首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies implicated that oxidized low-density lipoprotein (oxLDL), a putative atherogenic agent, impairs endothelium-dependent, nitric oxide (NO)-mediated dilation of isolated coronary arterioles to pharmacological agonists. However, it is not known whether oxLDL specifically affects NO-mediated dilation or generally impairs endothelium-dependent function, including the release of hyperpolarizing factors. In this regard, we investigated the dilation of isolated porcine coronary arterioles (50- to 100-microm luminal diameter) in response to the activation of various endothelium-dependent pathways before and after intraluminal incubation of the vessels with oxLDL (0.5 mg protein/ml for 60 min). In the absence of oxLDL, all vessels developed basal tone and dilated in response to the activation of NO synthase (by flow and adenosine), cyclooxygenase (by arachidonic acid), cytochrome P-450 monooxygenase (by bradykinin), and endothelial membrane hyperpolarization (by sucrose-induced hyperosmolarity). Incubation of the vessels with oxLDL for 60 min did not alter basal tone but did inhibit the vasodilatory responses to increased flow and adenosine in a manner similar to that of the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester. Vasodilations in response to flow and adenosine were not affected by intraluminal incubation of the vessels with either a vehicle solution or the native LDL (0.5 mg protein/ml, 60 min). In contrast with the NO-mediated response, hyperosmotic vasodilation mediated by endothelial hyperpolarization was not affected by oxLDL. Endothelium-dependent dilations to the cyclooxygenase activator arachidonic acid and to the cytochrome P-450 monooxygenase activator bradykinin and endothelium-independent vasodilation to sodium nitroprusside were also not altered by oxLDL. Collectively, these results indicate that oxLDL has a selective effect on endothelium-dependent dilation with specific impairment of the NO-mediated response, whereas cyclooxygenase and cytochrome P-450 monooxygenase-mediated dilations are spared from this inhibitory effect. In addition, oxLDL does not appear to affect vasodilation mediated by hyperpolarization of the endothelium.  相似文献   

2.
We tested the hypothesis that nitric oxide (NO) inhibits endothelium-derived hyperpolarizing factor (EDHF)-induced vasodilation via a negative feedback pathway in the coronary microcirculation. Coronary microvascular diameters were measured using stroboscopic fluorescence microangiography. Bradykinin (BK)-induced dilation was mediated by EDHF, when NO and prostaglandin syntheses were inhibited, or by NO when EDHF and prostaglandin syntheses were blocked. Specifically, BK (20, 50, and 100 ng. kg(-1). min(-1) ic) caused dose-dependent vasodilation similarly before and after administration of N(G)-monomethyl-L-arginine (L-NMMA) (3 micromol/min ic for 10 min) and indomethacin (Indo, 10 mg/kg iv). The residual dilation to BK with L-NMMA and Indo was completely abolished by suffusion of miconazole or an isosmotic buffer containing high KCl (60 mM), suggesting that this arteriolar vasodilation is mediated by the cytochrome P-450 derivative EDHF. BK-induced dilation was reduced by 39% after inhibition of EDHF and prostaglandin synthesis, and dilation was further inhibited by combined blockade with L-NMMA to a 74% reduction in the response. This suggests an involvement for NO in the vasodilation. After dilation to BK was assessed with L-NMMA and Indo, sodium nitroprusside (SNP, 1-3 microgram. kg(-1). min(-1) ic), an exogenous NO donor, was administered in a dose to increase the diameter to the original control value. Dilation to BK was virtually abolished when administered concomitantly with SNP during L-NMMA and Indo (P < 0.01 vs. before SNP), suggesting that NO inhibits EDHF-induced dilation. SNP did not affect adenosine- or papaverine-induced arteriolar dilation in the presence of L-NMMA and Indo, demonstrating that the effect of SNP was not nonspecific. In conclusion, our data are the first in vivo evidence to suggest that NO inhibits the production and/or action of EDHF in the coronary microcirculation.  相似文献   

