共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. 总被引:6,自引:0,他引:6
Tetsuya Matoba Hiroaki Shimokawa Hiroshi Kubota Keiko Morikawa Takako Fujiki Ikuko Kunihiro Yasushi Mukai Yoji Hirakawa Akira Takeshita 《Biochemical and biophysical research communications》2002,290(3):909-913
The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating factors, including prostacyclin, nitric oxide, and endothelium-derived hyperpolarizing factor (EDHF). We have recently identified that endothelium-derived hydrogen peroxide (H(2)O(2)) is an EDHF in mice. The present study was designed to examine whether this is also the case in humans. Bradykinin elicited endothelium-dependent relaxations and hyperpolarizations in the presence of indomethacin and N(omega)-nitro-l-arginine, which thus were attributed to EDHF, in human mesenteric arteries. The EDHF-mediated relaxations were significantly inhibited by catalase, an enzyme that specifically decomposes H(2)O(2), whereas catalase did not affect endothelium-independent hyperpolarizations to levcromakalim. Exogenous H(2)O(2) elicited relaxations and hyperpolarizations in endothelium-stripped arteries. Gap junction inhibitor 18alpha-glycyrrhetinic acid partially inhibited, whereas inhibitors of cytochrome P450 did not affect the EDHF-mediated relaxations. These results indicate that H(2)O(2) is also a primary EDHF in human mesenteric arteries with some contribution of gap junctions. 相似文献
2.
Liu Y Bubolz AH Shi Y Newman PJ Newman DK Gutterman DD 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,290(1):R57-R65
Platelet endothelial cell adhesion molecule 1 (PECAM-1) is capable of transducing signals in endothelial cells exposed to shear; however, the biological consequences of this signal transduction are unknown. Because shear stress elicits flow-mediated dilation (FMD), we examined whether steady-state FMD in mouse coronary arteries (MCAs) is affected in the PECAM-1 knockout (KO) mouse. MCAs were isolated from wild-type (WT) or KO mice and prepared for videomicroscopy, histofluorescence, Western blotting, and immunohistochemistry. FMD was examined in the absence and presence of N(omega)-nitro-l-arginine methyl ester (l-NAME) and l-NAME+indomethacin (INDO). FMD was reduced in KO relative to WT MCAs, but the l-NAME-inhibitable portion of FMD was similar between the two. The INDO-sensitive component of FMD was diminished in KO MCAs. In contrast, the residual component of dilation, presumably because of endothelium-derived hyperpolarizing factor (EDHF), was abolished in KO MCAs. Histofluorescence showed relatively more superoxide (O2-.; oxy-ethidium fluorescence) and peroxide production (dihydrochlorofluorescene fluoresecence) in KO MCAs at rest. Flow augmented O2-. and peroxide production in WT MCAs but had little effect on KO MCAs. Enhanced nitric oxide generation was observed in arteries from KO mice, accompanied with increased eNOS S1177 phosphorylation. In vessels from KO mice, treatment with ebselen decreased peroxynitrite (ONOO-) formation and improved the reduced FMD, largely due to restoration of the presumed EDHF component. These results suggest that PECAM-1 is necessary for normal FMD in the mouse coronary circulation. In the absence of this adhesion and signaling molecule, ONOO- production is increased concomitant with a reduction in both the EDHF and INDO-sensitive components of FMD. 相似文献
3.
