首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

2.
Cellular redox change regulates pulmonary vascular tone by affecting function of membrane and cytoplasmic proteins, enzymes, and second messengers. This study was designed to test the hypothesis that functional modulation of ion channels by thiol oxidation contributes to regulation of excitation-contraction coupling in isolated pulmonary artery (PA) rings. Acute treatment with the thiol oxidant diamide produced a dose-dependent relaxation in PA rings; the IC50 was 335 and 58 microM for 40 mM K+ - and 2 microM phenylephrine-induced PA contraction, respectively. The diamide-mediated pulmonary vasodilation was affected by neither functional removal of endothelium nor 8-bromoguanosine-3'-5'-cyclic monophosphate (50 microM) and HA-1004 (30 microM). A rise in extracellular K+ concentration (from 20 to 80 mM) attenuated the thiol oxidant-induced PA relaxation. Passive store depletion by cyclopiazonic acid (50 microM) and active store depletion by phenylephrine (in the absence of external Ca2+ both induced PA contraction due to capacitative Ca2+ entry. Thiol oxidation by diamide significantly attenuated capacitative Ca2+ entry-induced PA contraction due to active and passive store depletion. The PA rings isolated from left and right PA branches appeared to respond differently to store depletion. Although the active tension induced by passive store depletion was comparable, the active tension induced by active store depletion was 3.5-fold greater in right branches than in left branches. These data indicate that thiol oxidation causes pulmonary vasodilation by activating K+ channels and inhibiting store-operated Ca2+ channels, which subsequently attenuate Ca2+ influx and decrease cytosolic free Ca2+ concentration in pulmonary artery smooth muscle cells. The mechanisms involved in thiol oxidation-mediated pulmonary vasodilation or activation of K+ channels and inhibition of store-operated Ca2+ channels appear to be independent of functional endothelium and of the cGMP-dependent protein kinase pathway.  相似文献   

3.
Anethole is a naturally occurring aromatic oxidant, present in a variety of medicinal plant extracts, which is commonly used by the food and beverage industry. Despite its widespread occurrence and commercial use, there is currently little information regarding effects of this compound on the vasculature. Therefore the actions of anethole on the contractility of rat isolated aorta were compared with those of eugenol, and their respective isomeric forms, estragole and isoeugenol. In aortic rings precontracted with phenylephrine (PE; 1 microM), anethole (10(-6) M-10(-4) M) induced contraction in preparations possessing an intact endothelium, but not in endothelium-denuded tissues. At higher concentrations (10(-3) M-10(-2) M), anethole-induced concentration-dependent and complete relaxation of all precontracted preparations, irrespective of whether the endothelium was intact or not, an action shared by eugenol, estragole and isoeugenol. The contractile and relaxant effects of anethole in PE-precontracted preparations were not altered by L-NAME (10 microM) or indomethacin (10 microM), indicating that neither nitric oxide nor prostaglandins were involved in these actions. The mixed profile of effects was not confined to PE-mediated contraction, since similar responses were obtained to anethole when tissues were precontracted with 25 mM KCl. Anethole and estragole (10(-6)-10(-4) M), but not eugenol or isoeugenol, increased the basal tonus of endothelium-denuded aortic rings, an action that was abolished by VDCC blockers nifedipine (1 microM) and diltiazem (1 microM), or by withdrawal of extracellular Ca(2+). Our data suggest complex effects of anethole on isolated blood vessels, inducing contraction at lower doses, mediated via opening of voltage-dependent Ca(2+)-channels, and relaxant effects at higher concentrations that are shared by structural analogues.  相似文献   

4.
Here we investigated the effect of the flavonoid galangin in isolated rat thoracic aortic rings. Galangin (0.1-100 microM) induced relaxation in rings pre-contracted with phenylephrine (PE 1 microM) or with KCl (100 mM) or pre-treated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 100 microM), the cyclooxygenase inhibitor indomethacin (10 microM) and the adenylate cyclase inhibitor, SQ 22,536 (100 microM). In another set of experiments, rat aortic rings were incubated with galangin (1-100 microM) and the contractile responses to PE (0.001-3 microM) or to KCl (60 mM) were evaluated. We also evaluated the effect of galangin (100 microM) on PE (10 microM)-induced contraction in a Ca2+-free medium. Galangin relaxed aortic rings with or without endothelium. Galangin effect was significantly inhibited by L-NAME. Galangin inhibited the contractile response to PE, either in presence or in absence of external calcium, and to KCl. In the end, we also found that galangin caused nitric oxide (NO) release from aortic rings and abolished the increase in [Ca2+]i triggered by PE or KCl in aortic smooth muscle cells, either in presence and in absence of external Ca2+. Our results suggest that galangin reduces the contractility of rat aortic rings through an endothelium-dependent mechanism, involving NO, and also through an endothelium-independent mechanism, inhibiting calcium movements through cell membranes.  相似文献   