3.
Forearm endothelium-dependent vasodilation is impaired with age in sedentary, but not endurance-trained, men. The purpose of this investigation was to determine whether these age- and physical activity-related differences in endothelium-dependent vasodilation also occur in the leg. Brachial and common femoral arterial blood flow were measured with Doppler ultrasound during increasing doses of acetylcholine (1, 4, and 16 microg.100 ml limb tissue(-1).min(-1)), substance P (8, 31, and 125 pg.100 ml limb tissue(-1).min(-1)), and sodium nitroprusside (0.063, 0.25, and 1 microg.100 ml limb tissue(-1).min(-1)) in 23 healthy men (8 younger sedentary, 8 older sedentary, and 7 older endurance trained). Increases in forearm blood flow to the highest dose of acetylcholine and sodium nitroprusside were smaller (P < 0.05) in older sedentary (841 +/- 142%, 428 +/- 74%) compared with younger sedentary (1,519 +/- 256%, 925 +/- 163%) subjects. Similarly, increases in forearm blood flow to sodium nitroprusside (1 microg.100 ml limb tissue(-1).min(-1)) were smaller (P < 0.05) in older endurance-trained (505 +/- 110%) compared with younger sedentary (925 +/- 163%) subjects. In contrast, no differences in leg blood flow responses to intra-arterial infusions of acetylcholine, substance P, or sodium nitroprusside were noted between subject groups. These results demonstrate that 1) acetylcholine- and sodium nitroprusside-induced vasodilation are attenuated in the forearm vasculature and preserved in the leg vasculature of older sedentary subjects and 2) sodium nitroprusside-induced vasodilation remains attenuated in the forearm vasculature of healthy older endurance-trained men but preserved in the leg vasculature of these men.  相似文献   

4.
The extent to which abnormal endothelium-dependent vasodilator mechanisms contribute to abnormal resting vasoconstriction and blunted reflex vasodilation seen in heart failure is unknown. The purpose of this study was to test the hypothesis that the resting and reflex abnormalities in vascular tone that characterize heart failure are mediated by abnormal endothelium-mediated mechanisms. Thirteen advanced heart-failure patients (New York Heart Association III-IV) and 13 age-matched normal controls were studied. Saline, acetylcholine (20 microg/min), or L-arginine (10 mg/min) was infused into the brachial artery, and forearm blood flow was measured by venous plethysmography at rest and during mental stress. At rest, acetylcholine decreased forearm vascular resistance in normal subjects, but this response was blunted in heart failure. During mental stress with intra-arterial acetylcholine or L-arginine, the decrease in forearm vascular resistance was not greater than during saline control in heart failure [saline control vs. acetylcholine (7 +/- 3 vs. 6 +/- 3, P = NS) or vs. L-arginine (9 +/- 2 units, P = NS)]. The increase in forearm blood flow was not greater than during saline control in heart failure [saline control vs. acetylcholine (1. 2 +/- 0.3 vs. 1.3 +/- 0.3, P = NS), or vs. L-arginine (1.2 +/- 0.2 ml x min(-1) x 100 ml(-1), P = NS)]. Furthermore, during mental stress with nitroprusside, the decrease in forearm vascular resistance was not greater than during saline control [saline control vs. nitroprusside (7 +/- 3 vs. 5 +/- 4 ml x min(-1) x 100 g(-1), P = NS)], and the increase in forearm blood flow was not greater than during saline control [saline control vs. nitroprusside (1.2 +/- 0.3 vs. 1.3 +/- 0.5 ml x min(-1) x 100 g(-1), P = NS)]. Because the endothelial-independent agent nitroprusside was unable to restore resting and reflex vasodilation to normal in heart failure, we conclude that impaired endothelium-mediated vasodilation with acetylholine-nitric oxide cannot be the principal cause of the attenuated resting- or reflex-mediated vasodilation in heart failure.  相似文献   

