首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac atrophy after bed rest and spaceflight.   总被引:7,自引:0,他引:7  
Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity of cardiac muscle under different loading conditions.  相似文献   

2.

Background

Left ventricular (LV) and right ventricular (RV) function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding mouse model. Therefore, we quantified time-dependent alterations in the ventricular morphology and function in two models of hypertrophy and heart failure and we studied the relationship between RV and LV function during the transition from hypertrophy to heart failure.

Methods

MRI was used to quantify RV and LV function and morphology in healthy (n = 4) and sham operated (n = 3) C57BL/6 mice, and animals with a mild (n = 5) and a severe aortic constriction (n = 10).

Results

Mice subjected to a mild constriction showed increased LV mass (P<0.01) and depressed LV ejection fraction (EF) (P<0.05) as compared to controls, but had similar RVEF (P>0.05). Animals with a severe constriction progressively developed LV hypertrophy (P<0.001), depressed LVEF (P<0.001), followed by a declining RVEF (P<0.001) and the development of pulmonary remodeling, as compared to controls during a 10-week follow-up. Myocardial strain, as a measure for local cardiac function, decreased in mice with a severe constriction compared to controls (P<0.05).

Conclusions

Relevant changes in mouse RV and LV function following an aortic constriction could be quantified using MRI. The well-controlled models described here open opportunities to assess the added value of new MRI techniques for the diagnosis of heart failure and to study the impact of new therapeutic strategies on disease progression and symptom occurrence.  相似文献   

3.
Although exercise training-induced changes in left ventricular (LV) structure are well characterized, adaptive functional changes are incompletely understood. Detailed echocardiographic assessment of LV systolic function was performed on 20 competitive rowers (10 males and 10 females) before and after endurance exercise training (EET; 90 days, 10.7 +/- 1.1 h/wk). Structural changes included LV dilation (end-diastolic volume = 128 +/- 25 vs. 144 +/- 28 ml, P < 0.001), right ventricular (RV) dilation (end-diastolic area = 2,850 +/- 550 vs. 3,260 +/- 530 mm2, P < 0.001), and LV hypertrophy (mass = 227 +/- 51 vs. 256 +/- 56 g, P < 0.001). Although LV ejection fraction was unchanged (62 +/- 3% vs. 60 +/- 3%, P = not significant), all direct measures of LV systolic function were altered. Peak systolic tissue velocities increased significantly (basal lateral S'Delta = 0.9 +/- 0.6 cm/s, P = 0.004; and basal septal S'Delta = 0.8 +/- 0.4 cm/s, P = 0.008). Radial strain increased similarly in all segments, whereas longitudinal strain increased with a base-to-apex gradient. In contrast, circumferential strain (CS) increased in the LV free wall but decreased in regions adjacent to the RV. Reductions in septal CS correlated strongly with changes in RV structure (DeltaRV end-diastolic area vs. DeltaLV septal CS; r2 = 0.898, P < 0.001) and function (Deltapeak RV systolic velocity vs. DeltaLV septal CS, r2 = 0.697, P < 0.001). EET leads to significant changes in LV systolic function with regional heterogeneity that may be secondary to concomitant RV adaptation. These changes are not detected by conventional measurements such as ejection fraction.  相似文献   