Endothelium-derived relaxing factors: a focus on endothelium-derived hyperpolarizing factor(s). 总被引:8,自引:0,他引:8
Endothelium-derived hyperpolarizing factor (EDHF) is defined as the non-nitric oxide (NO) and non-prostacyclin (PGI2) substance that mediates endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells (VSMC). Although both NO and PGI2 have been demonstrated to hyperpolarize VSMC by cGMP- and cAMP-dependent mechanisms, respectively, and in the case of NO by cGMP-independent mechanisms, a considerable body of evidence suggests that an additional cellular mechanism must exist that mediates EDH. Despite intensive investigation, there is no agreement as to the nature of the cellular processes that mediates the non-NO/PGI2 mediated hyperpolarization. Epoxyeicosatrienoic acids (EET), an endogenous anandamide, a small increase in the extracellular concentration of K+, and electronic coupling via myoendothelial cell gap junctions have all been hypothesized as contributors to EDH. An attractive hypothesis is that EDH is mediated via both chemical and electrical transmissions, however, the contribution from chemical mediators versus electrical transmission varies in a tissue- and species-dependent manner, suggesting vessel-specific specialization. If this hypothesis proves to be correct then the potential exists for the development of vessel and organ-selective vasodilators. Because endothelium-dependent vasodilatation is dysfunctional in disease states (i.e., atherosclerosis), selective vasodilators may prove to be important therapeutic agents. 相似文献
4.
Bellien J Joannides R Iacob M Arnaud P Thuillez C 《American journal of physiology. Heart and circulatory physiology》2006,290(4):H1347-H1352
Whether a cytochrome P-450 (CYP)-related endothelium-derived hyperpolarizing factor (EDHF), acting through calcium-activated potassium (K(Ca)) channels, interacts with nitric oxide (NO) to regulate the basal diameter of human peripheral conduit arteries is unexplored in vivo. Radial artery diameter (echo tracking) and blood flow (Doppler) were measured, after oral aspirin (500 mg), in eight healthy volunteers during local infusion for 8 min of tetraethylammonium chloride (TEA; 9 micromol/min), as K(Ca) channel inhibitor, and fluconazole (0.4 micromol/min), as CYP inhibitor, alone and in combination with N(G)-monomethyl-L-arginine (L-NMMA; 8 micromol/min), as endothelial NO synthase inhibitor. Endothelium-independent dilatation was assessed by using sodium nitroprusside (SNP). Radial diameter was unaffected by L-NMMA (0.4 +/- 0.9%) and fluconazole (-1.6 +/- 0.8%) but was decreased by TEA (-5.0 +/- 1.0%), L-NMMA + fluconazole (-5.3 +/- 0.5%), and L-NMMA + TEA (-9.9 +/- 1.3%). These effects are still significant even when the concomitant decreases in blood flow induced by L-NMMA (-24 +/- 4%), TEA (-21 +/- 3%), L-NMMA + fluconazole (-26 +/- 5%), and L-NMMA + TEA (-35 +/- 4%) were taken as covariate into analysis. Conversely, fluconazole alone slightly but not significantly increased radial flow (13 +/- 6%). L-NMMA alone or with TEA and with fluconazole enhanced radial artery dilatation to SNP, whereas TEA and fluconazole alone did not modify this response. These results confirm in humans the involvement of NO and K(Ca) channels in the regulation of basal conduit artery diameter. Moreover, the synergistic effect of combined inhibition of NO synthesis and CYP on the decrease in radial diameter in the absence of such effect after L-NMMA and fluconazole alone unmasks the role of CYP in this regulation and shows the presence of an interaction between NO and a CYP-related EDHF to maintain peripheral conduit artery diameter in vivo. Furthermore, the higher vasoconstrictor effect of TEA compared with fluconazole suggests that different K(Ca) channel-dependent hyperpolarizing mechanisms could exist in conduit arteries. 相似文献
5.
6.
Age-related endothelial dysfunction with respect to nitric oxide, endothelium-derived hyperpolarizing factor and cyclooxygenase products 总被引:7,自引:0,他引:7
Matz RL Schott C Stoclet JC Andriantsitohaina R 《Physiological research / Academia Scientiarum Bohemoslovaca》2000,49(1):11-18
Vascular aging is associated with both structural and functional changes that can take place at the level of the endothelium, vascular smooth muscle cells and the extracellular matrix of blood vessels. With regard to the endothelium, reduced vasodilatation in response to agonists occurs in large conduit arteries as well as in resistance arteries with aging. Reviews concerning the different hypotheses that may account for this endothelial dysfunction have pointed out alterations in the equilibrium between endothelium-derived relaxing and constricting factors. Thus, a decreased vasorelaxation due to nitric oxide and, in some arteries, endothelium-derived hyperpolarizing factor as well as an increased vasoconstriction mediated by cyclooxygenase products such as thromboxane A2 are likely to occur in age-induced impairment of endothelial vasodilatation. Furthermore, enhanced oxidative stress plays a critical role in the deleterious effect of aging on the endothelium by means of nitric oxide breakdown due to reactive oxygen species. The relative contribution of the above phenomenon in age-related endothelial dysfunction is highly dependent on the species and type of vascular bed. 相似文献
7.
