA and membrane protein levels were unaffected by HC. Inhibition of I(Ca) by HC was reversed in vitro by the cholesterol scavenger methyl-beta-cyclodextrin and mimicked in control CASM by incubation with the cholesterol donor cholesterol:methyl-beta-cyclodextrin. These data indicate that CASM L-type I(Ca) is decreased in large coronary arteries in early stages of atherosclerosis, whereas I(Ca) in the microcirculation is unaffected. The inhibition of calcium channel activity in CASM of large coronary arteries is likely due to increases in membrane free cholesterol.  相似文献   

20.
This study examined whether inward rectifying K+ (KIR) channels facilitate cell-to-cell communication along skeletal muscle resistance arteries. With the use of feed arteries from the hamster retractor muscle, experiments examined whether KIR channels were functionally expressed and whether channel blockade attenuated the conduction of acetylcholine-induced vasodilation, an index of cell-to-cell communication. Consistent with KIR channel expression, this study observed the following: 1) a sustained Ba2+-sensitive, K+-induced dilation in preconstricted arteries; 2) a Ba2+-sensitive inwardly rectifying K+ current in arterial smooth muscle cells; and 3) KIR2.1 and KIR2.2 expression in the smooth muscle layer of these arteries. It was subsequently shown that the discrete application of acetylcholine elicits a vasodilation that conducts with limited decay along the feed artery wall. In the presence of 100 microM Ba2+, the local and conducted response to acetylcholine was attenuated, a finding consistent with a role for KIR in facilitating cell-to-cell communication. A computational model of vascular communication accurately predicted these observations. Control experiments revealed that in contrast to Ba2+, ATP-sensitive- and large-conductance Ca2+ activated-K+ channel inhibitors had no effect on the local or conducted vasodilatory response to acetylcholine. We conclude that smooth muscle KIR channels play a key role in facilitating cell-to-cell communication along skeletal muscle resistance arteries. We attribute this facilitation to the intrinsic property of negative slope conductance, a biophysical feature common to KIR2.1- and 2.2-containing channels, which enables them to increase their activity as a cell hyperpolarizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号