首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In cardiac cells, evoked Ca2+ releases or spontaneous Ca2+ waves activate the inward Na+/Ca2+ exchange current (INaCa), which may modulate membrane excitability and arrhythmogenesis. In this study, we examined changes in membrane potential due to INaCa elicited by sarcoplasmic reticulum (SR) Ca2+ release in guinea pig ventricular myocytes using whole cell current clamp, fluorescence, and confocal microscopy. Inhibition of INaCa by Na+-free, Li+-containing Tyrode solution reversibly abbreviated the action potential duration at 90% repolarization (APD90) by 50% and caused SR Ca2+ overload. APD90 was similarly abbreviated in myocytes exposed to the Na+/Ca2+ exchange inhibitor KB-R7943 (5 microM) or after inhibition of SR Ca2+ release with ryanodine (20 microM). In the absence of extracellular Na+, spontaneous SR Ca2+ releases caused minimal changes in resting membrane potential. After the myocytes were returned to Na+-containing solution, the potentiated intracellular Ca2+ concentration ([Ca2+]i) transients dramatically prolonged APD90 and [Ca2+]i oscillations caused delayed and early afterdepolarizations (DADs and EADs). Laser-flash photolysis of caged Ca2+ mimicked the effects of spontaneous [Ca2+]i oscillations, confirming that APD prolongation, DADs, and EADs could be ascribed to intracellular Ca2+ release. These results suggest that Na+/Ca2+ exchange is a major physiological determinant of APD and that INaCa activation by spontaneous SR Ca2+ release/oscillations, depending on the timing, can account for both DADs and EADs during SR Ca2+ overload.  相似文献   

2.
The functional consequences of overexpression of rat heart Na+/Ca2+ exchanger (NCX1) were investigated in adult rat myocytes in primary culture. When maintained under continued electrical field stimulation conditions, cultured adult rat myocytes retained normal contractile function compared with freshly isolated myocytes for at least 48 h. Infection of myocytes by adenovirus expressing green fluorescent protein (GFP) resulted in >95% infection as ascertained by GFP fluorescence, but contraction amplitude at 6-, 24-, and 48-h postinfection was not affected. When they were examined 48 h after infection, myocytes infected by adenovirus expressing both GFP and NCX1 had similar cell sizes but exhibited significantly altered contraction amplitudes and intracellular Ca2+ concentration ([Ca2+]i) transients, and lower resting and diastolic [Ca2+]i when compared with myocytes infected by the adenovirus expressing GFP alone. The effects of NCX1 overexpression on sarcoplasmic reticulum (SR) Ca2+ content depended on extracellular Ca2+ concentration ([Ca2+]o), with a decrease at low [Ca2+]o and an increase at high [Ca2+]o. The half-times for [Ca2+]i transient decline were similar, suggesting little to no changes in SR Ca2+-ATPase activity. Western blots demonstrated a significant (P < or = 0.02) threefold increase in NCX1 but no changes in SR Ca2+-ATPase and calsequestrin abundance in myocytes 48 h after infection by adenovirus expressing both GFP and NCX1 compared with those infected by adenovirus expressing GFP alone. We conclude that overexpression of NCX1 in adult rat myocytes incubated at high [Ca2+]o resulted in enhanced Ca2+ influx via reverse NCX1 function, as evidenced by greater SR Ca2+ content, larger twitch, and [Ca2+]i transient amplitudes. Forward NCX1 function was also increased, as indicated by lower resting and diastolic [Ca2+]i.  相似文献   