5.
The relative contributions of endothelium-dependent dilators [nitric oxide (NO), prostaglandins (PGs), and endothelium-derived hyperpolarizing factor (EDHF)] in human limbs are poorly understood. We tested the hypothesis that relative contributions of NO and PGs differ between endothelial agonists acetylcholine (ACh; 1, 2, and 4 microg.dl(-1).min(-1)) and bradykinin (BK; 6.25, 25, and 50 ng.dl(-1).min(-1)). We measured forearm blood flow (FBF) using venous occlusion plethysmography in 50 healthy volunteers (27 +/- 1 yr) in response to brachial artery infusion of ACh or BK in the absence and presence of inhibitors of NO synthase [NOS; with NG-monomethyl-L-arginine (L-NMMA)] and cyclooxygenase (COX; with ketorolac). Furthermore, we tested the idea that the NOS + COX-independent dilation (in the presence of L-NMMA + ketorolac, presumably EDHF) could be inhibited by exogenous NO administration, as reported in animal studies. FBF increased approximately 10-fold in the ACh control; L-NMMA reduced baseline FBF and ACh dilation, whereas addition of ketorolac had no further effect. Ketorolac alone did not alter ACh dilation, but addition of L-NMMA reduced ACh dilation significantly. For BK infusion, FBF increased approximately 10-fold in the control condition; L-NMMA tended to reduce BK dilation (P < 0.1), and addition of ketorolac significantly reduced BK dilation. Similar to ACh, ketorolac alone did not alter BK dilation, but addition of L-NMMA reduced BK dilation. To test the idea that NO can inhibit the NOS + COX-independent portion of dilation, we infused a dose of sodium nitroprusside (NO-clamp technique) during ACh or BK that restored the reduction in baseline blood flow due to L-NMMA. Regardless of treatment order, the NO clamp restored baseline FBF but did not reduce the NOS + COX-independent dilation to ACh or BK. We conclude that the contribution of NO and PGs differs between ACh and BK, with ACh being more dependent on NO and BK being mostly dependent on a NOS + COX-independent mechanism (EDHF) in healthy young adults. The NOS + COX-independent dilation does not appear sensitive to feedback inhibition from NO in the human forearm.  相似文献   

6.
We determined the contributions of various endothelium-derived relaxing factors to control of basal vascular tone and endothelium-dependent vasodilation in the mouse hindlimb in vivo. Under anesthesia, catheters were placed in a carotid artery, jugular vein, and femoral artery (for local hindlimb circulation injections). Hindlimb blood flow (HBF) was measured by transit-time ultrasound flowmetry. N(omega)-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg plus 10 mg x kg(-1) x h(-1)), to block nitric oxide (NO) production, altered basal hemodynamics, increasing mean arterial pressure (30 +/- 3%) and reducing HBF (-30 +/- 12%). Basal hemodynamics were not significantly altered by indomethacin (10 mg x kg(-1) x h(-1)), charybdotoxin (ChTx, 3 x 10(-8) mol/l), apamin (2.5 x 10(-7) mol/l), or ChTx plus apamin (to block endothelium-derived hyperpolarizing factor; EDHF). Hyperemic responses to local injection of acetylcholine (2.4 microg/kg) were reproducible in vehicle-treated mice and were not significantly attenuated by L-NAME alone, indomethacin alone, L-NAME plus indomethacin with or without co-infusion of diethlyamine NONOate to restore resting NO levels, ChTx alone, or apamin alone. Hyperemic responses evoked by acetylcholine were reduced by 29 +/- 11% after combined treatment with apamin plus charybdotoxin, and the remainder was virtually abolished by additional treatment with L-NAME but not indomethacin. None of the treatments altered the hyperemic response to sodium nitroprusside (5 microg/kg). We conclude that endothelium-dependent vasodilation in the mouse hindlimb in vivo is mediated by both NO and EDHF. EDHF can fully compensate for the loss of NO, but this cannot be explained by tonic inhibition of EDHF by NO. Control of basal vasodilator tone in the mouse hindlimb is dominated by NO.  相似文献   

7.
Epoxyeicosatrienoic acids are cerebral vasodilators produced in astrocytes by cytochrome P-450 epoxygenase activity. The P-450 inhibitor miconazole attenuates the increase in cerebral blood flow (CBF) elicited by glutamate. We evaluated whether epoxygenase activity is involved in the CBF response to activation of the N-methyl-D-aspartate (NMDA) receptor subtype by using two structurally distinct inhibitors, miconazole and N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH), a selective epoxygenase substrate inhibitor. Drugs were delivered locally through microdialysis probes in striata of anesthetized rats. Local CBF was measured by hydrogen clearance and compared with CBF in contralateral striatum receiving vehicle. Microdialysis perfusion of NMDA doubled CBF and increased nitric oxide (NO) production estimated by recovery of labeled citrulline in the dialysate during labeled arginine infusion. Perfusion of miconazole or MS-PPOH blocked the increase in CBF without decreasing citrulline recovery. Perfusion of N(omega)-nitro-L-arginine decreased baseline CBF and inhibited the CBF response to NMDA. Perfusion of MS-PPOH did not inhibit the CBF response to sodium nitroprusside. We conclude that both the P-450 epoxygenase and NO synthase pathways are involved in the local CBF response to NMDA receptor activation, and that the signaling pathway may be more complex than simply NO diffusion from neurons to vascular smooth muscle.  相似文献   