5.
The contribution of potassium channels [ATP-sensitive potassium (K(ATP)) and high-conductance calcium-activated potassium (BK(Ca)) channels] in the resistance of aortic rings of term pregnant rats to phenylephrine (Phe), arginine vasopressin (AVP), and KCl was investigated. Concentration-response curves to tetraethylammonium (TEA), a nonselective K(+) channel inhibitor, were obtained in the absence or presence of KCl. TEA induced by itself concentration-dependent responses only in aortic rings of nonpregnant rats. These responses to TEA could be modulated in both groups of rings by preincubation with different concentrations of KCl. Concentration-response curves to Phe, AVP, and KCl were obtained in the absence or presence of cromakalim or NS-1619 (K(ATP) and BK(Ca) openers, respectively) and glibenclamide or iberiotoxin (K(ATP) and BK(Ca) inhibitors, respectively). Cromakalim significantly inhibited the responses to the three agonists in a concentration-dependent manner in both groups of rats. Alternatively, in the pregnant group of rats, glibenclamide increased the sensitivity to all three agonists. NS-1619 also inhibited the response to all agonists. With AVP and KCl, its effect was greater in aortic rings of pregnant than nonpregnant rats. Finally, iberiotoxin increased the sensitivity to all three agents. This effect was more important in aortic rings of nonpregnant rats and was accompanied by an increase of the maximal response to Phe and AVP. These results suggest that potassium channels are implicated in the control of basal membrane potential and in the blunted responses to these agents during pregnancy.  相似文献   

6.
Endothelium-derived factors modulate tone and may be involved in hyporeactivity to vasoconstrictors, such as norepinephrine or angiotensin II, as has been previously described during gestation. The endothelium produces endothelin-1, a major vasoconstrictor peptide, therefore aortic contractions to endothelin-1 (10(-10) to 3 x 10(-7) M) were used to assess the role of the endothelium in pregnant Wistar rats (at 20 days of gestation). Late pregnancy is characterized by a significantly diminished systolic blood pressure in conscious rats (-17 mmHg, P < 0.001, n = 14). In pregnant and in age-matched nonpregnant female rats, endothelin-1 induced aortic contraction was greater when endothelium was present (at least P < 0.01). Indomethacin significantly reduced this contraction in aortic rings with intact endothelium in all groups. In aortic rings that had endothelium physically removed, contraction to endothelin-1 was greater in pregnant rats than in nonpregnant ones. Indomethacin decreased contraction of aortic rings in pregnant rats only. These results suggest an enhanced synthesis of vasoconstrictors by cyclooxygenases in vascular smooth muscle during pregnancy. In vessels with intact endothelium, we did not find hyporeactivity to endothelin-1 during late pregnancy. Contraction to endothelin-1 involved ET(A) receptors because it was decreased by BQ-123, an ET(A) receptor antagonist, whereas there was no significant change when using BQ-788, an ET(B) receptor antagonist.  相似文献   

7.
We investigated the role of K(+) channels in the attenuated pulmonary artery (PA) contractility characteristic of acute Pseudomonas pneumonia. Contractility of PA rings from the lungs of control or pneumonia rats was assessed in vitro by obtaining cumulative concentration-response curves to the contractile agonists KCl, phenylephrine, or PGF(2 alpha) on PA rings before and after treatment with K(+) channel blockers. In rings from pneumonia rats, paxilline (10 microM), tetraethylammonium (2 mM) (blockers of large-conductance Ca(2+)-activated K(+) channels), and glybenclamide (ATP-sensitive K(+) channel blocker, 80 microM) had no significant effect on the attenuated contractile responses to KCl, phenylephrine, and PGF(2 alpha). However, 4-aminopyridine (2 mM), a blocker of voltage-gated K(+) channels (delayed rectifier K(+) channel) reversed this depressed contractility. Therefore, large-conductance Ca(2+)-activated K(+) and ATP-sensitive K(+) channels do not contribute to the attenuated PA contractility observed in this model of acute pneumonia. In contrast, 4-aminopyridine enhances contraction in PA rings from pneumonia lungs, consistent with involvement of a voltage-gated K(+) channel in the depressed PA contractility in acute pneumonia. Unraveling the precise mechanism of attenuated contractility in pneumonia could lead to innovative therapies for the pulmonary vascular abnormalities associated with this disease.  相似文献   