4.
This prospective, longitudinal study examined the effects of participation in team-based exercise training on cardiac structure and function. Competitive endurance athletes (EA, n = 40) and strength athletes (SA, n = 24) were studied with echocardiography at baseline and after 90 days of team training. Left ventricular (LV) mass increased by 11% in EA (116 +/- 18 vs. 130 +/- 19 g/m(2); P < 0.001) and by 12% in SA (115 +/- 14 vs. 132 +/- 11 g/m(2); P < 0.001; P value for the compared Delta = NS). EA experienced LV dilation (end-diastolic volume: 66.6 +/- 10.0 vs. 74.7 +/- 9.8 ml/m(2), Delta = 8.0 +/- 4.2 ml/m(2); P < 0.001), enhanced diastolic function (lateral E': 10.9 +/- 0.8 vs. 12.4 +/- 0.9 cm/s, P < 0.001), and biatrial enlargement, while SA experience LV hypertrophy (posterior wall: 4.5 +/- 0.5 vs. 5.2 +/- 0.5 mm/m(2), P < 0.001) and diminished diastolic function (E' basal lateral LV: 11.6 +/- 1.3 vs. 10.2 +/- 1.4 cm/s, P < 0.001). Further, EA experienced right ventricular (RV) dilation (end-diastolic area: 1,460 +/- 220 vs. 1,650 +/- 200 mm/m(2), P < 0.001) coupled with enhanced systolic and diastolic function (E' basal RV: 10.3 +/- 1.5 vs. 11.4 +/- 1.7 cm/s, P < 0.001), while SA had no change in RV parameters. We conclude that participation in 90 days of competitive athletics produces significant training-specific changes in cardiac structure and function. EA develop biventricular dilation with enhanced diastolic function, while SA develop isolated, concentric left ventricular hypertrophy with diminished diastolic relaxation.  相似文献   

5.
Both chronic microgravity exposure and long-duration bed rest induce cardiac atrophy, which leads to reduced standing stroke volume and orthostatic intolerance. However, despite the fact that women appear to be more susceptible to postspaceflight presyncope and orthostatic hypotension than male astronauts, most previous high-resolution studies of cardiac morphology following microgravity have been performed only in men. Because female athletes have less physiological hypertrophy than male athletes, we reasoned that they also might have altered physiological cardiac atrophy after bed rest. Magnetic resonance imaging was performed in 24 healthy young women (32.1 +/- 4 yr) to measure left ventricular (LV) and right ventricular (RV) mass, volumes, and morphology accurately before and after 60 days of 6 degrees head-down tilt (HDT) bed rest. Subjects were matched and then randomly assigned to sedentary bed rest (controls, n = 8) or two treatment groups consisting of 1) exercise training using supine treadmill running within lower body negative pressure plus resistive training (n = 8), or 2) protein (0.45 g x kg(-1) x day(-1) increase) plus branched-chain amino acid (BCAA) (7.2 g/day) supplementation (n = 8). After sedentary bed rest without nutritional supplementation, there were significant reductions in LV (96 +/- 26 to 77 +/- 25 ml; P = 0.03) and RV volumes (104 +/- 33 to 86 +/- 25 ml; P = 0.02), LV (2.2 +/- 0.2 to 2.0 +/- 0.2 g/kg; P = 0.003) and RV masses (0.8 +/- 0.1 to 0.6 +/- 0.1 g/kg; P < 0.001), and the length of the major axis of the LV (90 +/- 6 to 84 +/- 7 mm. P < 0.001), similar to what has been observed previously in men (8.0%; Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist Zerwekh JE, Peshock RM, Weatherall PT, Levine BD. J Appl Physiol 91: 645-653, 2001). In contrast, there were no significant reductions in LV or RV volumes in the exercise-trained group, and the length of the major axis was preserved. Moreover, there were significant increases in LV (1.9 +/- 0.4 to 2.3 +/- 0.3 g/kg; P < 0.001) and RV masses (0.7 +/- 0.1 to 0.8 +/- 0.2 g/kg; P = 0.002), as well as mean wall thickness (9 +/- 2 to 11 +/- 1 mm; P = 0.02). The interaction between sedentary and exercise LV and RV masses was highly significant (P < 0.0001). Protein and BCAA supplementation led to an intermediate phenotype with no change in LV or RV mass after bed rest, but there remained a significant reduction in LV volume (103 +/- 14 to 80 +/- 16 ml; P = 0.02) and major-axis length (91 +/- 5 to 88 +/- 7 mm; P = 0.003). All subjects lost an equivalent amount of body mass (3.4 +/- 0.2 kg control; 3.1 +/- 0.04 kg exercise; 2.8 +/- 0.1 kg protein). Cardiac atrophy occurs in women similar to men following sedentary 60 days HDT bed rest. However, exercise training and, to a lesser extent, protein supplementation may be potential countermeasures to the cardiac atrophy associated with chronic unloading conditions such as in spaceflight and prolonged bed rest.  相似文献   