We studied the relationship among endothelial function, oxidative stress, and phenylephrine (PE; alpha(1)-adrenoceptor agonist)-induced contraction in mesenteric arteries from high-cholesterol (HC)-diet-fed mice. In HC mice (vs age-matched normal-diet-fed mice): (1) PE-induced contraction in endothelium-intact rings was enhanced (endothelial denudation increased contraction in "normal-diet" rings, but did not enhance it further in "HC" rings); (2) the enhanced PE-induced contraction was further enhanced in the presence of N(G)-nitro-L-arginine (L-NNA; nitric oxide synthase inhibitor) or L-NNA plus indomethacin (cyclooxygenase inhibitor) [to preserve endothelium-derived hyperpolarizing factor (EDHF)], but unchanged in the presence of charybdotoxin plus apamin (to block EDHF); (3) ACh-induced EDHF-type relaxation was reduced; and (4) oxidative stress [indicated by the plasma 8-isoprostane level (reliable systemic marker) and aortic superoxide production] was greater. In HC mice, PE-induced contraction was normalized by apocynin [NAD(P)H oxidase inhibitor] or tempol (superoxide dismutase mimetic), but enhanced by NADH [NAD(P)H oxidase substrate]. Oral dietary supplementation with apocynin (30 mg/kg/day for 4 weeks) corrected the above abnormalities. Hence: (1) PE-induced contraction is modulated by the endothelium, and the enhanced contractility in HC mice results from defective EDHF signaling and elevated oxidative stress, and (2) apocynin normalizes PE-induced contraction in HC mice by improving EDHF signaling. 相似文献
8.
Matsumoto T Kobayashi T Wakabayashi K Kamata K 《American journal of physiology. Heart and circulatory physiology》2005,289(5):H1933-H1940
We previously reported that in mesenteric arteries from streptozotocin (STZ)-induced diabetic rats that 1) endothelium-derived hyperpolarizing factor (EDHF)-type relaxation is impaired, possibly due to a reduced action of cAMP via increased phosphodiesterase 3 (PDE3) activity (Matsumoto T, Kobayashi T, and Kamata K. Am J Physiol Heart Circ Physiol 285: H283-H291, 2003) and that 2) PKA activity is decreased (Matsumoto T, Wakabayashi K, Kobayashi T, and Kamata K. Am J Physiol Heart Circ Physiol 287: H1064-H1071, 2004). Here we investigated whether chronic treatment with cilostazol, a PDE3 inhibitor, improves EDHF-type relaxation in mesenteric arteries isolated from STZ rats. We found that in such arteries 1) cilostazol treatment (2 wk) improved ACh-, A-23187-, and cyclopiazonic acid-induced EDHF-type relaxations; 2) the ACh-induced cAMP accumulation was transient and sustained in arteries from cilostazol-treated STZ rats; 3) the EDHF-type relaxation was significantly decreased by a PKA inhibitor in the cilostazol-treated group, but not in the cilostazol-untreated group; 4) cilostazol treatment improved both the relaxations induced by cAMP analogs and the PKA activity level; and 5) PKA catalytic subunit (Cat-alpha) protein was significantly decreased, but the regulatory subunit RII-beta was increased (and the latter effect was significantly decreased by cilostazol treatment). These results strongly suggest that cilostazol improves EDHF-type relaxations in STZ rats via an increase in cAMP and PKA signaling. 相似文献
9.
