首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang C  Bao WY  Gu ZQ  Li YF  Liang X  Ling Y  Cai SL  Shen HD  Yang JL 《Biofouling》2012,28(3):249-256
Settlement and metamorphosis of pediveliger larvae of Mytilus coruscus in response to natural biofilms was investigated in the laboratory. Pediveliger larvae settled and metamorphosed in response to biofilms and post-larval settlement and metamorphosis increased with biofilm age. The activity of the biofilm was positively correlated with biofilm age, dry weight, bacterial density and diatom density, but had no apparent relationship with chlorophyll a concentration. The change in bacterial community composition corresponding to biofilm age may explain differences in the age-dependent inducing activities of biofilms, which in turn may play an important role in larval settlement in this species.  相似文献   

2.
Bacterial biofilms are increasingly seen as important for the successful settlement of marine invertebrate larvae. Here we tested the effects of biofilms on settlement of the sea urchin Heliocidaris erythrogramma. Larvae settled on many surfaces including various algal species, rocks, sand and shells. Settlement was reduced by autoclaving rocks and algae, and by treatment of algae with antibiotics. These results, and molecular and culture-based analyses, suggested that the bacterial community on plants was important for settlement. To test this, approximately 250 strains of bacteria were isolated from coralline algae, and larvae were exposed to single-strain biofilms. Many induced rates of settlement comparable to coralline algae. The genus Pseudoalteromonas dominated these highly inductive strains, with representatives from Vibrio, Shewanella, Photobacterium and Pseudomonas also responsible for a high settlement response. The settlement response to different bacteria was species specific, as low inducers were also dominated by species in the genera Pseudoalteromonas and Vibrio. We also, for the first time, assessed settlement of larvae in response to characterised, monospecific biofilms in the field. Larvae metamorphosed in higher numbers on an inducing biofilm, Pseudoalteromonas luteoviolacea, than on either a low-inducing biofilm, Pseudoalteromonas rubra, or an unfilmed control. We conclude that the bacterial community on the surface of coralline algae is important as a settlement cue for H. erythrogramma larvae. This study is also an example of the emerging integration of molecular microbiology and more traditional marine eukaryote ecology.  相似文献   

3.
Settlement and metamorphosis of pediveliger larvae of Mytilus coruscus in response to natural biofilms was investigated in the laboratory. Pediveliger larvae settled and metamorphosed in response to biofilms and post-larval settlement and metamorphosis increased with biofilm age. The activity of the biofilm was positively correlated with biofilm age, dry weight, bacterial density and diatom density, but had no apparent relationship with chlorophyll a concentration. The change in bacterial community composition corresponding to biofilm age may explain differences in the age-dependent inducing activities of biofilms, which in turn may play an important role in larval settlement in this species.  相似文献   

4.
Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species.  相似文献   

5.
The settlement of marine larvae is influenced by a wide range of physical and biological factors. It is still poorly known how the nature of substrate and the biofilm can interact in regulating settlement patterns of invertebrate larvae. Here we use laboratory experiments focused on settlement behaviour of the barnacle Balanus amphitrite. The aim of this work is to understand whether: (i) the nature of substratum can affect biofilm formation and its structure, (ii) the nature of substratum can affect B. amphitrite larval settlement, (iii) the age of the biofilms and the nature of substrate can interact in influencing larval settlement.Four kinds of substrata (marble, quartz, glass, and cembonit) were biofilmed under laboratory conditions for 5, 10 and 20 days at the temperature of 28 °C. Settlement response was investigated with 5-day-old cyprids. Biofilms were quantitatively and qualitatively analysed by scanning electron microscopy. The settlement of B. amphitrite larvae significantly differed among substrata; also, the patterns of development of biofilm assemblages changed with substrate. In addition, the larval attractiveness of different substrates tends to disappear with biofilm age.  相似文献   

6.
In the marine environment, biofilms on submerged surfaces can promote or discourage the settlement of invertebrate larvae and macroalgal spores. The settlement-mediating effects of biofilms are believed to involve a variety of biofilm attributes including surface chemistry, micro-topography, and a wide range of microbial products from small-molecule metabolites to high-molecular weight extracellular polymers. The settled organisms in turn can modify microbial species composition of biofilms and thus change the biofilm properties and dynamics. A better understanding of biofilm dynamics and chemical signals released and/or stored by biofilms will facilitate the development of antifouling and mariculture technologies. This review provides a brief account of 1) existing knowledge of marine biofilms that are relevant to settlement mediation, 2) biotechnological application of biofilms with respect to developing non-toxic antifouling technologies and improving the operation of aquaculture facilities, and 3) challenges and future directions for advancing our understanding of settlement-mediating functions of biofilms and for applying this knowledge to real-life situations.  相似文献   

