首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been found that coleoptiles of dark-grown rice (Oryza sativa L.) seedlings undergo regular circumnutation in circular orbits with periods of about 180 min. Both clockwise and counter-clockwise movements were observed, but individual coleoptiles continued to rotate only in one direction. Light-grown seedlings did not show circumnutation. In fact, dark-grown seedlings were found to cease circumnutating in response to a pulse of red light (R). This light-induced inhibition of circumnutation was demonstrated to involve both a FR-inducible very-low-fluence response, solely mediated by phytochrome A, and a FR-reversible low-fluence response, mediated by phytochrome B and/or C. The R-induced inhibition of circumnutation showed temporal agreement with the R-induced inhibition of coleoptile growth, suggesting that the former results from the latter. However, about 25% of growth activity remained after R treatment, indicating that circumnutation is more specifically regulated by phytochrome. The R-treated coleoptile showed gravitropism. Investigation of the growth differential for gravitropic curvature revealed that gravitropic responsiveness was rather enhanced by R. The results suggested that gravitropism is not a cause of circumnutation. It remained probable, however, that gravity perception is a part of the mechanism of circumnutation. It is speculated that the circumnutation investigated aids the seedling shoot in growing through the soil.  相似文献   

2.
Dark-adapted coleoptiles of maize (Zea mays L.) were treated with red light (3min at 10.5 μmol m?2S?1) and were Stimulated, after a dark interval, with a pulse of unilateral blue light to induce phototropism. Phototropic fluence-response curves were obtained in this way for different dark intervals. It was confirmed that the bell-shaped fluence-response curve for the first pulse-induced positive phototropism (FPIPP) shifts to higher fluences following the red-light treatment, the maximal shift being achieved at a dark interval of 2h. We found, however, that the two arms of the Fluence-response curve do not shift synchronously. The shift of the descending arm to higher fluences began at 15 min. The ascending arm showed a slight shift to lower fluences before a greater shift to higher flucnces. the change of the shift direction occurring at 30–40min. Accordingly, the fluence-response curve obtained for a 30 min dark interval was comparatively wide. Although dark-adapted coleoptiles showed only fPIPP, another bell-shaped fluence-response curve, representing the second pulse-induced positive phototropism (sPIPP), appeared gradually after the red-light treatment. These changes of the phototropic fluence– respnse curve following exposure to red light are likely to have adaptive values because they favour phototropism under brighter light.  相似文献   

3.
Submergence of air-grown rice seedlings (Oryza sativa L. var. Sasanishiki) induces elongation of the coleoptile. We investigated whether rapid underwater extension is associated with a loss of starch. After 1 d of submergence the starch content was reduced by 70%. This loss of reserve carbohydrate was accompanied by a 38% increase in the concentration of glucose in the cell sap of the coleoptiles. The submerged (starch-depleted) coleoptiles had a slower negative gravitropism than the air-grown controls, although the rate of elongation in the horizontal position was not impaired. We conclude that the submergence-induced mobilization of starch provides substrates and osmotica for the rapidly growing cells. In addition, our results indicate that a full complement of starch is necessary for normal gravitropism in the rice coleoptile.  相似文献   

4.
We have tested the hypothesis that wall-bound calcium is redistributed from the lower to the upper sides of horizontal stems and coleoptiles during the reaction phase of gravicurvature. We used atomic absorption spectrometry to measure wall-bound calcium in the epidermal and internal layers of sunflower (Helianthus annum L.) hypocotyls and pea (Pisum sativum L.) epicotyls, and total calcium in maize (Zea mays L.) coleoptiles at the time of maximal gravireaction. In every case, we found that there was no measurable redistribution of wall-bound calcium either from the lower to the upper sides, or between epidermal and inner tissues in response to the gravistimulus. These results indicate that a redistribution of wall-bound calcium does not play a role during the gravireaction of stems and coleoptiles.  相似文献   

5.
Maize seeds were germinated in the dark in the presence of the carotenoid synthesis inhibitor norflurazon and the teveis of abscisic acid, xanthoxin and total carotenoids were measured in the root cap and in the adjacent 1.5 mm segment. In norflurazon-treated roots abscisic acid levels were markedly reduced, but an increase occurred in the levels of xanthoxin, a compound structurally and physiologically similar to abscisic acid. In the cultivar of maize ( Zea mays L. cv. Merit) used for this work, brief illumination of the root is required for gravitropic curving. Following illumination both control and norflurazon-treated roots showed normal gravitropic curvature, however, the rate of curvature was delayed in norflurazon-treated roots. Our data from norflurazon-treated roots are consistent with a role for xanthoxin in maize root gravitropism. The increase in xanthoxin in the presence of an inhibitor of carotenoid synthesis suggests that xanthoxin and abscisic acid originate, at least in part, via different metabolic pathways.  相似文献   