6.
In many patients with congenital heart disease, the right ventricle (RV) is subjected to abnormal loading conditions. To better understand the state of compensated RV hypertrophy, which could eventually progress to decompensation, we studied the effects of RV pressure overload in rats. In the present study, we report the biventricular adaptation to 6 wk of pulmonary artery banding (PAB). PAB resulted in an RV pressure overload to approximately 60% of systemic level and a twofold increase in RV mass (P < 0.01). Systemic hemodynamic parameters were not altered, and overt signs of heart failure were absent. Load-independent measures of ventricular function (end-systolic pressure-volume relation, preload recruitable stroke work relation, maximum first time derivative of pressure divided by end-diastolic volume), assessed by means of pressure-volume (PV) loops, demonstrated a two- to threefold increase in RV contractility under baseline conditions in PAB rats. RV contractility increased in response to dobutamine stimulation (2.5 microg.kg(-1).min(-1)) both in PAB and sham-operated rats in a similar fashion, indicating preserved RV contractile reserve in PAB rats. Left ventricular (LV) contractility at baseline was unaffected in PAB rats, although LV volume in PAB rats was slightly decreased. LV contractility increased in response to dobutamine (2.5 microg.kg(-1).min(-1)), both in PAB and sham rats, whereas the response to a higher dose of dobutamine (5 microg.kg(-1).min(-1)) was blunted in PAB rats. RV pressure overload (6 wk) in rats resulted in a state of compensated RV hypertrophy with preserved RV contractile reserve, whereas LV contractile state at baseline was not affected. Furthermore, this study demonstrates the feasibility of performing biventricular PV-loop measurements in rats.  相似文献   

7.
In vivo assessment of treatment efficacy on postinfarct left ventricular (LV) remodeling is crucial for experimental studies. We examined the technical feasibility of serial magnetic resonance imaging (MRI) for monitoring early postinfarct remodeling in rats. MRI studies were performed with a 7-Tesla unit, 1, 3, 8, 15, and 30 days after myocardial infarction (MI) or sham operation, to measure LV mass, volume, and the ejection fraction (EF). Three groups of animals were analyzed: sham-operated rats (n = 6), MI rats receiving lisinopril (n = 11), and MI rats receiving placebo (n = 8). LV dilation occurred on day 3 in both MI groups. LV end-systolic and end-diastolic volumes were significantly lower in lisinopril-treated rats than in placebo-treated rats at days 15 and 30. EF was lower in both MI groups than in the sham group at all time points, and did not differ between the MI groups during follow-up. Less LV hypertrophy was observed in rats receiving lisinopril than in rats receiving placebo at days 15 and 30. We found acceptable within- and between-observer agreement and an excellent correlation between MRI and ex vivo LV mass (r = 0.96; p < 0.001). We demonstrated the ability of MRI to detect the early beneficial impact of angiotensin-converting enzyme (ACE) inhibitors on LV remodeling. Accurate and noninvasive, MRI is the tool of choice to document response to treatment targeting postinfarction LV remodeling in rats.  相似文献   

8.
To study the role of early energetic abnormalities in the subsequent development of heart failure, we performed serial in vivo combined magnetic resonance imaging (MRI) and (31)P magnetic resonance spectroscopy (MRS) studies in mice that underwent pressure-overload following transverse aorta constriction (TAC). After 3 wk of TAC, a significant increase in left ventricular (LV) mass (74 +/- 4 vs. 140 +/- 26 mg, control vs. TAC, respectively; P < 0.000005), size [end-diastolic volume (EDV): 48 +/- 3 vs. 61 +/- 8 microl; P < 0.005], and contractile dysfunction [ejection fraction (EF): 62 +/- 4 vs. 38 +/- 10%; P < 0.000005] was observed, as well as depressed cardiac energetics (PCr/ATP: 2.0 +/- 0.1 vs. 1.3 +/- 0.4, P < 0.0005) measured by combined MRI/MRS. After an additional 3 wk, LV mass (140 +/- 26 vs. 167 +/- 36 mg; P < 0.01) and cavity size (EDV: 61 +/- 8 vs. 76 +/- 8 microl; P < 0.001) increased further, but there was no additional decline in PCr/ATP or EF. Cardiac PCr/ATP correlated inversely with end-systolic volume and directly with EF at 6 wk but not at 3 wk, suggesting a role of sustained energetic abnormalities in evolving chamber dysfunction and remodeling. Indeed, reduced cardiac PCr/ATP observed at 3 wk strongly correlated with changes in EDV that developed over the ensuing 3 wk. These data suggest that abnormal energetics due to pressure overload predict subsequent LV remodeling and dysfunction.  相似文献   