7.
The colonial ascidian Didemnum candidum (Savigny) is more abundant at shallow depths on floating docks than at greater depths along pilings in Pearl Harbor, Oahu, Hawaii. To compare the effects of selective settlement and postsettlement mortality on adult distribution, I determined if settlement was nonrandom relative to depth, if differences in adult abundance were responsible for the depth distribution of settlement, and if juvenile mortality varied with depth. A plankton pump was used to measure variation in larval abundance with depth. Acrylic settling plates were suspended at different depths and sampled nondestructively to measure settlement intensity and juvenile mortality. Settlement and mortality of the didemnid ascidians Diplosoma listerianum Milne-Edwards and Diplosoma sp. were also measured in the field and compared to that of D. candidum. Settlement of D. candidum was indeed nonrandom over depth. Both planktonic larvae and settled juvenils were more numerous at 0.5 than 3 or m. Settlement intensity on vertical plates was greatest within 1–2 cm of the water surface in the laboratory and within 2–3 cm in the field. Directly adjacent to the floating dock, where adults were equally abundant, settlement on horizontal plates was greater at shallow depths, suggesting directed movement of larvae upward. However, the ratio of settled juveniles to planktonic larvae (number of settlers: number of larvae) did not significantly differ with depth, suggesting that larvae were not more likely to settle at a particular depth. Settlement of the Diplosoma species was also heaviest near the surface. Juvenile mortality was greater at 0.5 than at 3 or 6 m for both D. candidum and the Diplosoma species. Experimental settlement showed that mortality, per se, of D. candidum was independent of depth. Rather, mortality was density-dependent, and the higher mortality near the surface was due to the greater number of larvae settling there. At this location, nonrandom settlement appears to determine the adult distribution of D. candidum, despite greater juvenile mortality at shallow depths. The pattern of settlement over depth is largely determined by adult proximity, rather than active larval behavior.  相似文献   

8.
Patterns of larval release, dispersal and settlement in sponges are poorly understood despite their significance in explaining adult ecology. Time of release, swimming speeds, phototaxis and vertical migration were quantified for larvae of the dictyoceratid sponge Coscinoderma matthewsi. The influence of cues associated with biofilms and coral rubble on larval settlement and metamorphosis was also measured. C. matthewsi is a brooding sponge and releases tufted parenchymellae larvae during the day. Upon release, larvae (>90%) have no phototactic response, maintaining their position at the water surface for 80 min ± 0 (mean ± SE) regardless of a light cue (natural daylight) before exhibiting negative phototaxis. At 28 h post-release, the majority of larvae (94.7% ± 6.1) exposed to light from the surface migrated to the bottom and assumed a demersal phase. Without light, larvae occupied the surface for up to 28 h post-release (89.3% ± 1.8) before migrating to the bottom. Larvae did not settle gregariously and began to settle and metamorphose after 28 h post-release without a cue. Settlement and metamorphosis were faster in the presence of a biofilm (settlement = 15.0% ± 8.7 and metamorphosis = 12.5% ± 9.5 at 28 h post-release), while the addition of coral rubble accelerated metamorphosis further (settlement = 10.0% ± 4.1 and metamorphosis = 27.5% ± 10.3 at 28 h post-release) compared to controls (sterile surfaces) (settlement = 0% and metamorphosis = 0% at 28 h post-release). However, both biofilms and coral rubble decrease total metamorphosis (control = 92.5% ± 4.8, biofilms = 67.5% ± 7.5 and coral rubble = 55.0% ± 13.2) due to mortality after 76 h post-release.  相似文献   

9.
Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor. Biofilm community composition, as determined by a combined approach of denaturing gradient gel electrophoresis and fluorescence in situ hybridization, was similar across all surfaces, regardless of initial wettability, and all surfaces had distinct temporal shifts in community structure over a 10 day period. Larvae settled and recruited in higher numbers to surfaces with medium to low wettability in both May and August, and also to slides with high wettability in August. Pearl Harbor biofilm communities developed similarly on a range of surface wettabilities, and after 10 days in Pearl Harbor all surfaces were equally attractive to larvae of Hydroides elegans, regardless of initial surface properties.  相似文献   