The role of hyperhomocysteinemia in nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation. 总被引:2,自引:0,他引:2
S G Heil A S De Vriese L A J Kluijtmans S Mortier M Den Heijer H J Blom 《Cellular and molecular biology, including cyto-enzymology》2004,50(8):911-916
Hyperhomocysteinemia (HHcy) is associated with impaired endothelial-dependent vasodilatation and increased risk of atherosclerosis and thrombosis. Here, we summarize some of our previous work on the effect of HHcy on pathways involved in endothelium-dependent vasodilatation, and present new data concerning the endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation. We showed that the 894 G>T single-nucleotide polymorphism in the human endothelial nitric oxide synthase gene (eNOS) increased the risk of recurrent venous thrombosis in individuals with elevated homocysteine levels, indicating that the pathophysiological mechanism in HHcy involves impaired NO-mediated vasodilatation. In addition, the EDHF-mediated vasodilatation of the renal artery was disturbed in diet-induced hyperhomocysteinemic rats. Interestingly, we demonstrated that pretreatment of rats with periodate-oxidized adenosine (Adox), which is an inhibitor of S-adenosylhomocysteine hydrolase, prevented the methionine-induced rise in plasma total Hcy (tHcy) levels but not the inhibition of the EDHF pathway. Furthermore, we demonstrated that S-adenosylhomocysteine (AdoHcy) and S-adenosylmethionine (AdoMet) levels were increased in the kidneys of diet-induced HHcy rats, resulting in a decreased AdoMet:AdoHcy ratio. In addition, we demonstrated that mRNA expression of Connexin 40, which is one of the structural subunits of gap-junctions, was down-regulated in endothelial cells of HHcy rats, and correlated with elevated AdoHcy levels in kidney of these rats. These finding suggest a key role for AdoHcy in relation to decreased Cx40 mRNA expression and impaired EDHF-mediated vasodilatation of HHcy rats. 相似文献
10.
Fitzgerald SM Kemp-Harper BK Parkington HC Head GA Evans RG 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(2):R707-R713
We determined whether nitric oxide (NO) counters the development of hypertension at the onset of diabetes in mice, whether this is dependent on endothelial NO synthase (eNOS), and whether non-NO endothelium-dependent vasodilator mechanisms are altered in diabetes in mice. Male mice were instrumented for chronic measurement of mean arterial pressure (MAP). In wild-type mice, MAP was greater after 5 wk of N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 mg x kg(-1) x day(-1) in drinking water; 97 +/- 3 mmHg) than after vehicle treatment (88 +/- 3 mmHg). MAP was also elevated in eNOS null mice (113 +/- 4 mmHg). Seven days after streptozotocin treatment (200 mg/kg iv) MAP was further increased in L-NAME-treated mice (108 +/- 5 mmHg) but not in vehicle-treated mice (88 +/- 3 mmHg) nor eNOS null mice (104 +/- 3 mmHg). In wild-type mice, maximal vasorelaxation of mesenteric arteries to acetylcholine was not altered by chronic L-NAME or induction of diabetes but was reduced by 42 +/- 6% in L-NAME-treated diabetic mice. Furthermore, the relative roles of NO and endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced vasorelaxation were altered; the EDHF component was enhanced by L-NAME and blunted by diabetes. These data suggest that NO protects against the development of hypertension during early-stage diabetes in mice, even in the absence of eNOS. Furthermore, in mesenteric arteries, diabetes is associated with reduced EDHF function, with an apparent compensatory increase in NO function. Thus, prior inhibition of NOS results in endothelial dysfunction in early diabetes, since the diabetes-induced reduction in EDHF function cannot be compensated by increases in NO production. 相似文献
11.