9.
We characterized hemodynamics and systolic and diastolic right ventricular (RV) function in relation to structural changes in the rat model of monocrotaline (MCT)-induced pulmonary hypertension. Rats were treated with MCT at 30 mg/kg body wt (MCT30, n = 15) and 80 mg/kg body wt (MCT80, n = 16) to induce compensated RV hypertrophy and RV failure, respectively. Saline-treated rats served as control (Cont, n = 13). After 4 wk, a pressure-conductance catheter was introduced into the RV to assess pressure-volume relations. Subsequently, rats were killed, hearts and lungs were rapidly dissected, and RV, left ventricle (LV), and interventricular septum (IVS) were weighed and analyzed histochemically. RV-to-(LV + IVS) weight ratio was 0.29 +/- 0.05 in Cont, 0.35 +/- 0.05 in MCT30, and 0.49 +/- 0.10 in MCT80 (P < 0.001 vs. Cont and MCT30) rats, confirming MCT-induced RV hypertrophy. RV ejection fraction was 49 +/- 6% in Cont, 40 +/- 12% in MCT30 (P < 0.05 vs. Cont), and 26 +/- 6% in MCT80 (P < 0.05 vs. Cont and MCT30) rats. In MCT30 rats, cardiac output was maintained, but RV volumes and filling pressures were significantly increased compared with Cont (all P < 0.05), indicating RV remodeling. In MCT80 rats, RV systolic pressure, volumes, and peak wall stress were further increased, and cardiac output was significantly decreased (all P < 0.05). However, RV end-systolic and end-diastolic stiffness were unchanged, consistent with the absence of interstitial fibrosis. MCT-induced pressure overload was associated with a dose-dependent development of RV hypertrophy. The most pronounced response to MCT was an overload-dependent increase of RV end-systolic and end-diastolic volumes, even under nonfailing conditions.  相似文献   

10.
The quantification of mechanical interventricular asynchrony (IVA) was investigated. In 12 dogs left bundle branch block (LBBB) was induced by radio frequency ablation. Left ventricular (LV) and right ventricular (RV) pressures were recorded before and after induction of LBBB and during LBBB + LV apex pacing at different atrioventricular (AV) delays. Four IVA measures were validated using computer simulations on experimentally obtained pressure signals. The most robust measure for IVA was the time delay between the upslope of the LV and RV pressure signals (DeltaT(up)), estimated by cross correlation. The induction of experimental LBBB decreased DeltaT(up) from -6.9 +/- 7.0 ms (RV before LV) to -33.9 +/- 7.6 ms (P < 0.05) in combination with a significant decrease of LV maximal first derivative of pressure development over time (dP/dt(max)). During LV apex pacing, DeltaT(up) increased with decreasing AV delay up to +20.9 +/- 14.6 ms (P < 0.05). Interventricular resynchronization (DeltaT(up) = 0 ms) significantly improved LV dP/dt(max) by 15.1 +/- 5.9%. QRS duration increased significantly after induction of LBBB but did not change during LV apex pacing. In conclusion, DeltaT(up) is a reliable measure of mechanical IVA, which adds valuable information concerning the nature of asynchronous activation of the ventricles.  相似文献   