10.
Larvae of the scleractinian coral Pocillopora damicornis are induced to settle and metamorphose by the presence of marine bacterial biofilms, and the larvae of Montipora capitata respond to a combination of filamentous and crustose coralline algae. The primary goal of this study was to better understand metamorphosis of cnidarian larvae by determining what types of receptors and signal-transduction pathways are involved during stimulation of metamorphosis of P. damicornis and M. capitata. Evidence from studies on larvae of hydrozoans suggests that G-protein-coupled receptors (GPCRs) are good candidates. Settlement experiments were conducted in which competent larvae were exposed to neuropharmacological agents that affect GPCRs and their associated signal-transduction pathways, AC/cAMP and PI/DAG/PKC. On the basis of the results of these experiments, we conclude that GPCRs and these pathways do not mediate settlement and metamorphosis in either coral species. Two compounds that had an effect on both species, forskolin and phorbol-12-myristate-13-acetate (TPA), may be acting on other cellular processes not related to GPCRs. This study strengthens our understanding of the underlying physiological mechanisms that regulate metamorphosis in coral larvae.  相似文献   

11.
Surface wettability and microtopography can either enhance or deter larval settlement of many sessile marine organisms. This study quantifies the effect of these surface properties on the settlement of pediveligers of Mytilus galloprovincialis, using polymers spanning a range of wettability and microtextured polydimethylsiloxane (PDMS). Furthermore, the adhesion strength of settled pediveligers on microtextured PDMS surfaces was quantified using a flow chamber. Settlement was enhanced at the hydrophilic end of the wettability spectrum, where mean settlement on nylon reached 33.5 ± 13.1%. In contrast, mean settlement on the most hydrophobic polymer (PDMS) was 4.2 ± 3.2%. Microtopography had a much stronger effect compared to wettability, where 400 μm textured PDMS enhanced settlement above 90%. Settlement preferences were also positively correlated to adhesion strength at flow rates of 4 knots, with all initially settled pediveligers on smooth PDMS detaching, while 79.9 ± 5.7% of pediveligers remained on the 400 μm texture.  相似文献   

12.
Sedimentation is assumed to affect communities of reef-building corals by inhibiting larval settlement, however there has been no quantitative evidence to support this supposition. The effects of varying rates of sedimentation (0.5 to 325 mg cm-2d-1) on settlement rates of Acropora millepora larvae were examined experimentally, in aquaria. Settlement and juvenile orientation onto conditioned cut coral plates were recorded after two days. Higher sedimentation rates reduced the number of larvae settling on uppersurfaces, but total numbers of settled larvae were not significantly affected by sedimentary regime. While total settlement was unaffected by sediment under the confined experimental conditions, it is likely to be reduced under field conditions, since accumulation of sediment on upward-facing surfaces will greatly reduce the overall amount of suitable substratum available.  相似文献   

13.
Settlement specificity can regulate recruitment but remains poorly understood for coral larvae. We studied larvae of the corals, Acropora palmata and Montastraea faveolata, to determine their rates of settlement and metamorphosis in the presence of ten species of red algae, including eight species of crustose coralline algae, one geniculated coralline and one encrusting peyssonnelid. Twenty to forty percent of larvae of A. palmata settled on coralline surfaces of Hydrolithon boergesenii, Lithoporella atlantica, Neogoniolithon affine, and Titanoderma prototypum, whereas none settled and metamorphosed on Neogoniolithon mamillare. Larvae of M. faveolata had 13–25 % settlement onto the surface of Amphiroa tribulus, H. boergesenii, N. affine, N. munitum, and T. prototypum, but had no settlement on the surface of N. mamillare, Porolithon pachydermum, and a noncoralline crust Peyssonnelia sp. Some of these algal species were common on Belizean reefs, but the species that induced the highest rates of larval settlement and metamorphosis tended to be rare and primarily found in low-light environments. The shallow coral, A. palmata, and the deeper coral, M. faveolata, both had increased larval settlement rates in the presence of only a few species of red algae found at deeper depths suggesting that patterns of coral distribution can only sometimes be related to the distribution of red algae species.  相似文献   