3.
p21-Activated kinase-1 (Pak1) is a serine-threonine kinase that associates with and activates protein phosphatase 2A in adult ventricular myocytes and, thereby, induces increased Ca2+ sensitivity of skinned-fiber tension development mediated by dephosphorylation of myofilament proteins (Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ. Circ Res 94: 194-200, 2004). We test the hypothesis that activation of Pak1 also moderates cardiac contractility through regulation of intracellular Ca2+ fluxes. We found no difference in field-stimulated intracellular Ca2+ concentration ([Ca2+]i) transient amplitude and extent of cell shortening between myocytes expressing constitutively active Pak1 (CA-Pak1) and controls expressing LacZ; however, time to peak shortening was significantly faster and rate of [Ca2+]i decay and time of relengthening were slower. Neither caffeine-releasable sarcoplasmic reticulum (SR) Ca2+ content nor fractional release was different in CA-Pak1 myocytes compared with controls. Isoproterenol application revealed a significantly blunted increase in [Ca2+]i transient amplitude, as well as a slowed rate of [Ca2+]i decay, increased SR Ca2+ content, and increased cell shortening, in CA-Pak1 myocytes. We found no significant change in phospholamban phosphorylation at Ser16 or Thr17 in CA-Pak1 myocytes. Analysis of cardiac troponin I revealed a significant reduction in phosphorylated species that are primarily attributable to Ser(23/24) in CA-Pak1 myocytes. Nonstimulated, spontaneous SR Ca2+ release sparks were significantly smaller in amplitude in CA-Pak1 than LacZ myocytes. Propagation of spontaneous Ca2+ waves resulting from SR Ca2+ overload was significantly slower in CA-Pak1 myocytes. Our data indicate that CA-Pak1 expression has significant effects on ventricular myocyte contractility through altered myofilament Ca2+ sensitivity and modification of the [Ca2+]i transient.  相似文献   

4.
To investigate whether activity of the sarcolemmal Na pump modulates the influence of sodium current on excitation-contraction (E-C) coupling, we measured [Ca(2+)](i) transients (fluo-3) in single voltage-clamped mouse ventricular myocytes ([Na+](pip) = 15 or 0 mM) when the Na pump was activated (4.4 mM K(+)(o)) and during abrupt inhibition of the pump by exposure to 0 K with a rapid solution-switcher device. After induction of steady state [Ca2+](i) transients by conditioning voltage pulses (0.25 Hz), inhibition of the Na pump for 1.5 s immediately before and continuing during a voltage pulse (200 ms, -80 to 0 mV) caused a significant increase (15 +/- 2%; n = 16; p < 0.01) in peak systolic [Ca2+](i) when [Na+](pip) was 15 mM. In the absence of sodium current (I(Na), which was blocked by 60 microM tetrodotoxin (TTX)), inhibition of the Na pump immediately before and during a voltage pulse did not result in an increase in peak systolic [Ca2+](i). Abrupt blockade of I(Na) during a single test pulse with TTX caused a slight decrease in peak [Ca2+](i), whether the pump was active (9%) or inhibited (10%). With the reverse-mode Na/Ca exchange inhibited by KB-R 7943, inhibition of the Na pump failed to increase the magnitude of the peak systolic [Ca2+](i) (4 +/- 1%; p = NS) when [Na+](pip) was 15 mM. When [Na+](pip) was 0 mM, the amplitude of the peak systolic [Ca2+](i) was not altered by abrupt inhibition of the Na pump immediately before and during a voltage pulse. These findings in adult mouse ventricular myocytes indicate the Na pump can modulate the influence of I(Na) on E-C coupling in a single beat and provide additional evidence for the existence of Na fuzzy space, where [Na+] can significantly modulate Ca2+ influx via reverse Na/Ca exchange.  相似文献   