6.
7.
Although circumnutation occurs widely in higher plants, its mechanism is little understood. The idea that circumnutation is based on gravitropism has long been investigated, but the reported results have been controversial. We used dark-grown coleoptiles of rice (Oryza sativa L.) to re-investigate this issue. The following results supported the existence of a close relationship between gravitropism and circumnutation: (1) circumnutation disappears on a horizontal clinostat; (2) circumnutation is interrupted by a gravitropic response and re-initiated at a definable phase after gravitropic curvature; (3) circumnutation can be re-established by submergence and a brief gravitropic stimulation in the coleoptiles that have stopped nutating in response to red light; and (4) lazy mutants show no circumnutation. In spite of these results, however, there were cases in which gravitropism and circumnutation could be separated. Firstly, the non-circumnutating lazy coleoptile showed nearly a wild-type level of gravitropic responsiveness in its upper half, although this part was an active site of both gravitropism and circumnutation in wild-type coleoptiles. Secondly, coleoptiles could nutate without overshooting the vertical when developing phototropic curvature. It is concluded that gravitropism influences, but it is not directly involved in the process of circumnutation. It is further suggested that a gravity signal, shared with gravitropism, contributes to the maintenance of circumnutation.  相似文献   

8.
Tarui Y  Iino M 《Plant & cell physiology》1997,38(12):1346-1353
Gravitropism of oat (Avena sativa L.) and wheat (Triticum aestivum L.) coleoptiles was investigated in relation to the displacement angle or to the initially set stimulation angle (SA). We measured curvature rates at the early phase of curvature, before it was affected by the drop in SA resulting from the curvature response itself. The plot of the rates against the sines of initial SAs revealed similar curves for oats and wheat, which approached saturation as the sine increased to unity. The two species and previously analyzed rice [Iino et al. (1996) Plant Cell Environ. 19: 1160] appeared to have similar gravisensitivities. Initial SAs below and over 90 degrees yielded comparable rates when the sine values were the same, indicating that the extent of gravitropism is determined by the gravity component perpendicular to the organ's long axis. Long-term curvature kinetics at different SAs indicated that the net curvature rate dropped sharply before the tip reached the vertical position and then the tip approached the vertical slowly, with clear oscillatory movements in the case of wheat. During this late curvature phase, the coleoptile straightened gradually, although none of its parts had yet reached the vertical. When rotated on horizontal clinostats or displaced upwards to reduce SA in the late curvature phase, coleoptiles bent in the opposite direction. These results demonstrated that autotropism counteracts gravitropism to straighten coleoptiles.  相似文献   

9.
Time-dependent phototropism (TDP), sometimes called second positive curvature, occurs when the duration of phototropic stimulation with blue light (B) exceeds a few minutes. TDP was characterized in maize (Zea mays L.) coleoptiles raised under continuous red light (R). Subsequently, coleoptiles adapted to darkness were used to investigate the effect of R on TDP. It was found that TDP, which is induced in R-grown coleoptiles, does not occur in dark-adapted coleoptiles and that dark-adapted coleoptiles begin to show TDP after treatment with R. The TDP responsiveness became maximal 1-2 h after treatment with a R pulse and decreased during the next few hours. At least 10 min was required after a short pulse of R before the coleoptile began to respond to B for the induction of TDP. The effect of R in establishing the TDP responsiveness was totally suppressed by a pulse of far-red light given immediately after an inductive pulse of R. It is concluded that the mechanism of TDP requires for its establishment a R signal perceived by phytochrome. The TDP of R-grown and R-pretreated coleoptiles showed relationships to stimulation times and fluence rates that are similar to those reported for oat coleoptiles, except that TDP of maize showed a sharp increase in its magnitude within a narrow range of stimulation times as short as 5-10 min.  相似文献   