We investigated the role of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) in hemodynamic action of leptin. The effect of leptin (1 mg/kg i.p.) on systolic blood pressure (SBP) was examined in lean rats and in rats made obese by feeding highly palatable diet for either 1 or 3 months. Separate groups received NO synthase inhibitor, L-NAME, or EDHF inhibitors, the mixture of apamin+charybdotoxin or sulfaphenazole, before leptin administration. Leptin increased NO production, as evidenced by increase in plasma and urinary NO metabolites and cyclic GMP. This effect was impaired in both obese groups. In lean rats either leptin or EDHF inhibitors had no effect on blood pressure. L-NAME increased blood pressure in lean animals and this effect was prevented by leptin. However, when leptin was administered to animals pretreated with both L-NAME and EDHF inhibitors, blood pressure increased even more than after L-NAME alone. In the 1-month obese group leptin had no effect on SBP, however, pressor effect of leptin was observed in animals pretreated with EDHF inhibitors. In the 3-month obese group leptin alone increased SBP, and EDHF inhibitors did not augment its pressor effect. The results suggest that leptin may stimulate EDHF when NO becomes deficient, e.g. after NOS blockade or in short-term obesity. Although the effect of leptin on NO production is impaired in the 1-month obese group, BP does not increase, probably because EDHF compensates for NO deficiency. In contrast, leptin increases BP in 3-month obesity because its effect on EDHF is also attenuated. 相似文献
12.
Background
5-hydroxytryptamine (5-HT)-induced coronary artery responses have both vasoconstriction and vasorelaxation components. The vasoconstrictive effects of 5-HT have been well studied while the mechanism(s) of how 5-HT causes relaxation of coronary arteries has been less investigated. In isolated rat hearts, 5-HT-induced coronary flow increases are partially resistant to the nitric oxide synthase inhibitor Nω-Nitro-L-arginine methyl ester (L-NAME) and are blocked by 5-HT7 receptor antagonists. In the present study, we investigated the role of 5-HT7 receptor in 5-HT-induced coronary flow increases in isolated rat hearts in the absence of L-NAME, and we also evaluated the involvement of endothelium-derived hyperpolarizing factor (EDHF) in 5-HT-induced coronary flow increases in L-NAME-treated hearts with the inhibitors of arachidonic acid metabolism and the blockers of Ca2+-activated K+ channels.Results
In isolated rat hearts, 5-HT and the 5-HT7 receptor agonist 5-carboxamidotryptamine induced coronary flow increases, and both of these effects were blocked by the selective 5-HT7 receptor antagonist SB269970; in SB269970-treated hearts, 5-HT induced coronary flow decreases, which effect was blocked by the 5-HT2A receptor blocker . In L-NAME-treated hearts, 5-HT-induced coronary flow increases were blocked by the phospholipase A2 inhibitor quinacrine and the cytochrome P450 inhibitor SKF525A, but were not inhibited by the cyclooxygenase inhibitor indomethacin. As to the effects of the Ca2+-activated K+ channel blockers, 5-HT-induced coronary flow increases in L-NAME-treated hearts were inhibited by TRAM-34 (intermediate-conductance Ca2+-activated K+ channel blocker) and UCL1684 (small-conductance Ca2+-activated K+ channel blocker), but effects of the large-conductance Ca2+-activated K+ channel blockers on 5-HT-induced coronary flow increases were various: penitrem A and paxilline did not significantly affect 5-HT-induced coronary flow responses while tetraethylammonium suppressed the coronary flow increases elicited by 5-HT. R96544Conclusion
In the present study, we found that 5-HT-induced coronary flow increases are mediated by the activation of 5-HT7 receptor in rat hearts in the absence of L-NAME. Metabolites of cytochrome P450s, small-conductance Ca2+-activated K+ channel, and intermediate-conductance Ca2+-activated K+ channel are involved in 5-HT-induced coronary flow increases in L-NAME-treated hearts, which resemble the mechanisms of EDHF-induced vasorelaxation. The role of large-conductance Ca2+-activated K+ channel in 5-HT-induced coronary flow increases in L-NAME-treated hearts needs further investigation. 相似文献13.