5.
Intracellular calcium ion ([Ca2+]i) transients were measured in single rat ventricular myocytes with the fluorescent indicator furaptra. Cells were voltage clamped with a single patch electrode containing the K+ salt of furaptra and fluorescence at 500 nm was measured during illumination with 350 and 370 nm light. Depolarizing voltage-clamp pulses elicited [Ca2+]-dependent fluorescent transients in 30 of 33 cells tested. The peak change in [Ca2+]i elicited by 50-ms depolarizations from -70 to +10 mV was 1.52 +/- 0.25 microM (mean +/- SEM, n = 7). The size of the [Ca2+]i transient increased in response to 10 microM isoproterenol, prolongation of the depolarization, and increasing pipette [Na+]. Because furaptra is sensitive to Ca2+ and Mg2+, changes in [Mg2+]i during the [Ca2+]i transient could not be measured. Instead, a single-compartment model was developed to simulate changes in [Mg2+] during [Ca2+] transients. The simulations predicted that a 2 microM [Ca2+] transient was accompanied by a slow increase in [Mg2+] (14-29 microM), which became larger as basal [Mg2+] increased (0.5-2.0 mM). The [Mg2+] transient reached a peak approximately 1 s after the peak of the [Ca2+] transient with the slow changes in [Mg2+] dominated by competition at the Ca2+/Mg2+ sites of Troponin. These changes in [Mg2+], however, were so small and slow that they were unlikely to affect the furaptra fluorescence signal at the peak of the [Ca2+]i transient. The [Ca2+]i transient reported by furaptra appears to be larger than that reported by other Ca2+ indicators; however, we conclude this larger transient is at least as accurate as [Ca2+]i transients reported by the other indicators.  相似文献   

6.
The effects of the thyroid state on the cytosolic free Ca2+ concentration, [Ca2+]i, of resting and K+-depolarized cardiomyocytes were studied using the fluorescent Ca2+ indicator fura2. The mean resting [Ca2+]i in euthyroid myocytes (89 +/- 8 nM) was not significantly different from that in hyperthyroid myocytes (100 +/- 14 nM). The resting O2-consumption rate was identical for both groups when expressed per mg protein, but a 35% higher value was observed in the hyperthyroid group when expressed per cell on account of the cellular hypertrophy induced by thyroid hormone. Potassium induced depolarization (50 mM [K+]0) raised the level of [Ca2+]i by 50% in both groups. When ATP-coupled respiration was blocked with oligomycin, the 50 mM K+-induced rise in [Ca2+]i was accompanied in both groups by a 40% rise in glycolytic activity as inferred from measurement of lactate production. Ca2+-fluorescence transients were recorded from electrically stimulated myocytes of euthyroid, hyperthyroid and hypothyroid rats. The time taken to reach peak fluorescence (TPL) and that to 50% decay of peak fluorescence (RL0.5) decreased in the direction hypothyroid----hyperthyroid, indicating an increase in Ca2+ fluxes in the same direction. Isoproterenol (1 microM) enhanced the peak Ca2+ fluorescence in electrically stimulated hypothyroid and euthyroid myocytes but not in hyperthyroid myocytes. Both the TPL and RL0.5 were decreased by isoproterenol in euthyroid, but more so in hypothyroid myocytes. None of these parameters were influenced by isoproterenol in the hyperthyroid group. We conclude that (1) thyroid hormone increases neither the O2-consumption rate nor the level of [Ca2+]i of resting cardiomyocytes and (2) the effects of the beta-receptor-agonist isoproterenol on Ca2+ transients of electrically stimulated myocytes, are inversely related to the documented changes in beta-receptor density in heart tissue occurring with alterations in the thyroid state.  相似文献   