10.
Abstract. The gravitropic curvature of primary maize rootlets was measured as a function of temperature, both in the presence and absence of light. In two different cultivars, light strongly increased the downward curvature of roots developing from horizontally-oriented embryos. At 15–20°C, the bending angle was in the range of 70–80° in the light, and 25–50° in the dark, depending on the cultivar. When the temperature was increased above the 15–20°C range, marked differences were found between the two cultivars in their response to light. In one variety tested, JX180, the effect of light was relatively small at 30–35°C. Gravitropic curvature in another variety, Halamish, depended strongly on light throughout the temperature range tested. In both cultivars, gravitropic curvature was only slightly temperature dependent when germination and growth were in total darkness. In the dark, the extent of gravitropic curvature also depended on whether the kernels were oriented with their embryos facing upwards or downwards. Under continuous light, the gravitropic bending of roots of cultivar Halamish did not show a marked temperature dependence. When the seedlings were subjected to only a 15 min illumination, their gravitropic response was partial, and the dependence on temperature somewhat increased. In cultivar JX180, a combination of temperature and light modulates gravitropism. The gravitropic response of different maize cultivars thus differs considerably in its combined dependence on light and temperature.  相似文献   

11.
Li P  Wang Y  Qian Q  Fu Z  Wang M  Zeng D  Li B  Wang X  Li J 《Cell research》2007,17(5):402-410
Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.  相似文献   

12.
13.
In roots of gramineous plants, lysigenous aerenchyma is created by the death and lysis of cortical cells. Rice (Oryza sativa) constitutively forms aerenchyma under aerobic conditions, and its formation is further induced under oxygen‐deficient conditions. However, maize (Zea mays) develops aerenchyma only under oxygen‐deficient conditions. Ethylene is involved in lysigenous aerenchyma formation. Here, we investigated how ethylene‐dependent aerenchyma formation is differently regulated between rice and maize. For this purpose, in rice, we used the reduced culm number1 (rcn1) mutant, in which ethylene biosynthesis is suppressed. Ethylene is converted from 1‐aminocyclopropane‐1‐carboxylic acid (ACC) by the action of ACC oxidase (ACO). We found that OsACO5 was highly expressed in the wild type, but not in rcn1, under aerobic conditions, suggesting that OsACO5 contributes to aerenchyma formation in aerated rice roots. By contrast, the ACO genes in maize roots were weakly expressed under aerobic conditions, and thus ACC treatment did not effectively induce ethylene production or aerenchyma formation, unlike in rice. Aerenchyma formation in rice roots after the initiation of oxygen‐deficient conditions was faster and greater than that in maize. These results suggest that the difference in aerenchyma formation in rice and maize is due to their different mechanisms for regulating ethylene biosynthesis.  相似文献   

14.
Millet, B. and Pickard, B. G. 1988. Early wrong-way response occurs in orthogravitropism of maize roots treated with lithium. - Physiol. Plant. 72: 555–559.
Application of lithium ions to tips of roots of Zea mays L. cv. Silver Queen shifts the direction of initial orthogravitropic curvature from downward to upward. The production of this putatively incidental perturbation of orthogravitropic bending kinetics by a pharmacological agent might provide insight into both ortho- and plagiogravitro-pism. Additionally, the protocol of the experiments bears on recent claims that mucilage external to the root cap plays an essential role in gravitropism. External mucilage was removed before roots were stimulated, yet they reached about 50 degrees gravitropic curvature in an hour.  相似文献   

15.
The maize (Zea mays L.) pulvinus was used as a model system to study the signalling events that lead to differential growth in response to gravistimulation in plants. The pulvinus functions to return tipped plants to vertical via differential elongation of the cells on its lower side. By performing immunokinase assays using total soluble protein extracts and an antibody against mammalian ERK1, a mitogen‐activated protein kinase (MAPK)‐like activity was assayed in pulvini halves harvested at various time points after tipping. We detected a reproducible alternation of higher levels of activity occurring between the upper and lower halves of the pulvinus between 75 and 180 min after tipping, with a sustained increase in the upper half occurring at the end of the time‐course. This timing roughly corresponds to the presentation time for maize (i.e. the amount of time that the plant needs to be tipped before it is committed to bend), which occurs between 2 and 4 h. Treatment of maize stem explants with an inhibitor of MAPK activation, U0126, led to a reduction in the activity of this kinase, as well as an almost 65% reduction in bending as measured at 20 h. Rinsing out of the inhibitor resulted in recovery of both bending and kinase activity. It is possible that changes in MAPK activity in the gravistimulated pulvinus are part of a signalling cascade that may help to distinguish between minor perturbations in plant orientation and more significant and long‐term changes, and may also help to determine the direction of bending.  相似文献   