Lang NN Luksha L Newby DE Kublickiene K 《American journal of physiology. Heart and circulatory physiology》2007,292(2):H1026-H1032
The role of gap junctions in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation of human arteries was assessed using connexin mimetic peptides (CMPs) designated (37,43)Gap27, (40)Gap27, and (43)Gap26 according to homology with the major vascular connexins (Cx37, Cx40, and Cx43). Resistance arteries were obtained from subcutaneous fat biopsies of healthy pregnant women undergoing elective cesarean section. Endothelium-dependent vasodilatation to bradykinin (BK) was assessed using wire myography. N(omega)-nitro-l-arginine methyl ester (l-NAME) and indomethacin (nitric oxide synthase and cyclooxygenase inhibitors, respectively) attenuated maximal relaxation to BK (R(max)) by approximately 50%. Coincubation with l-NAME, indomethacin, and the combined CMPs ((37,43)Gap27, (40)Gap27, and (43)Gap26) almost abolished relaxation to BK (R(max) = 12.2 +/- 3.7%). In arteries incubated with l-NAME and indomethacin, the addition of either (37,43)Gap27 or (40)Gap27 had no significant effect on R(max), whereas (43)Gap26 caused marked inhibition (R(max) = 21 +/- 6.4%, P = 0.005 vs. l-NAME plus indomethacin alone) that was similar to that of the triple combination. Endothelium-independent vasorelaxation was unaffected by CMPs, l-NAME, or indomethacin. Immunohistochemistry demonstrated Cx37, Cx40, and Cx43 expression in the endothelium and vascular smooth muscle. In pregnant women, EDHF-mediated vasorelaxation of subcutaneous resistance arteries is dependent on Cx43 and gap junctions. 相似文献
14.
W F Graier K Groschner K Schmidt W R Kukovetz 《Biochemical and biophysical research communications》1992,186(3):1539-1545
Formation of endothelium-derived relaxing factor (EDRF) strictly correlates with the intracellular free Ca2+ ([Ca2+]i) concentration. We now demonstrate that the histamine-induced rise in [Ca2+]i of human umbilical vein endothelial cells is mostly due to activation of a membrane current which allows Ca2+ entry. This membrane current is sensitive to the novel inhibitor of agonist-induced Ca2+ entry, SK&F 96365, which blocked the histamine-induced sustained rise in [Ca2+]i, as well as 45Ca2+ uptake and membrane currents. Inhibition of the above cellular responses to histamine was accompanied by a considerable reduction of EDRF formation and release. Thus biosynthesis and release of EDRF from human umbilical vein endothelial cells significantly depend on agonist-induced Ca2+ entry involving receptor-operated Ca(2+)-permeable channels which can be blocked by SK&F 96365. 相似文献
15.
Martin Berghoff Madeera Kathpal Sonja Kilo Max J Hilz Roy Freeman 《Journal of applied physiology》2002,92(2):780-788
The relative contribution of endothelial vasodilating factors to acetylcholine (ACh)-mediated vasodilation in the forearm cutaneous microcirculation is unclear. The aims of this study were to investigate the contributions of prostanoids and cutaneous C fibers to basal cutaneous blood flow (CuBF) and ACh-mediated vasodilation. ACh was iontophoresed into the forearm, and cutaneous perfusion was measured by laser-Doppler flowmetry. To inhibit the production of prostanoids, four doses of acetylsalicylic acid (ASA; 81, 648, 972, and 1,944 mg) were administered orally. Cutaneous nerve fibers were blocked with topical anesthesia. Cyclooxygenase inhibition did not change basal CuBF or endothelium-mediated vasodilation to ACh. In contrast, ASA (972 and 1,944 mg) significantly reduced the C-fiber-mediated axon reflex in a dose-dependent fashion. Blockade of C-fiber function significantly reduced axon reflex-mediated vasodilation but did not affect basal CuBF or endothelium-dependent vasodilation. The findings suggest that prostanoids do not contribute significantly to basal CuBF or endothelium-dependent vasodilation in the forearm microcirculation. In contrast, prostanoids are mediators of the ACh-provoked axon reflex. 相似文献
16.