7.
The effects of the thyroid status on the cytosolic free Ca2+ concentration ([Ca2+]i) in single cardiomyocytes were studied at rest and during contraction. The mean resting [Ca2+]i increased significantly from the hypothyroid (45 +/- 4 nM) through the euthyroid (69 +/- 12 nM) to the hyperthyroid condition (80 +/- 11 nM) at extracellular Ca2+ concentrations ([Ca2+]o) up to 2.5 mM. At [Ca2+]o above 2.5 mM the differences in [Ca2+]i between the groups became less. The amplitude of the Ca2+ transients became higher in all groups with increasing [Ca2+]o (1, 2.5 and 5 mM), and was highest at all [Ca2+]o in hyperthyroid myocytes. The beta-agonist isoprenaline elevated peak [Ca2+]i during contraction and increased the rate of the decay of the Ca2+ transients to a greater extent in hypothyroid myocytes than in hyperthyroid myocytes. Depolarization with high [K+]o induced a large but transient [Ca2+]i overshoot in hypothyroid myocytes, but not in hyperthyroid myocytes, before a new elevated steady-state [Ca2+]i was reached, which was not different between the groups. When isoprenaline was added to K+ o-depolarized myocytes after a steady state was reached, a significantly larger extra increase in [Ca2+]i was measured in the hypothyroid group (28%) compared with the hyperthyroid group (8%). It is concluded that in cardiac tissue exposed to increasing amounts of thyroid hormones (1) [Ca2+]i increases at rest and during contraction in cardiomyocytes and (2) interventions which favour Ca2+ entry into the cytosol [( Ca2+]o elevation, high [K+]o, beta-agonists) tend to have less impact on Ca2+ homoeostasis.  相似文献   

8.
Apelin has been reported to have a positive inotropic action in the isolated rat heart. However, the effect of apelin on sarcoplasmic reticulum (SR) Ca2+ content and its influence on intracellular Ca2+ transient during excitation-contraction coupling remains poorly understood. In the present study, we determined the effect of apelin on Ca2+ transient and contractions in isolated rat cardiomyocytes. When compared with control, treatment with apelin caused a 55.7 +/- 13.9% increase in sarcomere fraction shortening and a 43.6 +/- 4.56% increase in amplitude of electrical-stimulated intracellular Ca2+ concentration (E[Ca2+]i) transients (n = 14, P < 0.05). But SR Ca2+ content measured by caffeine-induced [Ca2+]i (C[Ca2+]i) transient was decreased 8.41 +/- 0.92% in response to apelin (n = 14, P < 0.05). Na+/Ca2+ exchanger (NCX) function was increased since half-decay time of C[Ca2+]i was decreased 16.22 +/- 1.36% in response to apelin. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity was also increased by apelin. These responses can be partially or completely blocked by chelerythrine chloride, a PKC inhibitor. In addition, to confirm our data, we used indo-1 as another Ca2+ indicator and rapid cooling as another way to measure SR Ca2+ content, and we observed similar results. So we conclude that apelin has a positive inotropic effect on isolated myocytes, and increased amplitude of E[Ca2+]i is at least partially involved in the mechanism. NCX function and SERCA activity are increased by apelin, and the SR Ca2+ content is decreased by apelin during twitches. PKC played an important role in these signaling mechanisms.  相似文献   

9.
Ryanodine receptors/Ca2+-release channels (RyR2) from the sarcoplasmic reticulum (SR) provide the Ca2+ required for contraction at each cardiac twitch. RyR2 are regulated by a variety of proteins, including the immunophilin FK506 binding protein (FKBP12.6). FKBP12.6 seems to be important for coupled gating of RyR2 and its deficit and alteration may be involved in heart failure. The role of FKBP12.6 on Ca2+ release has not been analyzed directly, but rather it was inferred from the effects of immunophilins, such us FK506 and rapamycin, which, among other effects, dissociates FKBP12.6 from the RyR2. Here, we investigated directly the effects of FKBP12.6 on local (Ca2+ sparks) and global [intracellular Ca2+ concentration ([Ca2+]i) transients] Ca2+ release in single rat cardiac myocytes. The FKBP12.6 gene was transfected in single myocytes using the adenovirus technique with a reporter gene strategy based on green fluorescent protein (GFP) to check out the success of transfections. Control myocytes were transfected with only GFP (Ad-GFP). Rhod-2 was used as the Ca2+ indicator, and cells were viewed with a confocal microscope. We found that overexpression of FKBP12.6 decreases the occurrence, amplitude, duration, and width of spontaneous Ca2+ sparks. FK506 had diametrically opposed effects. However, overexpression of FKBP12.6 increased the [Ca2+]i transient amplitude and accelerated its decay in field-stimulated cells. The associated cell shortening was increased. SR Ca2+ load, estimated by rapid caffeine application, was increased. In conclusion, FKBP12.6 overexpression decreases spontaneous Ca2+ sparks but increases [Ca2+]i transients, in relation with enhanced SR Ca2+ load, therefore improving excitation-contraction coupling.  相似文献   