8.
In coronary resistance vessels, endothelium-derived hyperpolarizing factor (EDHF) plays an important role in endothelium-dependent vasodilation. EDHF has been proposed to be formed through cytochrome P-450 monooxygenase metabolism of arachidonic acid (AA). Our hypothesis was that AA-induced coronary microvascular dilation is mediated in part through a cytochrome P-450 pathway. The canine coronary microcirculation was studied in vivo (beating heart preparation) and in vitro (isolated microvessels). Nitric oxide synthase (NOS) (N(omega)-nitro-L-arginine, 100 microM) and cyclooxygenase (indomethacin, 10 microM) or cytochrome P-450 (clotrimazole, 2 microM) inhibition did not alter AA-induced dilation. However, when a Ca(2+)-activated K(+) channel channel or cytochrome P-450 antagonist was used in combination with NOS and cyclooxygenase inhibitors, AA-induced dilation was attenuated. We also show a negative feedback by NO on NOS-cyclooxygenase-resistant AA-induced dilation. We conclude that AA-induced dilation is attenuated by cytochrome P-450 inhibitors, but only when combined with inhibitors of cyclooxygenase and NOS. Therefore, redundant pathways appear to mediate the AA response in the canine coronary microcirculation.  相似文献   

9.
Dietary sodium and blood pressure regulation differs between normotensive men and women, an effect which may involve endothelial production of nitric oxide (NO). Therefore, we tested the hypothesis that differences in the NO component of endothelium-dependent vasodilation between low and high dietary sodium intake depend on sex. For 5 days prior to study, healthy adults consumed a controlled low-sodium diet (10 mmol/day, n = 30, mean age ± SE: 30 ± 1 yr, 16 men) or high-sodium diet (400 mmol/day, n = 36, age 23 ± 1 yr, 13 men). Forearm blood flow (FBF, plethysmography) responses to brachial artery administration of acetylcholine (ACh, 4 μg·100 ml tissue(-1)·min(-1)) were measured before and after endothelial NO synthase inhibition with N(G)-monomethyl-l-arginine (l-NMMA, 50 mg bolus + 1 mg/min infusion). The NO component of endothelium-dependent dilation was calculated as the response to ACh before and after l-NMMA accounting for changes in baseline FBF: [(FBF ACh - FBF baseline) - (FBF ACh(L-NMMA) - FBF baseline(L-NMMA))]. This value was 5.7 ± 1.3 and 2.5 ± 0.8 ml·100 ml forearm tissue(-1)·min(-1) for the low- and high-sodium diets, respectively (main effect of sodium, P = 0.019). The sodium effect was larger for the men, with values of 7.9 ± 2.0 and 2.2 ± 1.4 for men vs. 3.1 ± 1.3 and 2.7 ± 1.0 ml·100 ml forearm tissue(-1)·min(-1) for the women (P = 0.034, sex-by-sodium interaction). We conclude that the NO component of endothelium-dependent vasodilation is altered by dietary sodium intake based on sex, suggesting that endothelial NO production is sensitive to dietary sodium in healthy young men but not women.  相似文献   

10.
We assessed the relative contributions of endothelium-derived relaxing factors to renal vasodilation in vivo and determined whether these are altered in established streptozotocin-induced diabetes. In nondiabetic rats, stimulation of the endothelium by locally administered ACh or bradykinin-induced transient renal hyperemia. Neither basal renal blood flow (RBF) nor renal hyperemic responses to ACh or bradykinin were altered by blockade of prostanoid production (indomethacin) or by administration of charybdotoxin (ChTx) plus apamin to block endothelium-derived hyperpolarizing factor (EDHF). In contrast, combined blockade of nitric oxide (NO) synthase, N(omega)-nitro-l-arginine methyl ester (l-NAME), and prostanoid production reduced basal RBF and the duration of the hyperemic responses to ACh and bradykinin and revealed a delayed ischemic response to ACh. Accordingly, l-NAME and indomethacin markedly reduced integrated (area under the curve) hyperemic responses to ACh and bradykinin. Peak increases in RBF in response to ACh and bradykinin were not reduced by l-NAME and indomethacin but were reduced by subsequent blockade of EDHF. l-NAME plus indomethacin and ChTx plus apamin altered RBF responses to endothelium stimulation in a qualitatively similar fashion in diabetic and nondiabetic rats. The integrated renal hyperemic responses to ACh and bradykinin were blunted in diabetes, due to a diminished contribution of the component abolished by l-NAME plus indomethacin. We conclude that NO dominates integrated hyperemic responses to ACh and bradykinin in the rat kidney in vivo. After prior inhibition of NO synthase, EDHF mediates transient renal vasodilation in vivo. Renal endothelium-dependent vasodilation is diminished in diabetes due to impaired NO function.  相似文献   