16.
T. Nakamoto 《Plant and Soil》1993,152(2):261-267
The direction of root growth is an important factor that determines the spatial distribution of roots in the soil. The influence of soil water content on the direction of growth of maize nodal roots was studied both in the field and in the greenhouse. In the field experiment, the one plot was regularly irrigated (I-plot) and the other non-irrigated (N-plot). In the greenhouse experiment, three water treatments were conducted on plants grown in pots: continuously wet (CW), early drying (ED), and late drying (LD). The direction of root growth was quantified by the angle from the vertical, measured at 1 cm intervals for 10 cm from the first five internodes. Nodal roots grew more vertically in the N-plot and ED treatment than those in the I-plot and CW treatment. This was due to the decrease of the initial angle and/or the liminal angle. It is therefore thought that two events regulate the growth direction of nodal roots under dry soil conditions: gravitropic bending at root emergence from the stem and the later establishment of the angle of growth. Nodal roots appearing after rewatering in the ED treatment grew in a similar direction as those in the CW treatment. It follows from this that the water content of the surrounding soil has a direct effect on the direction of growth. Nodal roots that emerged in rapidly drying soil in the LD treatment ceased growing after showing negative gravitropism. The possible mechanisms determining the growth direction of nodal roots in drier soils are discussed.  相似文献   

17.
High neutral metallocarboxypeptidase activity (EC 3.4.17) has earlier been detected in young seedlings of rice ( Oryza sativa L.) using benzyloxycarbonyl-L-phenylalanyl-L-alanine (Z-Phe-Ala) as substrate at pH 7. This finding was confirmed, and it was observed that the activity could be assayed with higher specificity and sensitivity by using Z-Gly-Ala or Z-Gly-Phe as substrate at pH 6.5–7. No corresponding activity was detected in seedlings of barley ( Hordeum vulgare L. cv. Himalaya), oats ( Avena sativa L.) or maize ( Zea mays L.). The seedlings of the four cereals possessed similar activities of acid carboxypeptidases (EC 3.4.16; hydrolysis of Z-Phe-Ala and Z-Ala-Phe at pH 5.2 and of Z-Ala-Arg at pH 5.7). However, in endosperms of germinating rice and maize these activities were only about 1–5% of those in barley and oats. A corresponding, although less pronounced, difference was evident between the scutella of the two pairs of cereals. The possible relationship between neutral carboxypeptidase activity and ability to grow in anaerobic conditions is discussed.  相似文献   

18.
Distribution of endogenous diffusible auxin into agar blocks from phototropically stimulated maize coleoptile tips was studied using a bioassay and a physicochemical assay, to clarify whether phototropism in maize coleoptiles involves a lateral gradient in the amount of auxin. At 50 min after the onset of phototropic stimulation, when the phototropic response was still developing, direct assay of the blocks with the Avena curvature test showed that the auxin activity in the blocks from the shaded half-tips was twice that of the lighted side, at both the first and second positive phototropic curvatures. However, physicochemical determination following purification showed that the amount of indole-3-acetic acid (IAA) was evenly distributed in the blocks from lighted and shaded coleoptile half-tips at both the first and second positive phototropic curvatures. The even distribution of the IAA was also confirmed with the Avena curvature test following purification by HPLC. These results indicate that phototropism in maize coleoptiles is not caused by a lateral gradient of IAA itself and thus cannot be described by the Cholodny-Went theory. Furthermore, the lower auxin activity in the blocks from the lighted half-tips suggests the presence of inhibitor(s) interfering with the action of auxin and their significant diffusion from unilaterally illuminated coleoptile tips.  相似文献   

19.
玉米离体根尖的多层滤纸床液体静止培养方法   总被引:8,自引:1,他引:7  
设计建立了适于玉米根尖离体培养的多层滤纸床液体静止培养方法,培养的适宜体系为:1/4MS大量元素改良+1/2MS微量元素+IBA0.1-0.3mg/L,黑暗培养。该方法避免了传统液体培养通气状况不良的问题,玉米根的生长速度可达到1-2cm/d,分支和生长正常。该方法在控制条件下快速繁殖根系,成本低廉,简便易行,是根系发育和生理研究的理想实验体系。  相似文献   

20.
Tiller angle, an important component of plant architecture, greatly influences the grain yield of rice (Oryza sativa L.). Here, we identified Tiller Angle Control 4 (TAC4) as a novel regulator of rice tiller angle. TAC4 encodes a plant‐specific, highly conserved nuclear protein. The loss of TAC4 function leads to a significant increase in the tiller angle. TAC4 can regulate rice shoot gravitropism by increasing the indole acetic acid content and affecting the auxin distribution. A sequence analysis revealed that TAC4 has undergone a bottleneck and become fixed in indica cultivars during domestication and improvement. Our findings facilitate an increased understanding of the regulatory mechanisms of tiller angle and also provide a potential gene resource for the improvement of rice plant architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号