8.
Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.  相似文献   

9.
Li J  Ren Y  Dong X  Zhong G  Wu S  Tang C 《Peptides》2003,24(4):563-568
The effects of proadrenomedullin N-terminal 20 peptide (PAMP) and adrenotensin (ADT) on adrenomedullin (ADM)-induced vasodilation were investigated in aortic rings from rat. ADM (10(-9) to 10(-7)M) relaxed the aorta preconstricted with phenylephrine in a concentration-dependent manner. Denudation of endothelium or pretreatment with nitric oxide synthase (NOS) inhibitor, L-NAME, attenuated the vasodilatory action of ADM. ADM-induced vasorelaxation in the aortic rings with endothelium was converted to contraction by PAMP, but not by ADT. The ADM-induced vasodilation was not affected by PAMP in aorta rings without endothelium or in intact aortic rings pretreated with L-NAME. ADM-stimulated nitrite production and NOS activity of the aortas, which was inhibited by PAMP, ADT or PAMP plus ADT. ADM, PAMP, and ADT increased the cyclic adenosine monophosphate (cAMP) contents in vascular tissue. The combination of ADM with PAMP or ADT caused a smaller increase in cAMP level as compared with that of PAMP or ADT alone. These results show that ADM-induced endothelium-dependent vasodilation could be converted to vasoconstriction in the presence of PAMP, probably through a NO-dependent pathway. There was no indication that cAMP was involved in the converting effect of PAMP on ADM vasodilator action.  相似文献   

10.
We studied the effect of age on the response of aortic rings to injury produced by three days' incubation, and the mechanism of this response. Five-mm rings of the thoracic aorta isolated from Wistar rats were incubated or not in culture medium. Isometric contraction evoked by agonists (norepinephrine or serotonin) or high [K(+)](e) was determined in the presence and absence of endothelium. Experiments were repeated in the presence of propranolol (0.3 microM), polymixin B (36 microM), pyrrolidine dithiocarbamate (50 microM) or glutathione (3 mM). Inductible NO-synthase and cyclo-oxygenase-2 mRNA were determined by real-time PCR, and glutathione-related enzymes and catalase activity by spectrophotometry. Incubation reduced the isometric contraction evoked by agonists but not by high [K(+)](e). The reduction in agonist-evoked contraction was greater in rings from adult (norepinephrine Emax-80%) than in young (-40%) rats. The removal of the endothelium had no effect. The reduction in norepinephrine-evoked contraction was not due to endotoxin contamination, beta-adrenoceptor-mediated dilation or any change in ring structure (no fibrosis or edema). Inductible NO-synthase (but not cyclo-oxygenase-2) mRNA increased on incubation. N(G)-nitro-L-arginine methyl ester partially restored contractility in rings from adult animals, further addition of an anti-oxidant restored norepinephrine-evoked contraction. Catalase fell with age and glutathione reductase increased upon incubation in rings from young donors only. In conclusion, incubation of the aorta produces a specific reduction in agonist-evoked contraction that involves induction of smooth muscle cell oxidative stress and iNOS. The reaction is greater in rings from older animals.  相似文献   

11.
The aim of this study was to determine whether increased expression of heme oxygenase (HO) contributes to impairment of aortic contractile responses after hypoxia through effects on reactivity to endothelin-1 (ET-1). Thoracic aortas from normoxic rats and rats exposed to hypoxia (10% O2) for 16 or 48 h were mounted in organ bath myographs for contractile studies, fixed in paraformaldehyde, or frozen in liquid nitrogen for protein extraction. In rings from normoxic rats, the HO inhibitor tin protoporphyrin IX (SnPP IX, 10 microM) did not alter the response to phenylephrine or ET-1. In rings from rats exposed to 16-h hypoxia, maximum tension generated in response to these agonists was higher in endothelium-intact but not -denuded rings in the presence of SnPP IX. In rings from rats exposed to 48-h hypoxia SnPP IX increased contraction in endothelium-intact but not -denuded rings. In endothelium-intact aortic rings from rats exposed to 16-h hypoxia incubated with endothelin A receptor-specific antagonist BQ-123 (10(-7) M), SnPP IX did not alter phenylephrine-induced contraction. Aortic ET-1 protein levels, measured by radioimmunoassay, were increased in rats exposed to hypoxia for 16 and 48 h. Western blotting showed that HO-1 and HO-2 protein were increased after 16 h of hypoxia and returned to near-control levels after 48 h. Increase in HO-1 protein was detected in endothelium-intact and -denuded rings. Removal of endothelium abolished the increase in HO-2 immunoreactivity. Immunohistochemistry localized expression of HO-1 protein to vascular smooth muscle, whereas HO-2 was only detected in endothelium. HO-2 is expressed by aortic endothelial cells early during hypoxic exposure and impairs ET-1-mediated potentiation of contraction to alpha-adrenoceptor stimulation.  相似文献   