11.
This study tested the hypotheses that (i) lipophilic statins (atorvastatin and simvastatin) impair ventricular recovery from myocardial ischemia-reperfusion, owing to their greater myocyte permeability, compared with a hydrophilic statin (pravastatin), and (ii) statins enhance endothelium-dependent vasodilation of isolated coronary arteries from the ischemic region. Farm pigs consumed chow supplemented with atorvastatin (2.5 mg.kg(-1).d(-1); n=6), pravastatin (10 (n=3) or 20 (n=2) mg.kg(-1).d(-1)), simvastatin (5 mg.kg(-1).d(-1); n=6), or no statin (control; n=6) for 3 weeks. Animals were anesthetized and instrumented to measure regional (% segment shortening) and global (dP/dt max) left ventricular (LV) function during coronary artery occlusion (10 min) and reperfusion (30 min). Coronary resistance (i.d. = 119 +/- 3 microm) and conductance (i.d. = 487 +/- 11 microm) arteries were isolated from the ischemic region to measure receptor-dependent (acetylcholine (ACh)) and -independent (KCl) vasoconstriction, and endothelium-dependent (bradykinin (BK)) and -independent (sodium nitroprusside (SNP)) vasodilation. At 30 min reperfusion, neither percent recovery of regional ventricular function (atorvastatin, 24% +/- 15%; pravastatin, 36% +/- 13%; simvastatin, 29% +/- 13%; control, 36% +/- 13%) nor percent recovery of global LV cardiac function differed among groups. However, BK-induced vasorelaxation of coronary conductance vessels was greater (P<0.05) in statins versus controls, and ACh-induced vasoconstriction was less in simvastatin-treated animals, suggesting the potential for enhanced coronary arterial blood flow to the jeopardized region. In conclusion, our data suggest that ischemia-induced myocardial stunning is similar among pigs treated for 3 weeks with atorvastatin, pravastatin, or simvastatin, even though statin treatment appears to augment endothelium-dependent vasodilation of conductance, but not resistance, vessels subjected to ischemia-reperfusion.  相似文献   

12.
Muscarinic receptor agonists have primarily been used to characterize endothelium-dependent vasodilator dysfunction with overweight/obesity. Reliance on a single class of agonist, however, yields limited, and potentially misleading, information regarding endothelial vasodilator capacity. The aims of this study were to determine 1) whether the overweight/obesity-related reduction in endothelium-dependent vasodilation extends beyond muscarinic receptor agonists and 2) whether the contribution of nitric oxide (NO) to endothelium-dependent vasodilation is reduced in overweight/obese adults. Eighty-six middle-aged and older adults were studied: 42 normal-weight (54 +/- 1 yr, 21 men and 21 women, body mass index = 23.4 +/- 0.3 kg/m(2)) and 44 overweight/obese (54 +/- 1 yr, 28 men and 16 women, body mass index = 30.3 +/- 0.6 kg/m(2)) subjects. Forearm blood flow (FBF) responses to intra-arterial infusions of acetylcholine in the absence and presence of the endothelial NO synthase inhibitor N(G)-monomethyl-l-arginine, methacholine, bradykinin, substance P, isoproterenol, and sodium nitroprusside were measured by strain-gauge plethysmography. FBF responses to each endothelial agonist were significantly blunted in the overweight/obese adults. Total FBF (area under the curve) to acetylcholine (50 +/- 5 vs. 79 +/- 4 ml/100 ml tissue), methacholine (55 +/- 4 vs. 86 +/- 5 ml/100 ml tissue), bradykinin (62 +/- 5 vs. 85 +/- 4 ml/100 ml tissue), substance P (37 +/- 4 vs. 57 +/- 5 ml/100 ml tissue), and isoproterenol (62 +/- 4 vs. 82 +/- 6 ml/100 ml tissue) were 30%-40% lower in the overweight/obese than normal-weight adults. N(G)-monomethyl-l-arginine significantly reduced the FBF response to acetylcholine to the same extent in both groups. There were no differences between the groups in the FBF responses to sodium nitroprusside. These results indicate that agonist-stimulated endothelium-dependent vasodilation is universally impaired with overweight/obesity. Moreover, this impairment appears to be independent of NO.  相似文献   