11.
Adrenomedullin may provide a compensatory mechanism to attenuate left ventricular hypertrophy (LVH). Nitric oxide synthase inhibition, induced by chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) to rats, induces cardiac hypertrophy in some, but not all cases; there are few reports of direct assessment of cardiomyocyte parameters. The objective was to characterize hypertrophic parameters in left (LV) and right ventricular (RV) cardiomyocytes after administration of L-NAME to rats for 8 wk and to determine whether adrenomedullin and its receptor components were upregulated. After treatment with L-NAME (20 and 50 mg x kg(-1) x day(-1)), compared with nontreated animals, 1) systolic blood pressure increased (by 34.2 and 104.9 mmHg), 2) heart weight-to-body wt ratio increased 24.1% at the higher dose (P < 0.05), 3) cardiomyocyte protein mass increased (P = NS), 4) cardiomyocyte protein synthesis ([14C]phenylalanine incorporation) increased (P < 0.05), 5) expression of skeletal alpha-actin, atrial natriuretic peptide, brain natriuretic peptide, and ET-1 mRNAs was enhanced (P < 0.05) in LV but not RV cardiomyocytes at 20 and 50 mg x kg(-1) x day(-1), respectively, and 6) expression of adrenomedullin, receptor activity-modifying protein 3 (RAMP3), and RAMP2 (but not calcitonin receptor-like receptor and RAMP1) mRNAs was increased by L-NAME (20 mg x kg(-1) x day(-1)) in LV. In conclusion, L-NAME enhanced protein synthesis in both LV and RV cardiomyocytes but elicited a hypertrophic phenotype accompanied by altered expression of the counterregulatory peptide adrenomedullin and receptor components (RAMP2, RAMP3) in LV only, indicating that the former is due to impaired nitric oxide synthesis, whereas the phenotypic changes are due to pressure overload.  相似文献   

12.
Right ventricular (RV) weight increases dependent on time after myocardial infarction (MI) and on MI size. The sequential changes in RV volume and hemodynamics and their relations to left ventricular (LV) remodeling after MI are unknown. We therefore examined the time course of RV remodeling in rats with LV MI. MI was produced by left coronary artery ligation. Four, eight, and sixteen weeks later, LV and RV hemodynamic measurements were performed and pressure-volume curves were obtained. For serial measurement of RV volumes and performance, cine-MRI was performed 2 and 8 wk after MI. The ratios of beta-myosin heavy chain (MHC) to alpha-MHC and skeletal to cardiac alpha-actin were determined for the RV and LV after large MI or sham operation. RV weight increased in rats with MI, as did RV volume. RV pressure-volume curves were shifted toward larger volumes 16 wk after large MI. RV systolic pressure increased gradually over time; however, the gain in RV weight was always in excess of RV systolic pressure. The ratios of skeletal to cardiac alpha-actin and beta-MHC to alpha-MHC were increased after MI in both ventricles in a similar fashion. Because RV wall stress was not increased after infarction, mechanical factors may not conclusively explain hypertrophy, which maintained balanced loading conditions for the RV even after large LV infarction.  相似文献   

13.
Because the left ventricular (LV) hypertrophy due to volume overload induced by arteriovenous (AV) shunt was associated with an increase in phospholipase C (PLC) isozyme mRNA levels, PLC is considered to be involved in the development of cardiac hypertrophy. Since the renin-angiotensin system (RAS) is activated in cardiac hypertrophy, the role of RAS in the stimulation of PLC isozyme gene expression in hypertrophied heart was investigated by inducing AV shunt in Sprague-Dawley rats. The animals were treated with or without losartan (20 mg/kg, daily) for 3 days as well as 1, 2 and 4 weeks, and atria, right ventricle (RV) and LV were used for analysis. The increased muscle mass as well as the mRNA levels for PLC beta1 and beta3 in atria and RV, unlike PLC beta3 gene expression in LV, at 3 days of AVshunt were attenuated by losartan. The increased gene expression for PLC beta1 at 2 weeks in atria, at 1 and 4 weeks in RV, and at 2 and 4 weeks in LV was also depressed by losartan treatment. Likewise, the elevated mRNA levels for PLC beta3 in RV at 1 week and in LVat 4 weeks of cardiac hypertrophy were decreased by losartan. On the other hand, the increased levels of mRNA for PLC gamma1 in RV and LV at 2 and 4 weeks of inducing hypertrophy, unlike in atria at 4 weeks were not attenuated by losartan treatment. While the increased mRNA level for PLC delta1 in LV was reduced by losartan, gene expression for PLC delta1 was unaltered in atria and decreased in RV at 3 days of inducing AV shunt. These results suggest that changes in PLC isozyme gene expression were chamber specific and time-dependent upon inducing cardiac hypertrophy due to AV shunt. Furthermore, partial attenuation of the increased gene expression for some of the PLC isozymes and no effect of losartan on others indicate that both RAS dependent and independent mechanisms may be involved in hypertrophied hearts due to volume overload.  相似文献   