10.
The effects of 6-8 wk of high-intensity sprint training (HIST) on rat myocyte contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients were investigated. Compared with sedentary (Sed) myocytes, HIST induced a modest (5%) but significant (P < 0.0005) increase in cell length with no changes in cell width. In addition, the percentage of myosin heavy chain alpha-isoenzyme increased significantly (P < 0.02) from 0.566 +/- 0.077% in Sed rats to 0.871 +/- 0.006% in HIST rats. At all three (0.6, 1.8, and 5 mM) extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, maximal shortening amplitudes and maximal shortening velocities were significantly (P < 0.0001) lower and half-times of relaxation were significantly (P < 0.005) longer in HIST myocytes. HIST myocytes had significantly (P < 0.0001) higher diastolic [Ca(2+)](i) levels. Compared with Sed myocytes, systolic [Ca(2+)](i) levels in HIST myocytes were higher at 0.6 mM [Ca(2+)](o), similar at 1.8 mM [Ca(2+)](o), and lower at 5 mM [Ca(2+)](o). The amplitudes of [Ca(2+)](i) transients were significantly (P < 0.0001) lower in HIST myocytes. Half-times of [Ca(2+)](i) transient decline, an estimate of sarcoplasmic reticulum (SR) Ca(2+) uptake activity, were not different between Sed and HIST myocytes. Compared with Sed hearts, Western blots demonstrated a significant (P < 0.03) threefold decrease in Na(+)/Ca(2+) exchanger, but SR Ca(2+)-ATPase and calsequestrin protein levels were unchanged in HIST hearts. We conclude that HIST effected diminished myocyte contractile function and [Ca(2+)](i) transient amplitudes under the conditions studied. We speculate that downregulation of Na(+)/Ca(2+) exchanger may partly account for the decreased contractility in HIST myocytes.  相似文献   

11.
BayK8644(-)(BayK), an agonist of L-type Ca2+ channels has been recently shown to impair excitation-contraction coupling in cardiac myocytes by increasing Ca2+ leak from the sarcoplasmic reticulum (SR) and by decreasing the gain factor of calcium induced release of calcium. It has been proposed that BayK affects the properties of ryanodine receptors (RyRs) of SR by binding to the sarcolemmal dihydropyridine receptors (DHPRs). This would suggest that the linkage between these receptors is more direct than currently sought. However, it has been recently found that BayK may also directly affect the RyRs increasing their open probability. In this paper we tested the effect of BayK on excitation-contraction coupling in single ventricular myocytes of guinea-pig heart superfused with 5 mM Ni2+ which blocks the L-type Ca2+ current and Na+/Ca2+ exchange. We have previously shown that it is possible to activate in these cells nearly normal Ca2+ transients and contractions despite total inhibition of ICa. This eliminated the effect of ICa increased by BayK on excitation contraction coupling thus simplifying the studied system. 0.5 microM BayK increased the diastolic [Ca2+]i and decreased the diastolic length in stimulated or rested cells superfused with Ni2+, decreased by approximately 50% amplitude of Ca2+ transients and contractions and decreased by approximately 70% the responses of cells to rapid superfusion of 15mM caffeine used as an indirect index of the SR Ca2+ content. The effects on diastolic length and [Ca2+]i in rested cells were not affected by 20 microM nifedipine. We conclude that under our experimental conditions the dominating mechanism of suppression of excitation-contraction coupling by BayK was depletion of the SR Ca2+ by the direct effect on the RyRs.  相似文献   