Adrenomedullin-induced dilation of human placental arteries is modulated by an endothelium-derived constricting factor 总被引:1,自引:0,他引:1
Adrenomedullin is synthesized and secreted by fetoplacental tissues. Given that the placenta lacks autonomic innervation, we proposed that adrenomedullin acts locally to control blood flow in the placental vasculature through a balance of dilatory and constrictive pathways. Placental stem villous arteries (200 microm) from normotensive human pregnancies were dissected and mounted on a wire myograph. The vessels were preconstricted with the thromboxane A(2) mimetic U46619 (EC(80) concentration), and exposed to cumulative concentrations of adrenomedullin (1 x 10(-9) to 3 x 10(-7) mol/L). Adrenomedullin caused concentration-dependent vasorelaxation which, in endothelium-intact vessels, was attenuated in the presence of the nitric oxide synthase inhibitor L-NMMA. This suggested that the vasodilation was mediated, at least in part, through nitric oxide. However, removal of the endothelium did not similarly alter the response. Nor did L-NMMA have any effect in endothelium-denuded vessels. We hypothesized that adrenomedullin must induce release of both endothelium-derived relaxing (nitric oxide) and constricting factors. When we blocked the two major pathways through which adrenomedullin is known to induce vasodilation, by incubating the vessels with L-NMMA (nitric oxide synthase inhibitor) and Rp-cAMPS (cAMP-dependent protein kinase inhibitor), adrenomedullin induced concentration-dependent vasoconstriction. This was not mediated through endothelin, since addition of the non-specific endothelin receptor antagonist PD142893 failed to alter the response to adrenomedullin. We conclude that, in addition to increasing endothelial nitric oxide biosynthesis in placental stem villous arteries, adrenomedullin induces release of an endothelium-derived constricting factor. 相似文献
17.
Witting PK Harris HH Rayner BS Aitken JB Dillon CT Stocker R Lai B Cai Z Lay PA 《Biochemistry》2006,45(41):12500-12509
Hydrogen peroxide (H(2)O(2)) is a physiologic oxidant implicated in vascular cell signaling, although little is known about the biochemical consequences of its reaction with endothelial cells. Submicrometer-resolution hard X-ray elemental mapping of cultured porcine aortic endothelial cells (PAEC) has provided data on the global changes for intracellular elemental density within PAEC and indicates an efflux of metal ions and phosphorus from the cytoplasm after H(2)O(2) treatment. The synchrotron-radiation-induced X-ray emission experiments (SRIXE) show that H(2)O(2)-treated cells are irregularly shaped and exhibit blebbing indicative of increased permeability due to the damaged membrane. The SRIXE results suggest that H(2)O(2)-induced damage is largely restricted to the cell membrane as judged by the changes to membrane and cytoplasmic components rather than the cell nucleus. The SRIXE data also provide a mechanism for cell detoxification as the metal-ion efflux resulting from the initial H(2)O(2)-mediated changes to cell membrane potentially limits intracellular metal-mediated redox processes through Fenton-like chemistry. They may also explain the increased levels of these ions in atherosclerotic plaques, regardless of whether they are involved in plaque formation. Finally, the SRIXE data support the notion that cultured endothelial cells exposed to H(2)O(2) respond with enhanced cellular metal-ion efflux into the extracellular space. 相似文献
18.
Characterization of recombinant human factor VIII 总被引:3,自引:0,他引:3
D L Eaton P E Hass L Riddle J Mather M Wiebe T Gregory G A Vehar 《The Journal of biological chemistry》1987,262(7):3285-3290
Recently, complete human factor VIII DNA clones have been obtained and subsequently expressed in baby hamster kidney cells (Wood, W. I., Capon, D. J., Simonsen, C. C., Eaton, D. L., Gitschier, J., Keyt, B., Seeburg, P. H., Smith, D. H., Hollingshead, P., Wion, K. L., Delwart, E., Tuddenham, E. G. D., Vehar, G. A., and Lawn, R. M. (1984) Nature 312, 330-337). The recombinant factor VIII (rVIII) protein secreted from these cells has now been purified allowing its structural analysis and comparison to plasma-derived factor VIII (pdVIII). Analysis of purified rVIII by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that it consists of multiple polypeptides with relative mobilities (Mr) ranging from 80,000-210,000. The same pattern of polypeptides is also observed for pdVIII resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteins associated with rVIII are recognized by pdVIII antibodies in a Western blot. When rVIII and pdVIII are subjected to isoelectric focusing they are resolved into a similar pattern of protein bands. Thrombin, factor Xa, and activated protein C, which modulate factor VIII activity by proteolysis, process rVIII in the same manner they do pdVIII. As is the case for pdVIII, thrombin activation of rVIII coagulant activity correlates with the generation of subunits with Mr of 73,000, 50,000 and 43,000. These subunits appear to form a metal-(perhaps Ca2+) linked complex. EDTA inactivates thrombin-activated rVIII and pdVIII, with the activity being regenerated after the addition of a molar excess of MnCl2. The results suggest that rVIII is structurally and functionally very similar to pdVIII. 相似文献
19.