14.
To investigate the association between hyperinsulinemia and cardiac hypertrophy, we treated rats with insulin for 7 wk and assessed effects on myocardial growth, vascularization, and fibrosis in relation to the expression of angiotensin II receptors (AT-R). We also characterized insulin signaling pathways believed to promote myocyte growth and interact with proliferative responses mediated by G protein-coupled receptors, and we assessed myocardial insulin receptor substrate-1 (IRS-1) and p110 alpha catalytic and p85 regulatory subunits of phospatidylinositol 3 kinase (PI3K), Akt, MEK, ERK1/2, and S6 kinase-1 (S6K1). Left ventricular (LV) geometry and performance were evaluated echocardiographically. Insulin decreased AT1a-R mRNA expression but increased protein levels and increased AT2-R mRNA and protein levels and phosphorylation of IRS-1 (Ser374/Tyr989), MEK1/2 (Ser218/Ser222), ERK1/2 (Thr202/Tyr204), S6K1 (Thr421/Ser424/Thr389), Akt (Thr308/Thr308), and PI3K p110 alpha but not of p85 (Tyr508). Insulin increased LV mass and relative wall thickness and reduced stroke volume and cardiac output. Histochemical examination demonstrated myocyte hypertrophy and increases in interstitial fibrosis. Metoprolol plus insulin prevented the increase in relative wall thickness, decreased fibrosis, increased LV mass, and improved function seen with insulin alone. Thus our data demonstrate that chronic hyperinsulinemia decreases AT1a-to-AT2 ratio and increases MEK-ERK1/2 and S6K1 pathway activity related to hypertrophy. These changes might be crucial for increased cardiovascular growth and fibrosis and signs of impaired LV function.  相似文献   

15.
《Biomarkers》2013,18(8):731-738
Elevated resistance and reduced compliance of the pulmonary vasculature increase right ventricular (RV) afterload. Local and systemic inflammation and haemostatic abnormalities are prominent in pulmonary vascular diseases. We hypothesized that plasma biomarker levels indicating greater inflammation and coagulability associated with pulmonary vascular disease would be associated with RV structure and function measured by cardiac magnetic resonance imaging (MRI). The Multi-Ethnic Study of Atherosclerosis (MESA) performed cardiac MRI among participants aged 45–84 years without clinical cardiovascular disease. We assessed the associations of RV mass, RV end-diastolic volume (RVEDV), RV stroke volume (RVSV) and RV ejection fraction (RVEF) with plasma measures of inflammation (matrix metalloproteinase (MMP)-3 and -9, intercellular adhesion molecule (ICAM)-1, tumour necrosis factor receptor (TNF-R1), and E-selectin) and thrombosis (plasminogen activator inhibitor (PAI)-1, tissue factor, tissue factor pathway inhibitor and CD40 ligand).The study sample included 731 subjects. Higher MMP-9 levels were associated with lower RV mass before and after adjustment for left ventricular (LV) mass (p?=?0.008 and p?=?0.044, respectively). Higher levels of MMP-9 and PAI-1 were also associated with smaller RVEDV (p<0.05). Higher PAI-1 levels were associated with lower RVEF even after adjustment for LV ejection fraction (p?=?0.017). In conclusion, MMP-9 and PAI-1 are associated with changes in RV structure and function which could be potentially related to a subclinical increase in pulmonary vascular resistance.  相似文献   