12.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

13.
The present study was designed to explore the role of the Na+/Ca2+ exchanger on spontaneous beating of cultured cardiac myocytes. Antisense oligonucleotides (AS) based on the sequence of the cardiac Na+/Ca2+ exchanger were used to decrease expression of this Ca2+ transporting protein in cardiac myocytes. An application of AS (10 microM) caused an increase in beating rate of myocytes within 6-24 h. After 24 h of exposure, AS increased the beating rate from an average rate of 77 beats/min in control and sense-treated myocytes to 103 beats/min. Moreover, myocytes treated for 24 h with 10 microM AS exhibited an increase in diastolic [Ca2+]i levels. The antisense treatment also led to a approximately 20% decrease in expression of Na+/Ca2+ exchanger proteins within 6-24 h. Changes in mRNA levels following AS treatment could not be detected within 3- to 24-h periods. The results of these studies suggest that the Na+/Ca2+ exchanger plays a potentiating role in spontaneous the beating process by regulating [Ca2+]i dynamics and that even a small reduction in the levels of the exchanger protein has marked effects on the handling of [Ca2+]i during the cardiac cycle.  相似文献   

14.
The role for intracellular Ca2+ in modulating activity of the Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. Na+/H+ exchange was activated by four distinct stimuli: 1) phorbol 12-myristate 13-acetate, 2) thrombin, 3) cell shrinkage, and 4) intracellular acid loading. [Ca2+]i was independently varied between 40 and 200 nM by varying the bathing Ca2+ from 10 nM to 5.0 mM. Thrombin-induced intracellular Ca2+ transients were blocked with bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (MAPTAM). In the absence of stimulators of Na+/H+ exchange, varying [Ca2+]i above or below the basal level of 140 nM did not activate Na+/H+ exchange spontaneously. However, varying [Ca2+]i did affect stimulus-induced activation of Na+/H+ exchange. Activation of the exchanger by phorbol 12-myristate 13-acetate was blunted by reduced intracellular Ca2+ (half-maximal activity at 50-90 nM [Ca2+]i), consistent with a Ca2+ requirement for protein kinase C (Ca2+/phospholipid-dependent enzyme). Activation of the exchanger by thrombin in protein kinase C-depleted cells was also sensitive to reduced intracellular Ca2+ (half-maximal activity at 90-140 nM [Ca2+]i) and was increased 40% by raising [Ca2+]i to 200 nM. Activation of the exchanger by cell shrinkage or intracellular acid loads was not significantly affected over the range of [Ca2+]i tested. Thus, altered [Ca2+]i does not itself affect Na+/H+ exchange activity in vascular smooth muscle but instead modulates activation of the transporter by particular stimuli.  相似文献   