14.
In this study, we investigated the effect of mono-species and multi-species biofilms on larval attachment of the bryozoan Bugula neritina. The effect of biofilms was examined through a double-dish choice bioassay in which larvae were given the choice of attaching either to a clean surface of a container or to surfaces covered with biofilms. Larvae attached in response to mono-species biofilms of 5 out of 7 bacterial isolates from a subtidal region, but they avoided surfaces covered by biofilms of 7 out of 8 isolates obtained from an intertidal region. In the follow-up choice experiments with multi-species biofilms developed for 2 days, 7 days, 14 days, 28 days and 30 days, larvae preferentially attached to filmed surfaces over the unfilmed surfaces. When biofilms from 2 different tidal regions (intertidal and subtidal) were offered as choices in the double-dish bioassay, larvae in all cases attached on the subtidal biofilms. Two-day-old subtidal biofilms with low densities of bacteria induced significantly higher (p < 0.05) attachment than did 30- day-old intertidal biofilms, which had high bacterial density. Terminal Restriction Fragment Polymorphism (T-RFLP) analysis revealed that the bacterial communities were substantially different in the subtidal and intertidal regions during all periods of the experiment. Attachment of B. neritina on subtidal biofilms did not depend on the bacterial density but rather was negatively correlated with diatom density, thickness of the exopolysaccharide layer and biofilm age. Our results suggest that the larvae of B. neritina can discriminate between biofilmed and clean surfaces and between biofilms developed under different tidal zones.  相似文献   

15.

Larval settlement of the barnacle Balanus amphitrite Darwin (Cirripedia, Balanidae) is influenced by natural biofilms. In previous work by others, discriminatory settlement of aged cyprids has been observed in response to biofilms of different age. This study extends prior work by considering the effect of the age of cyprids on the outcome of settlement assays. Settlement was investigated with 0‐day‐old (newly metamorphosed) and 5‐day‐old cyprids. Biofilms under investigation were developed in the field for periods of 5 d and 1 month, and were subsequently included in laboratory settlement assays with a choice between a filmed and an unfilmed substratum. The bioassay was modified from the conventional horizontal dish design in order to generate a low water surface‐to‐volume ratio, which served to suppress larval entrapment in an organic layer on the water surface. Irrespective of cyprid age, a clear discrimination between a filmed and an unfilmed substrata was observed, and the preference for filmed or unfilmed substratum was dependent on the age of the cyprids. Settlement of 0‐day‐old cyprids was inhibited by a biofilmed substratum whereas induction occurred with aged cyprids. This pattern of settlement was independent of biofilm age. Bacterial abundance on unfilmed substrata in treatments and controls was significantly lower than that on biofilmed surfaces, confirming that bacterial contamination did not change the qualitative option during the assay.  相似文献   

16.
In marine systems, oxygen availability varies at small temporal and spatial scales, such that current oxygen levels may not reflect conditions of the past. Different studies have shown that marine invertebrate larvae can select settlement sites based on local oxygen levels and oxygenation history of the biofilm, but no study has examined the interaction of both. The influence of normoxic and hypoxic water and oxygenation history of biofilms on pre-settlement behavior and settlement of the bryozoan Bugula neritina was tested. Larvae used cues in a hierarchical way: the oxygen levels in the water prime larvae to respond, the response to different biofilms is contingent on oxygen levels in the water. When oxygen levels varied throughout biofilm formation, larvae responded differently depending on the history of the biofilm. It appears that B. neritina larvae integrate cues about current and historical oxygen levels to select the appropriate microhabitat and maximize their fitness.  相似文献   

17.
Biofilms of marine bacteria and diatoms and their combinations were examined in laboratory choice assays to determine their effects on the attachment and successful metamorphosis of the larvae of the bryozoan Bugula neritina (Linnéus). The larval settlement in response to unfilmed surfaces, a natural biofilm (NBF) and adsorbed cells of three strains of bacteria, five strains of pennate diatoms and combinations of the two at different densities. Bacterial and diatom strains showed different effects on the larval settlement of B. neritina. Bacterial monospecific strains of an unidentified α-Proteobacterium and Vibrio sp. mediated the same percentage of settlement as a filtered seawater control. Biofilms of Pseudoalteromonas sp. caused significantly lower larval settlement. Larval settlement of B. neritina was negatively correlated with increasing densities of Pseudoalteromonas sp. The highest percentages of settlement were mediated by the biofilms of the diatom species Achnanthes sp., Amphora cofeaeformis, Amphora tenerrima, Nitzschia constricta and a 5-day-old natural biofilm, while the lowest settlement was found on a N. frustulum film. A three-way analysis of variance demonstrated that the density of bacteria and the presence of particular species of diatoms and bacteria in combined biofilms, significantly affected the settlement of B. neritina larvae. High settlement of larvae (50-90%) at all treatments indicated that B. neritina larvae are much more indiscriminate settlers than previously expected. Hence, using this species as a monitoring organism to trace ecologically relevant subtle changes of settlement cues in the natural environment should be carefully re-examined.  相似文献   

18.