16.
The progression of hypertension to cardiac failure involves systemic changes that may ultimately affect contractility throughout the heart. Spontaneous hypertensive heart failure (SHHF) rats have depressed left ventricular (LV) function, but right ventricular (RV) dysfunction is less well characterized. Ultrathin (87 +/- 5 mircom) trabeculae were isolated from end-stage failing SHHF rats and from age-matched controls. Under near-physiological conditions (1 mM Ca(2+), 37 degrees C, 4 Hz), developed force (in mN/mm(2)) was not significantly different in SHHF LV and RV trabeculae and those of controls. SHHF LV preparations displayed a negative force-frequency behavior (40 +/- 7 vs. 23 +/- 4 mN/mm(2), 2 vs. 7 Hz); this relationship was positive in SHHF RV preparations (27 +/- 5 vs. 40 +/- 6 mN/mm(2)) and controls (32 +/- 6 vs. 44 +/- 9 mN/mm(2)). The response to isoproterenol (10(-6) M, 4 Hz) was depressed in SHHF LV preparations. The inotropic response to hypothermia was lost in SHHF LV trabeculae but preserved in SHHF RV trabeculae. Intracellular calcium measurements revealed impaired calcium handling at higher frequencies in LV preparations. We conclude that in end-stage failing SHHF rats, RV function is only marginally affected, whereas a severe contractile dysfunction of LV myocardium is present.  相似文献   

17.
We aimed to investigate the toxicity of carbon monoxide (CO) in rats with right ventricle (RV) remodeling induced by hypoxic pulmonary hypertension (PHT). A group of Wistar rats was exposed to 3-wk hypobaric hypoxia (H). A second group was exposed to 50 ppm CO for 1 wk (CO). A third group was exposed to chronic hypoxia including 50 ppm CO during the third week (H+CO). These groups were compared with controls. RV and left ventricle (LV) functions were assessed by echocardiography and transparietal catheterization. Ventricular perfusion was estimated with the fluorescent microsphere method. Results were confirmed by histology. PHT induced RV hypertrophy and function enhancement. In the H group, RV shortening fraction (RVSF; 71 +/- 12% vs. 41 +/- 2%) and RV end-systolic pressure (RVESP; 54 +/- 6 vs. 19 +/- 2 mmHg) were increased compared with controls. Moreover, myocardial perfusion was increased in the RV (36 +/- 2% vs. 22 +/- 2%) and decreased in the LV (64 +/- 3% vs. 78 +/- 2%). In the H+CO group, RVSF (45 +/- 3% vs. 71 +/- 12%) and RVESP (38 +/- 3 vs. 54 +/- 6 mmHg) were decreased compared with the H group. RV perfusion was decreased in the H+CO group compared with the H group (21 +/- 5% vs. 36 +/- 2%), and LV perfusion was increased (79 +/- 5% vs. 64 +/- 3%). PHT and RV hypertrophy were still present in the H+CO group, and fibroses localized in the RV were detected. Similar lesions were observed in an additional group exposed simultaneously to hypoxia and 50 ppm CO over 3 wk. We demonstrated that rats with established PHT were more sensitive to CO, which dramatically alters the RV adaptive response to PHT, leading to ischemic lesions.  相似文献   

18.

Aims

The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice.

Methods and Results

Serial measurements of cardiac morphology and function were made in the same group of mdx mice and controls (housed in a non-SPF facility) using MRI at 1, 3, 6, 9 and 12 months after birth. Left ventricular (LV) and right ventricular (RV) systolic and diastolic function, response to dobutamine stress and myocardial fibrosis were assessed. RV dysfunction preceded LV dysfunction, with RV end systolic volumes increased and RV ejection fractions reduced at 3 months of age. LV ejection fractions were reduced at 12 months, compared with controls. An abnormal response to dobutamine stress was identified in the RV of mdx mice as early as 1 month. Late-gadolinium-enhanced MRI identified increased levels of myocardial fibrosis in 6, 9 and 12-month-old mdx mice, the extent of fibrosis correlating with the degree of cardiac remodeling and hypertrophy.