15.
Cardiac cellular calcium (Ca2+) handling is the well-investigated mediator of excitation-contraction coupling, the process that translates cardiac electrical activation into mechanical events. The reverse--effects of mechanical stimulation on cardiomyocyte Ca2+ handling--are much less well understood, in particular during the inter-beat period, called 'diastole'. We have investigated the effects of diastolic length changes, applied axially using a pair of carbon fibres attached to opposite ends of Guinea pig isolated ventricular myocytes, on the availability of Ca2+ in the main cellular stores (the sarcoplasmic reticulum; SR), by studying the rest-decay of SR Ca2+ content [Ca2+]SR, and the reloading of the SR after prior depletion of Ca2+ from the cell. Cells were loaded with Fura-2 AM (an indicator of the cytosolic 'free' Ca2+ concentration, [Ca2+]i), and pre-conditioned by field-stimulation (2 Hz) at 37 degrees C, while [Ca2+]i transients and sarcomere length (SL) were recorded simultaneously. After reaching a steady state in the behaviour of observed parameters, stimulation was interrupted for between 5 and 60s, while cells were either held at resting length, or stretched (controlled to cause a 10% increase in SL, to aid inter-individual comparison). Thereafter, each cell was returned to its original resting length, followed by swift administration of 10mM of caffeine (in Na+/Ca2+-free solution), which causes the release of Ca2+ from the SR (caffeine), but largely prevents extrusion of Ca2+ from the cytosol to the cell exterior (Na+/Ca2+-free solution). By comparing the [Ca2+]i in cells exposed/not exposed to diastolic stretch of different duration, we assessed the rest-decay dynamics of [Ca2+]SR. To assess SR reloading after initial Ca2+ depletion, the same stretch protocol was implemented after prior emptying of the cell by application of 10mM of caffeine in normal Tyrode solution (which causes Ca2+ to be released from the SR and extruded from the cell via the Na+/Ca2+ exchanger; NCX). Axial stretch enhanced the rate of both rest-decay and reloading of [Ca2+]SR. Application of 40 microM streptomycin, a blocker of stretch-activated ion channels, did not affect the stretch-induced increase in SR reloading. This behaviour was reproduced in a computer simulation study, using a modified version of the 2006 Iribe-Kohl-Noble model of single cardiac myocyte Ca2+ handling, suggesting that stretch increases both Ca2+ leak from the SR and Ca2+ influx via the sarcolemma. This may have important implications for the mobilisation of Ca2+ in stretched cells, and could contribute to the regional 'matching' of individual cardiomyocyte contractility to dynamic, and regionally varying, changes in mechanical loads, such as diastolic pre-load, of cardiac tissue.  相似文献   

16.
Kang TM  Park MK  Uhm DY 《Life sciences》2002,70(19):2321-2333
We have investigated the effects of hypoxia on the intracellular Ca2+ concentration ([Ca2+]i) in rabbit pulmonary (PASMCs) and coronary arterial smooth muscle cells with fura-2. Perfusion of a glucose-free and hypoxic (PO2<50 mmHg) external solution increased [Ca2+]i in cultured as well as freshly isolated PASMCs. However it had no effect on [Ca2+]i in freshly isolated coronary arterial myocytes. In the absence of extracellular Ca2+, hypoxic stimulation elicited a transient [Ca2+]i increase in cultured PASMCs which was abolished by the simultaneous application of cyclopiazonic acid and ryanodine, suggesting the involvement of sarcoplasmic reticulum (SR) Ca2+ store. Pretreatment with the mitochondrial protonophore, carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) enhanced the [Ca2+]i rise in response to hypoxia. A short application of caffeine gave a transient [Ca2+]i rise which was prolonged by CCCP. Decay of the caffeine-induced [Ca2+]i transients was significantly slowed by treatment of CCCP or rotenone. After full development of the hypoxia-induced [Ca2+]i rise, nifedipine did not decrease [Ca2+]i. These data suggest that the [Ca2+]i increase in response to hypoxia may be ascribed to both Ca2+ release from the SR and the subsequent activation of nifedipine-insensitive capacitative Ca2+ entry. Mitochondria appear to modulate hypoxia induced Ca2+ release from the SR.  相似文献   

17.
18.
In cardiac hypertrophy and failure it has been shown that the amount of Na/Ca exchanger protein can increase. Several studies have investigated this modification in overt heart failure. However, the role of Na/Ca exchanger overexpression during the development of hypertrophy is unknown. To address this question we investigated Ca2+ regulation in an early stage of cardiac hypertrophy before signs of heart failure occurred and evaluated the role of Na/Ca exchanger overexpression. Cardiac hypertrophy was induced by a constant infusion of angiotensin II (Ang, 1 microg/min/kg) via an osmotic pump for 14 days. Thereafter, ventricular myocytes from either wild type (NON) or transgenic mice overexpressing the Na/Ca exchanger (TR) were isolated. Myocytes were loaded with indo-1 AM or fluo-4 AM to monitor cytoplasmic [Ca2+] with all experiments performed at 37 degrees C. In myocytes exposed to Ang there was an increase in cell capacitance of more than 20% indicating cellular hypertrophy. Ca2+ transients were prolonged in hypertrophied NON myocytes but not in TR myocytes. Action potentials had a less negative plateau in TR myocytes. Sarcoplasmic reticulum (SR) Ca2+ content, measured using rapid caffeine application, was greater in TR myocytes but unaffected by hypertrophy. Ca2+ spark frequency was significantly greater in TR. Na/Ca exchanger overexpression prevented the prolongation of the Ca2+ transient observed in hypertrophy and maintained a similar SR Ca2+ leak suggesting a compensatory role in Ca2+ regulation in hypertrophied cardiac myocytes from transgenic mice. We suggest this compensatory effect is mediated by increased SR Ca2+ content and faster Ca2+ removal via the Na/Ca exchanger.  相似文献   