12.
Tsai CC  Lai TY  Huang WC  Liu IM  Cheng JT 《Life sciences》2002,71(11):1321-1330
Tetramethylpyrazine (TMP) is one of the active principles contained in Ligusticum chuanxiong Hort. (Umbelliferae), a herb that has been widely used to treat vascular disorders in China. In the present study, role of potassium channel in the vasodilatation of TMP was investigated using the effect of potassium channel blocker on TMP induced relaxation in isolated aortic rings from Wistar rats. TMP produced a concentration-dependent relaxation in the aortic rings precontracted with vasopressin or phenylephrine. Similar effect of TMP on vasoconstrictions by phenylephrine and vasopressin, induced through two different receptors, indicating the direct vasodilatation of TMP. Specific inhibitors for potassium channel were used to characterize the role of potassium channel in this action of TMP. Only the inhibitors specific to small conductance calcium-activated potassium (SK(Ca)) channel or ATP-sensitive potassium (K(ATP)) channel inhibited the action of TMP. Also, the TMP-induced relaxation was reversed by the inhibitor of soluble guanylyl cyclase in a way similar to that of K(ATP) channel blockade. The obtained results indicated that vasodilatation induced by TMP is related to the opening of SK(Ca) and K(ATP) channels.  相似文献   

13.
Vascular smooth muscle cell contraction and endothelium-dependent relaxation was evaluated in aortic rings isolated from weaned, 5-mo-old Sprague-Dawley rats fed a normal (NS; 0.8% NaCl) or high (HS; 8% NaCl) sodium diet. Arterial pressure was 140 +/- 6 (NS) and 145 +/- 6 mmHg (HS). In endothelium-denuded rings, the response to phenylephrine (PE) was not modified by the sodium diet, while that of depolarizing agent KCl and intracellular calcium releasing agent caffeine increased in the HS group. When endothelium was preserved, PE-evoked contraction was reduced in both NS and HS groups, the contraction being yet lower in the HS group. This effect was partially obliterated by addition of N(G)-nitro-L-arginine methyl ester (L-NAME), independently of the sodium diet. Relaxation to ACh in intact rings and to sodium nitroprusside (SNP) and 8-bromoadenosine 3'5' cyclic guanosine monophosphate (8-BrcGMP) in the absence of endothelium was enhanced in rings isolated from HS rats. In addition, the dose-response curve to 8-BrcGMP was shifted to the right in the presence of iberiotoxin, an inhibitor of large conductance, voltage-dependent, and calcium-sensitive potassium channel (BK(Ca)). However, shift was more marked in rings from HS rats. Present results provide evidence that response of vascular smooth muscle cell to nitric oxide/cGMP-related compounds is increased in HS rings and is associated with a greater activation of the repolarizing BK(Ca) channels. Such changes might counterbalance enhanced contractile response to membrane depolarization and thus participate in maintenance of arterial pressure in the present model of early and long-term HS feeding in rats.  相似文献   

14.
Wong KL  Chan P  Yang HY  Hsu FL  Liu IM  Cheng YW  Cheng JT 《Life sciences》2004,74(19):2379-2387
Isosteviol is a derivative of stevioside, a constituent of Stevia rebaudiana, which is commonly used as a noncaloric sugar substitute in Japan and Brazil. In the present study, the role of potassium channels in the vasodilator effect of isosteviol was investigated using potassium channel blockers on isosteviol-induced relaxation of isolated aortic rings prepared from Wistar rats. Isosteviol dose-dependently relaxed the vasopressin (10(-8) M)-induced vasoconstriction in isolated aortic rings with or without endothelium. However, in the presence of potassium chloride (3x10(-2) M), the vasodilator effect of isosteviol on arterial strips disappeared. Only the inhibitors specific for the ATP-sensitive potassium (K(ATP)) channel or small conductance calcium-activated potassium (SK(Ca)) channel inhibited the vasodilator effect of isosteviol in isolated aortic rings contracted with 10(-8) M vasopressin. Also; since the isosteviol-induced relaxation was unchanged by methylene blue, a role of nitric oxide and/or endothelium in the vasodilatation produced by isosteviol could be ruled out. The obtained results indicated that vasodilatation induced by isosteviol is related to the opening of SK(Ca) and K(ATP) channels.  相似文献   