Characterization of the human granulocyte-macrophage colony-stimulating factor receptor 总被引:14,自引:0,他引:14
J DiPersio P Billing S Kaufman P Eghtesady R E Williams J C Gasson 《The Journal of biological chemistry》1988,263(4):1834-1841
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine derived from activated T cells, endothelial cells, fibroblasts, and macrophages. It stimulates myeloid and erythroid progenitors to form colonies in semisolid medium in vitro, as well as enhancing multiple differentiated functions of mature neutrophils, macrophages, and eosinophils. We have examined the binding of human GM-CSF to a variety of responsive human cells and cell lines. The most mature myelomonocytic cells, specifically human neutrophils, macrophages, and eosinophils, express the highest numbers of a single class of high affinity receptors (Kd approximately 37 pM, 293-1000 sites/cell). HL-60 and KG-1 cells exhibit an increase in specific binding at high concentrations of GM-CSF; computer analysis of the data is nonetheless consistent with a single class of high affinity binding sites with a Kd approximately 43 pM and 20-450 sites/cell. Dimethyl sulfoxide induces a 3-10-fold increase in high affinity receptors expressed in HL-60 cells, coincident with terminal neutrophilic differentiation. Finally, binding of 125I-GM-CSF to fresh peripheral blood cells from six patients with chronic myelogenous leukemia was analyzed. In three of six cases, binding was similar to the nonsaturable binding observed with HL-60 and KG-1 cells. GM-CSF binding was low, or in some cases, undetectable on myeloblasts obtained from eight patients with acute myelogenous leukemia. The observed affinities of the receptor for GM-CSF are consistent with all known biological activities. Affinity labeling of both normal neutrophils and dimethyl sulfoxide-induced HL-60 cells with unglycosylated 125I-GM-CSF yielded a band of 98 kDa, implying a molecular weight of approximately 84,000 for the human GM-CSF receptor. 相似文献
20.
Vascular smooth muscle influences the release of endothelium-derived relaxing factor 总被引:1,自引:0,他引:1
J B Warren A J Brady G W Taylor 《Proceedings. Biological sciences / The Royal Society》1990,241(1301):127-131
Conditioned medium was collected from vascular smooth-muscle cells grown in culture to determine if these cells synthesize vasoactive substances. The medium caused a short-acting endothelium-independent constriction of rat aorta, followed by a prolonged, endothelium-dependent relaxation. This relaxation was mediated through the release of endothelium-derived relaxing factor (EDRF) as it was abolished by the addition of methylene blue (5 x 10(-6) M), haemoglobin (10(-6) M) or methyl arginine, but was not affected by indomethacin (10(-5) M). Smooth-muscle medium stimulated the production of EDRF from both rat and rabbit thoracic aortic rings as well as from cultured bovine pulmonary artery endothelial cells. The prolonged stimulation of EDRF by smooth-muscle medium was not mimicked by known physiological stimuli to EDRF release; EDRF-stimulating activity was not affected when smooth-muscle cells were grown in the presence of indomethacin (10(-5) M), although serum in the medium was required. The EDRF-stimulating substance(s) in the smooth-muscle medium was heat stable and associated with a high molecular mass (30,000 greater than Mr greater than 3500) water-soluble species that is as yet unidentified. 相似文献