19.
We showed before that Na+-K+-ATPase is also a signal transducer in neonatal rat cardiac myocytes. Binding of ouabain to the enzyme activates multiple signal pathways that regulate cell growth. The aims of this work were to extend such studies to adult cardiac myocytes and to determine whether the signal-transducing function of Na+/K+-ATPase regulates the well-known effects of ouabain on intracellular Ca2+ concentration ([Ca2+]i). In adult myocytes, ouabain activated protein tyrosine phosphorylation and p42/44 mitogen-activated protein kinases (MAPKs), increased production of reactive oxygen species (ROS), and raised both systolic and diastolic [Ca2+]i. Pretreatment of myocytes with several Src kinase inhibitors, or overexpression of a dominant negative Ras, antagonized ouabain-induced activation of MAPKs and increases in [Ca2+]i. Treatment with PD-98059 (a MAPK kinase inhibitor) or overexpression of a dominant negative MAPK kinase 1 also ablated the effect of ouabain on MAPKs and [Ca2+]i. N-acetyl-cysteine, which blocks the effect of ouabain on ROS, did not prevent the ouabain-induced rise in [Ca2+]i. Clearly, the activation of the Ras/MAPK cascade, but not ROS generation, is necessary for ouabain-induced increases in [Ca2+]i in rat cardiac myocytes.  相似文献   

20.
NMR studies of intracellular sodium ions in mammalian cardiac myocytes   总被引:1,自引:0,他引:1  
The unambiguous measurement of intracellular sodium ion [Na+]i by the noninvasive NMR technique offers a new opportunity to monitor precisely the maintenance and fluctuations of [Na+]i levels in intact cells and tissues. The anionic frequency shift reagent, dysprosium (III) tripolyphosphate, which does not permeate intact cells, when added to suspensions of intact adult rat cardiac myocytes, alters the NMR frequency of extracellular sodium ions, [Na+]o, leaving that of intracellular ions, [Na+]i, unaffected. Using 23Na NMR in conjunction with this shift reagent, we have determined NMR-visible intracellular Na+ ion concentration in a suspension of isolated cardiac myocytes under standard conditions with insulin and Ca2+ in the extracellular medium to be 8.8 +/- 1.2 mmol/liter of cells (n = 4). This value is comparable to that measured by intracellular ion-selective microelectrodes in heart tissue. Cardiac myocytes incubated for several hours in insulin-deficient, Ca2+-containing medium prior to NMR measurement exhibited a somewhat lower [Na+]i value of 6.9 +/- 0.5 mmol/liter of cells (n = 3). Reversible Na+ loading of the cells by manipulation of extracellular calcium levels is readily measured by the NMR technique. Incubation of myocytes in a Ca2+-free, insulin-containing medium causes a 3-fold increase in [Na+]i to a level of 22.8 +/- 2.6 mmol/liter of cells (n = 10). In contrast to cells with insulin, insulin-deficient myocytes exhibit a markedly lower level of [Na+]i of only 14.6 +/- 2.0 mmol/liter of cells (n = 4) in Ca2+-free medium. These observations suggest that insulin may stimulate a pathway for Na+ influx in heart cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号