15.
腺苷及其衍生物的心血管效应和作用机制   总被引:1,自引:0,他引:1  
在实验中观察了腺苷及其衍生物的心血管效应和作用机制,结果表明:(1)腺苷和2-氯腺苷先引起由颈动脉体化学感受器内的A2受体所中介的血压短暂升高,随之为心血管系统A1和A2受体中介的持久而明显的血压降低;(2)腺苷受体激动剂环戊腺苷抑制窦房结起搏细胞的电生理活动;(3)环戊腺苷减弱异丙肾上腺素诱发的早发和迟发性后除极及触发电活动;(4)内源性腺苷参与无氧所致的心率减慢;(5)预缺血时腺苷受体的激活及  相似文献   

16.
The endogenous peptides endomorphins 1 and 2 are newly discovered, potent, selective mu-opioid receptor agonists. In the present study, the effects of endomorphins 1 and 2 on vascular smooth muscle tone were investigated on isolated rings from rat aorta with and without endothelium. In rings precontracted with phenylephrine, endomorphins 1 and 2 at concentrations of 0.1 and 1.0 microM, nociceptin at concentrations of 1-100 microM, and adrenomedullin at concentrations of 0.01-1.0 microM induced concentration dependent relaxant responses. The endomorphins and nociceptin were less potent than adrenomedullin. No relaxation was induced by endomorphins 1 and 2 in aortic rings denuded of endothelium and precontracted with phenylephrine. The results of the present studies demonstrate that the endomorphins relax aortic vascular smooth muscle from the rat aorta by an endothelium-dependant mechanism.  相似文献   

17.
Endothelin and Ca++ agonist Bay K 8644: different vasoconstrictive properties   总被引:12,自引:0,他引:12  
The mechanism of vasoconstriction induced by endothelin was investigated in rat isolated aorta in comparison with the Ca++ agonist, Bay K 8644. Endothelin (EC50 = 4 nM) induced a slow and sustained contraction in control medium whereas the one elicited by Bay K 8644 (EC50 = 14 nM) necessitating a partly K+ depolarized medium was fast with superimposed rhythmic contraction. By opposition with Bay K 8644, endothelin contraction was not inhibited by the calcium antagonists (1 microM), nifedipine, diltiazem and D 600, and substantially persisted in Ca++ free medium or after depletion of intracellular Ca++ by phenylephrine (1 microM). These data show that endothelin does not act as an activator of potential dependent Ca++ channels but probably through specific receptor(s) as suggested by its mode of vasoconstriction.  相似文献   

18.
《Life sciences》1993,52(4):PL37-PL42
The role of the endothelium was evaluated in the relaxation of rat and guinea pig aortic rings induced by ascorbic acid. Ascorbic acid relaxed rat and guinea pig aortic rings that were previously contracted with submaximal dose of phenylephrine (PE), in a concentration dependent manner. Removal of the endothelium significantly reduced the sensitivity but not the magnitude of the response to ascorbic acid. Methylene blue, but not propranolol, blocked the endothelial augmentation of vascular relaxation to ascorbic acid. Vessels precontracted with potassium chloride (high K+ were also relaxed by ascorbic acid. Methylene blue also inhibited the response to ascorbic acid in the intact vessels precontracted with high K+. A23187 and acetylcholine, but not ADP, variably caused endothelium dependent component relaxation in guinea pigs, whereas all of these three probes constantly caused it. In Ca2+-free medium, Ca2+-induced contraction of high K+-depolarized rat aorta was inhibited by the presence of ascorbate, which was more pronounced in endothelium intact rings than in endothelium denuded ones. PE-induced contraction in the presenced of different concentrations of ascorabte reduced both the sensitivity and the maximal contractile force in rat aorta. Ascorbic acid (0.125-32 mM) did not change the pH in the medium. From these findings, it is speculated that 1) receptor- and potential-operated Ca2+ channeld may be modulated by ascorbate, 2) endothelium has a significant role in promoting relaxation induced by ascorbic acid.  相似文献   