Conclusions

MRI could identify cardiac abnormalities in the RV of mdx mice as young as 1 month, and detected myocardial fibrosis at 6 months. We believe these to be the earliest MRI measurements of cardiac function reported for any mice, and the first use of late-gadolinium-enhancement in a mouse model of congenital cardiomyopathy. These techniques offer a sensitive and clinically relevant in vivo method for assessment of cardiomyopathy caused by muscular dystrophy and other diseases.  相似文献   

19.
Myocardial activities and isozyme distributions of creatine kinase (CK) and lactate dehydrogenase (LDH) were measured in rats with moderate pressure overload hypertrophy. Three weeks after aortic banding, the ratio of left ventricular (LV) weight to body weight increased by 30%. Values for enzyme activity in the hypertrophied LV were compared to values for control rats as well as to the contralateral relatively unaffected right ventricle (RV). In rats with moderate LV hypertrophy, total CK activity was unchanged. The percent MB-CK increased significantly (p less than 0.01) only in the hypertrophied LV, from 13 +/- 1% to 19 +/- 1% of total CK, while the sum of MM and mitochondrial-CK decreased from 86 +/- 3 to 80 +/- 3% (p less than 0.01). LDH activity increased (p less than 0.05) only in the hypertrophied ventricle from a control of 2.90 +/- 0.13 to 3.21 +/- 0.13 IU/mg protein, while the ratio of LDH activity at high to low substrate increased from 0.12 +/- 0.02 to 0.14 +/- 0.02 (p less than 0.05). Thus, the development of moderate pressure overload hypertrophy in the LV is associated with normal levels of total CK, but the percentage of MB-CK increases selectively in the primarily affected ventricle. Also, total LDH and LDH activity at high to low substrate concentration increases significantly in LV hypertrophy.  相似文献   

20.
In various models of cardiac hypertrophy, e.g. treatment of rats with norepinephrine infusion or pressure overload, increased expression of cytokines together with increase in extracellular matrix proteins (ECMP) was reported. In this study the effect of triiodothyronine (T3) on the expression of mRNA for cytokines and ECMP was investigated. Female Sprague-Dawley rats were treated daily with T3 in a dose of 0.2 mg.kg–1 of body weight s.c. Changes in the left (LV) and right (RV) ventricular function were measured 6, 24, 48, 72 h and 7 and 14 days after the first T3-injection using Millar ultraminiature pressure catheter transducers. RNA was isolated from LV and RV tissue, and the expression of cytokines and ECMP was measured using the ribonuclease protection assay. T3-treatment induced a significant increase in LV dP/dtmax and RV dP/dtmax, (p < 0.05) 24 h after the first injection of T3 together with an increase in heart rate (p < 0.01). The RV systolic pressure increased 48 h after the first T3 injection, whereas the LV systolic pressure remained unchanged. After 48 h the heart weight to body weight ratio was increased (p< 0.01). Hypertrophy of the RV was more prominent than that of the LV (155.9 vs. 137.7%).In all groups the expression of mRNA for interleukins (IL) IL-6, IL-1, IL-1 and tumour necrosis factor (TNF)- in both ventricles did not change (p > 0.05). There was a significant increase in the mRNA for colligin 24 h after the T3 injection in both LV (p < 0.01) and RV (p< 0.05). This was followed by an increase in the mRNA for collagen I and III 72 h after the first T3-dose (p < 0.05 in RV; p < 0.01 in LV). At this point, the mRNA for tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) was increased (p < 0.01) in the LV only. Moreover, after 7 days also the mRNA for matrix metalloproteinase (MMP)-2 increased (p < 0.01) in the LV. Both, TIMP-2 and MMP-2 were increased in the RV only after 14 days (p < 0.05). The gelatinase activity of MMP-2, however, was unchanged in both ventricles. The T3-induced cardiac hypertrophy was not accompanied by fibrosis as measured by the Sirius red staining after 14-days of T3-treatment. The moderate increase in mRNA for ECMP and MMP may be attributed more to the increasing mass of the ventricles with the accompanying remodelling of the ECM than to increased fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号