13.
We investigated the effects of an intravenous (pentobarbital sodium) and an inhalational (halothane) general anesthetic on guanosine 3',5'-cyclic monophosphate- (cGMP) mediated pulmonary vasodilation compared with responses measured in the conscious state. Multipoint pulmonary vascular pressure-flow plots were generated in the same nine dogs in the fully conscious state, during pentobarbital sodium anesthesia (30 mg/kg iv), and during halothane anesthesia (approximately 1.2% end tidal). Continuous intravenous infusions of bradykinin (2 micrograms.kg-1.min-1) and sodium nitroprusside (5 micrograms.kg-1.min-1) were utilized to stimulate endothelium-dependent and -independent cGMP-mediated pulmonary vasodilation, respectively. In the conscious state, both bradykinin and nitroprusside decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary arterial wedge pressure) over the entire range of flows studied; i.e., bradykinin and nitroprusside caused active flow-independent pulmonary vasodilation. Pulmonary vasodilator responses to bradykinin (P less than 0.01) and nitroprusside (P less than 0.05) were also observed during pentobarbital anesthesia. In contrast, during halothane anesthesia, the pulmonary vasodilator responses to both bradykinin and nitroprusside were abolished. These results indicate that, compared with the conscious state, cGMP-mediated pulmonary vasodilation is preserved during pentobarbital anesthesia but is abolished during halothane anesthesia.  相似文献   

14.
Application of glutamate to glial cell cultures stimulates the formation and release of epoxyeicosatrienoic acids (EETs) from arachidonic acid by cytochome P-450 epoxygenases. Epoxygenase inhibitors reduce the cerebral vasodilator response to glutamate and N-methyl-D-aspartate. We tested the hypothesis that epoxygenase inhibitors reduce the somatosensory cortical blood flow response to whisker activation. In chloralose-anesthetized rats, percent changes in cortical perfusion over whisker barrel cortex were measured by laser-Doppler flowmetry during whisker stimulation. Two pharmacologically distinct inhibitors were superfused subdurally: 1) N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), an epoxygenase substrate inhibitor; and 2) miconazole, a reversible cytochrome P-450 inhibitor acting on the heme moiety. Superfusion with 5 micromol/l MS-PPOH decreased the hyperemic response to whisker stimulation by 28% (from 25 +/- 9 to 18 +/- 7%, means +/- SD, n = 8). With 20 micromol/l MS-PPOH superfusion, the response was decreased by 69% (from 28 +/- 9% to 9 +/- 4%, n = 8). Superfusion with 20 micromol/l miconazole decreased the flow response by 67% (from 31 +/- 6% to 10 +/- 3%, n = 8). Subsequent superfusion with vehicle restored the response to 26 +/- 11%. Indomethacin did not prevent MS-PPOH inhibition of the flow response, suggesting that EET-related vasodilation was not dependent solely on cyclooxygenase metabolism of 5,6-EET. Neither MS-PPOH nor miconazole changed baseline flow, reduced the blood flow response to an adenosine A(2) agonist, or decreased somatosensory evoked potentials. The marked reduction of the cortical flow response to whisker stimulation with two different types of epoxygenase inhibitors indicates that EETs play an important role in the physiological coupling of blood flow to neural activation.  相似文献   

15.
Human inflammatory bowel diseases (IBD) are associated with significant alterations in intestinal blood flow, the direction and magnitude of which change with disease progression. The objectives of this study were to determine the time course of changes in colonic blood perfusion that occur during the development of dextran-sodium-sulfate (DSS)-induced colonic inflammation and to address the mechanisms that may underlie these changes in blood flow. Intravital microscopy was used to quantify blood flow (from measurements of vessel diameter and red blood cell velocity) in different-sized submucosal arterioles of control and inflamed colons in wild-type (WT) mice. A significant (18-30%) reduction in blood flow was noted in the smallest arterioles (<40 microm diameter) on days 4-6 of DSS colitis. The arteriolar responses to bradykinin in control and DSS-treated WT mice revealed an impaired endothelium-dependent, but not endothelium-independent, vasodilation in the inflamed colon. However, this impaired vasodilatory response to bradykinin after DSS treatment was not evident in mutant mice that overexpress Cu,Zn-superoxide dismutase. Rescue of the bradykinin-induced vasodilation during DSS colitis was also observed in mice that are genetically deficient in the NAD(P)H oxidase subunit gp91(phox). These findings indicate that the decline in blood flow during experimental colitis may result from a diminished capacity of colonic arterioles to respond to endogenous endothelium-dependent vasodilators like bradykinin and that NAD(P)H oxidase-derived superoxide plays a major role in the induction of the inflammation-induced endothelium-dependent arteriolar dysfunction.  相似文献   