Settlement of cultured Balanus amphitrite cyprid larvae was tested on different non-solid hydrogel surfaces. Gels consisting of alginate (highly anionic), chitosan (highly cationic), polyvinyl alcohol substituted with light-sensitive stilbazolium groups (PVA-SbQ; very low cationic) and agarose (neutral) were applied in cell culture multi-well plates. Polystyrene served as a solid surface reference. Preliminary experiments were performed to determine whether any substances leaching out of the gels could inhibit barnacle settlement. Whilst leachate from the gels revealed no toxicity towards Artemia salina nauplius larvae, PVA-SbQ in solution at and above a concentration of 0.4 ppm inhibited B. amphitrite cyprid settlement. Gels were therefore washed to avoid such effects during further testing, and toxicity and settlement tests with B. amphitrite nauplii and cyprids, respectively, applied to verify that washing was effective. Settlement was tested directly on the different test materials, followed by a quality test of non-settled larvae. All gels inhibited barnacle settlement compared to the polystyrene controls. Gels consisting of 2.5% PVA-SbQ or 0.5% agarose showed promising antifouling properties. Although some settlement occurred on 2.5% PVA-SbQ gels, metamorphosis was clearly inhibited. Only 10% of the larvae had settled on 0.5% agarose gels after 8 d. Less than 40% settlement occurred on alginate gels, as well as on 2% chitosan gels. Quality testing showed that the majority of remaining non-settled larvae in all gel experiments were able to settle when offered a suitable solid substratum.  相似文献   

19.
Larval behaviour is important to dispersal and settlement, but is seldom quantified. Behavioural capabilities of larval Lutjanus carponotatus in both offshore pelagic and reef environments at Lizard Island, Great Barrier Reef were observed in situ to determine if they were sufficient to influence dispersal. Offshore, larvae swam with higher directional precision and faster on the windward side of the island (28 cm.s−1) than on the leeward side (16 cm s−1). Most larvae swam directionally. Mean swimming directions were southerly in the windward area and northerly in the leeward area. Larvae avoided the surface and remained mostly between 3–15 m. Larvae released near reefs were 2–3 times faster swimming away from reefs (19 cm s−1) than swimming toward or over them (6–8 cm s−1). Speed swimming away was similar to that offshore. Of 41 larvae released near reefs, 73% reached the reef, 59% settled, and 13% of those reaching the reef were eaten. Larvae settled onto hard and soft coral (58%), topographic reef features (29%) and sand and rubble (13%). Settlement depth averaged 5.5 m (2–8 m). Before settling larvae spent up to 800 s over the reef (mean 231 s) and swam up to 53 m (mean 14 m). About half of the larvae interacted with reef residents including predatory attacks and aggressive approaches by residents and aggressive approaches by settling larvae. Settlement behaviour of L. carponotatus was more similar to a serranid than to pomacentrids. Settlement-stage larvae of L. carponotatus are behaviourally capable, and have a complex settlement behaviour.  相似文献   

20.
Copper (Cu) contamination is a potential threat to the marine environment due to the use of Cu-based antifouling paints. Cu stress on larval settlement of the polychaete Hydroides elegans was investigated, and this was linked to Cu stress on biofilms and on the biofilm development process. The inductiveness of young biofilms was more easily altered by Cu stress than that of old biofilms, indicating the relative vulnerability of young biofilms. This might result from changes in bacterial survival, the bacterial community composition and the chemical profiles of young biofilms. Cu also affected biofilm development and the chemical high performance liquid chromatograph fingerprint profile. The results indicate that Cu affected larval settlement mainly through its effect on the process of biofilm development in the marine environment, and the chemical profile was crucial to biofilm inductiveness. It is strongly recommended that the effects of environmentally toxic substances on biofilms are evaluated in ecotoxicity bioassays using larval settlement of invertebrates as the end point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号