19.
Infusion of adenine nucleotides and adenosine into perfused rat livers resulted in stimulation of hepatic glycogenolysis, transient increases in the effluent perfusate [3-hydroxybutyrate]/[acetoacetate] ratio, and increased portal vein pressure. In livers perfused with buffer containing 50 microM-Ca2+, transient efflux of Ca2+ was seen on stimulation of the liver with adenine nucleotides or adenosine. ADP was the most potent of the nucleotides, stimulating glucose output at concentrations as low as 0.15 microM, with half-maximal stimulation at approx. 1 microM, and ATP was slightly less potent, half-maximal stimulation requiring 4 microM-ATP. AMP and adenosine were much less effective, doses giving half-maximal stimulation being 40 and 20 microM respectively. Non-hydrolysed ATP analogues were much less effective than ATP in promoting changes in hepatic metabolism. ITP, GTP and GDP caused similar changes in hepatic metabolism to ATP, but were 10-20 times less potent than ATP. In livers perfused at low (7 microM) Ca2+, infusion of phenylephrine before ATP desensitized hepatic responses to ATP. Repeated infusions of ATP in such low-Ca2+-perfused livers caused homologous desensitization of ATP responses, and also desensitized subsequent Ca2+-dependent responses to phenylephrine. A short infusion of Ca2+ (1.25 mM) after phenylephrine infusion restored subsequent responses to ATP, indicating that, during perfusion with buffer containing 7 microM-Ca2+, ATP and phenylephrine deplete the same pool of intracellular Ca2+, which can be rapidly replenished in the presence of extracellular Ca2+. Measurement of cyclic AMP in freeze-clamped liver tissue demonstrated that adenosine (150 microM) significantly increased hepatic cyclic AMP, whereas ATP (15 microM) was without effect. It is concluded that ATP and ADP stimulate hepatic glycogenolysis via P2-purinergic receptors, through a Ca2+-dependent mechanism similar to that in alpha-adrenergic stimulation of hepatic tissue. However, adenosine stimulates glycogenolysis via P1-purinoreceptors and/or uptake into the cell, at least partially through a mechanism involving increase in cyclic AMP. Further, the hepatic response to adenine nucleotides may be significant in regulating hepatic glucose output in physiological and pathophysiological states.  相似文献   

20.
It has been hypothesized that an interaction among adenosine A(1) receptors, protein kinase C (PKC) activation, and ATP-sensitive potassium channels (K(ATP)) mediates ischemic preconditioning in experiments on different animal species. The purpose of this study was to determine if activation of K(ATP) is functionally coupled to A(1) receptors and (or) PKC activation during metabolic inhibition (MI) in guinea pig ventricular myocytes. Perforated-patch using nystatin and conventional whole-cell recording methods were used to observe the effects of adenosine and adenosine-receptor antagonists on the activation of K(ATP) currents during MI induced by application of 2,4-dinitrophenol (DNP) and 2-deoxyglucose (2DG) without glucose, in the presence or absence of a PKC activator, phorbol 12-myristate 13-acetate (PMA). Adenosine accelerated the time course activation of K(ATP) currents during MI under the intact intracellular condition or dialyzed condition with l mmol/L ATP in the pipette solution. The accelerated effect of adenosine activation of K(ATP) under MI was not reversed by a nonselective Al adenosine receptor antagonist, 8-(p-sulfophenyl)theophylline (SPT), or a specific Al adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). However, the adenosine A(2) receptor antagonist alloxazine reversed the time course activation of the K(ATP) current under MI. An adenylate cyclase activator, forskolin, did not further abbreviate the time course activation of K(ATP) with or without adenosine. Application of a PKC blocker, chelerythrine, reversed the time course activation of K(ATP) by adenosine under MI. In addition, pretreatment with a PKC activator, PMA, had similar effects to adenosine, while adenosine did not further shorten the time required for activation of K(ATP) currents during MI with PMA pretreatment. There is no direct evidence of activation of K(ATP) currents by adenosine A(1) receptor during metabolic inhibition under our experimental condition. However, adenosine A(2) receptor activation is involved in the K(ATP) channel activation in the guinea pig ventricular myocytes, of which effect is not mediated through the increase in intracellular cAMP. Adenosine seems to interact with PKC activation to open K(ATP) during MI, but a possible link between the adenosine A(2) receptor and PKC activation in this process needs further elucidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号