16.
Exercise training of a muscle group improves local vascular function in subjects with chronic heart failure (CHF). We studied forearm resistance vessel function in 12 patients with CHF in response to an 8-wk exercise program, which specifically excluded forearm exercise, using a crossover design. Forearm blood flow (FBF) was measured using strain-gauge plethysmography. Responses to three dose levels of intra-arterial acetylcholine were significantly augmented after exercise training when analyzed in terms of absolute flows (7.0 +/- 1.8 to 10.9 +/- 2.1 ml x 100 ml(-1) x min(-1) for the highest dose, P < 0.05 by ANOVA), forearm vascular resistance (21.5 +/- 5.0 to 15.3 +/- 3.9 ml x 100 ml forearm(-1) x min(-1), P < 0.01), or FBF ratios (P < 0.01, ANOVA). FBF ratio responses to sodium nitroprusside were also significantly increased after training (P < 0.05, ANOVA). Reactive hyperemic flow significantly increased in both upper limbs after training (27.9 +/- 2.7 to 33.5 +/- 3.1 ml x 100 ml(-1) x min(-1), infused limb; P < 0.05 by paired t-test). Exercise training improves endothelium-dependent and -independent vascular function and peak vasodilator capacity in patients with CHF. These effects on the vasculature are generalized, as they were evident in a vascular bed not directly involved in the exercise stimulus.  相似文献   

17.
Epidemiological studies indicate that moderate ethanol consumption reduces cardiovascular mortality. Cellular and animal data suggest that ethanol confers beneficial effects on the vascular endothelium and increases the bioavailability of nitric oxide. The purpose of this study was to assess the effect of ethanol on endothelium-dependent, nitric oxide-mediated vasodilation in healthy human subjects. Forearm blood flow (FBF) was determined by venous occlusion plethysmography in healthy human subjects during intra-arterial infusions of either methacholine (0.3, 1.0, 3.0, and 10.0 mcg/min, n = 9), nitroprusside (0.3, 1.0, 3.0, and 10.0 mcg/min, n = 9), or verapamil (10, 30, 100, and 300 mcg/min, n = 8) before and during the concomitant intra-arterial infusions of ethanol (10% ethanol in 5% dextrose). Additionally, a time control experiment was conducted, during which the methacholine dose-response curve was measured twice during vehicle infusions (n = 5). During ethanol infusion, mean forearm and systemic alcohol levels were 227 +/- 30 and 6 +/- 0 mg/dl, respectively. Ethanol infusion alone reduced FBF (2.5 +/- 0.1 to 1.9 +/- 0.1 ml.dl(-1).min(-1), P < 0.05). Despite initial vasoconstriction, ethanol augmented the FBF dose-response curves to methacholine, nitroprusside, and verapamil (P < 0.01 by ANOVA for each). To determine whether this augmented FBF response was related to shear-stress-induced release of nitric oxide, FBF was measured during the coinfusion of ethanol and N(G)-nitro-L-arginine (L-NAME; n = 8) at rest and during verapamil-induced vasodilation. The addition of L-NAME did not block the ability of ethanol to augment verapamil-induced vasodilation. Ethanol has complex direct vascular effects, which include basal vasoconstriction as well as potentiation of both endothelium-dependent and -independent vasodilation. None of these effects appear to be mediated by an increase in nitric oxide bioavailability, thus disputing findings from preclinical models.  相似文献   

18.
Hydrogen peroxide, a relatively stable reactive oxygen species, is known to elicit vasodilation, but its underlying mechanism remains elusive. Here, we examined the role of endothelial nitric oxide (NO), prostaglandin, cytochrome P-450-derived metabolites, and smooth muscle potassium channels in coronary arteriolar dilation to abluminal H2O2. Pig subepicardial coronary arterioles (50-100 microm) were isolated and pressurized without flow for in vitro study. Arterioles developed basal tone and dilated dose dependently to H2O2 (1-100 microM). Disruption of th endothelium and inhibition of cyclooxygenase (COX) by indomethacin produced identical attenuation of vasodilation to H2O2. Conversely, the vasodilation to H2O2 was not affected by either the NO synthase inhibitor NG-nitro-l-arginine methyl ester or the cytochrome P-450 enzyme blocker miconazole. Inhibition of the COX-1, but not the COX-2 pathway, attenuated H2O2-induced dilation similarly to indomethacin. The production of prostaglandin E2 (PGE2), but not prostaglandin I2, from coronary arterioles was significantly increased by H2O2. Furthermore, inhibition of PGE2 receptors with AH-6809 attenuated vasodilation to H2O2 similar to that produced by indomethacin. In the absence of a functional endothelium, H2O2-induced dilation was attenuated, in an identical manner, by a depolarizing agent KCl and a calcium-activated potassium (KCa) channel inhibitor iberiotoxin. However, PGE2-induced dilation was not affected by iberiotoxin. The endothelium-independent dilation to H2O2 was also insensitive to the inhibition of guanylyl cyclase, lipoxygenase, ATP-sensitive potassium channels, and inward rectifier potassium channels. These results suggest that H2O2 induces endothelium-dependent vasodilation through COX-1-mediated release of PGE2 and also directly relaxes smooth muscle by hyperpolarization through KCa channel activation.  相似文献   

19.
The endothelium-dependent (acetylcholine, bradykinin, substance P) and the endothelium-independent (gliceryl trinirate, 3-morpholinsydnominine, sodium nitroprusside) vasodilators were studied in the Langendorff-perfused heart of the guinea pig. The involvement of prostanoids and EDRF in the endothelium-dependent responses were assessed by using indomethacin, an inhibitor of cyclooxygenase, and NG-nitro-L-Arginine, an inhibitor of NO synthase. The endothelium-independent agents were used as reference compounds. Both indomethacin and NG-nitro-L-Arginine elevated significantly baseline coronary perfusion pressure, indicating that prostanoids (most likely PGI2 and PGE2) and EDRF modulate the resting tone of the guinea pig coronary circulation. NG-nitro-L-Arginine, but not indomethacin, considerably reduced receptor-stimulated responses. It is concluded that acetylcholine, bradykinin or substance P-induced vasodilation is mediated by EDRF. In contrast, prostanoids do not contribute to endothelium-dependent responses. In addition, short-term tachyphylaxis to bolus injection of gliceryl trinitrate but not of sodium nitroprusside was demonstrated, suggesting that this preparation may be of value for studying nitrate tolerance.  相似文献   

20.
It has been shown that nitric oxide (NO) protects from myocardial ischemia-reperfusion injury in animal models. The present study investigated whether administration of the NO substrate l-arginine protects against ischemia-reperfusion-induced endothelial dysfunction in humans. Forearm blood flow was measured with venous occlusion plethysmography in 16 healthy male subjects who were investigated on two occasions. Forearm ischemia was induced for 20 min followed by 60-min reperfusion. With the use of a crossover protocol, the subject received a 15-min intrabrachial artery infusion of l-arginine (20 mg/min) and vehicle (saline, n = 12 or d-arginine, n = 4) starting at 15 min of ischemia on two separate occasions. Compared with preischemia, endothelium-dependent increase in forearm blood flow induced by intra-arterial acetylcholine (3-30 microg/min) was significantly impaired at 15 and 30 min of reperfusion when the subjects received saline (P < 0.001). When the subjects received l-arginine, the acetylcholine-induced increase in forearm blood flow was not significantly affected by ischemia-reperfusion. The recovery of endothelium-dependent vasodilatation at 15- and 30-min reperfusion was significantly greater after administration of l-arginine than after saline (P < 0.05). d-Arginine did not affect the response to acetylcholine. Endothelium-independent vasodilatation to nitroprusside was not affected during reperfusion. These results demonstrate that the NO substrate l-arginine significantly attenuates ischemia-reperfusion-induced endothelial dysfunction in humans in vivo. This suggests that l-arginine may be useful as a therapeutic agent in the treatment of ischemia-reperfusion injury in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号