首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinesin, a microtubule-based force-generating molecule, is thought to translocate organelles along microtubules. To examine the function of kinesin in neurons, we sought to suppress kinesin heavy chain (KHC) expression in cultured hippocampal neurons using antisense oligonucleotides and study the phenotype of these KHC "null" cells. Two different antisense oligonucleotides complementary to the KHC sequence reduced the protein levels of the heavy chain by greater than 95% within 24 h after application and produced identical phenotypes. After inhibition of KHC expression for 24 or 48 h, neurons extended an array of neurites often with one neurite longer than the others; however, the length of all these neurites was significantly reduced. Inhibition of KHC expression also altered the distribution of GAP-43 and synapsin I, two proteins thought to be transported in association with membranous organelles. These proteins, which are normally localized at the tips of growing neurites, were confined to the cell body in antisense-treated cells. Treatment of the cells with the corresponding sense oligonucleotides affected neither the distribution of GAP-43 and synapsin I, nor the length of neurites. A full recovery of neurite length occurred after removal of the antisense oligonucleotides from the medium. These data indicate that KHC plays a role in the anterograde translocation of vesicles containing GAP-43 and synapsin I. A deficiency in vesicle delivery may also explain the inhibition of neurite outgrowth. Despite the inhibition of KHC and the failure of GAP-43 and synapsin I to move out of the cell body, hippocampal neurons can extend processes and acquire as asymmetric morphology.  相似文献   

2.
Regulation of the opposing kinesin and dynein motors that drive axonal transport is essential to maintain neuronal homeostasis. Here, we examine coordination of motor activity by the scaffolding protein JNK-interacting protein 1 (JIP1), which we find is required for long-range anterograde and retrograde amyloid precursor protein (APP) motility in axons. We identify novel interactions between JIP1 and kinesin heavy chain (KHC) that relieve KHC autoinhibition, activating motor function in single molecule assays. The direct binding of the dynactin subunit p150Glued to JIP1 competitively inhibits KHC activation in vitro and disrupts the transport of APP in neurons. Together, these experiments support a model whereby JIP1 coordinates APP transport by switching between anterograde and retrograde motile complexes. We find that mutations in the JNK-dependent phosphorylation site S421 in JIP1 alter both KHC activation in vitro and the directionality of APP transport in neurons. Thus phosphorylation of S421 of JIP1 serves as a molecular switch to regulate the direction of APP transport in neurons.  相似文献   

3.
Kinesin-1 is a molecular motor responsible for cargo transport along microtubules and plays critical roles in polarized cells, such as neurons. Kinesin-1 can function as a dimer of two kinesin heavy chains (KHC), which harbor the motor domain, or as a tetramer in combination with two accessory light chains (KLC). To ensure proper cargo distribution, kinesin-1 activity is precisely regulated. Both KLC and KHC subunits bind cargoes or regulatory proteins to engage the motor for movement along microtubules. We previously showed that the scaffolding protein JIP3 interacts directly with KHC in addition to its interaction with KLC and positively regulates dimeric KHC motility. Here we determined the stoichiometry of JIP3-KHC complexes and observed approximately four JIP3 molecules binding per KHC dimer. We then determined whether JIP3 activates tetrameric kinesin-1 motility. Using an in vitro motility assay, we show that JIP3 binding to KLC engages kinesin-1 with microtubules and that JIP3 binding to KHC promotes kinesin-1 motility along microtubules. We tested the in vivo relevance of these findings using axon elongation as a model for kinesin-1-dependent cellular function. We demonstrate that JIP3 binding to KHC, but not KLC, is essential for axon elongation in hippocampal neurons as well as axon regeneration in sensory neurons. These findings reveal that JIP3 regulation of kinesin-1 motility is critical for axon elongation and regeneration.  相似文献   

4.
Embryonic, ventral spinal cord neurons were grown on poly(d-lysine) (PDL) or on a monolayer of type 1 astrocytes. At various times from 6 h to 2 weeks postplating, cells were fluorescently labeled and fixed with 4% paraformaldehyde. The cell surface immunoreaction allowed visualization of neurons in their entirety, namely, cell bodies and various membranous extensions that included lamellipodia, growth cones, axons, and dendrites. Outlines were drawn for individual neurons and their fractal dimension (D) was calculated. Neurons on poly(d-lysine) reached a peak D at 3 days in vitro, 1 day later than neurons on astrocytes (2 days in vitro). The maximum D was greater for cells on poly(d-lysine) when compared with neurons on astrocytes. In a second experiment the maximum D was similar for neurons on both surfaces but neurons on PDL maintained a higher D for a much longer period than neurons on astrocytes. An examination of fluorescent images revealed that neurons on poly(d-lysine) exhibited lamellipodia and large growth cones for several days and these structures were likely responsible for the high D seen in these cells. These structures were rarely observed in neurons plated on astrocytes. Interestingly, D on both surfaces decreased to a similar value at between 1 and 2 weeks in vitro. The trend for D in these cultures, an initial increase to a peak value followed by a decrease to a stable value, is discussed in light of the chemical nature of the two surfaces and synapse formation and stabilization.  相似文献   

5.
KIF3A is a new microtubule-based anterograde motor in the nerve axon   总被引:24,自引:13,他引:11       下载免费PDF全文
《The Journal of cell biology》1994,125(5):1095-1107
Neurons are highly polarized cells composed of dendrites, cell bodies, and long axons. Because of the lack of protein synthesis machinery in axons, materials required in axons and synapses have to be transported down the axons after synthesis in the cell body. Fast anterograde transport conveys different kinds of membranous organelles such as mitochondria and precursors of synaptic vesicles and axonal membranes, while organelles such as endosomes and autophagic prelysosomal organelles are conveyed retrogradely. Although kinesin and dynein have been identified as good candidates for microtubule-based anterograde and retrograde transporters, respectively, the existence of other motors for performing these complex axonal transports seems quite likely. Here we characterized a new member of the kinesin super-family, KIF3A (50-nm rod with globular head and tail), and found that it is localized in neurons, associated with membrane organelle fractions, and accumulates with anterogradely moving membrane organelles after ligation of peripheral nerves. Furthermore, native KIF3A (a complex of 80/85 KIF3A heavy chain and a 95-kD polypeptide) revealed microtubule gliding activity and baculovirus-expressed KIF3A heavy chain demonstrated microtubule plus end-directed (anterograde) motility in vitro. These findings strongly suggest that KIF3A is a new motor protein for the anterograde fast axonal transport.  相似文献   

6.
Cellular homeostasis in neurons requires that the synthesis and anterograde axonal transport of protein and membrane be balanced by their degradation and retrograde transport. To address the nature and regulation of retrograde transport in cultured sympathetic neurons, I analyzed the behavior, composition, and ultrastructure of a class of large, phase-dense organelles whose movement has been shown to be influenced by axonal growth (Hollenbeck, P. J., and D. Bray. 1987. J. Cell Biol. 105:2827-2835). In actively elongating axons these organelles underwent both anterograde and retrograde movements, giving rise to inefficient net retrograde transport. This could be shifted to more efficient, higher volume retrograde transport by halting axonal outgrowth, or conversely shifted to less efficient retrograde transport with a larger anterograde component by increasing the intracellular cyclic AMP concentration. When neurons were loaded with Texas red- dextran by trituration, autophagy cleared the label from an even distribution throughout the neuronal cytosol to a punctate, presumably lysosomal, distribution in the cell body within 72 h. During this process, 100% of the phase-dense organelles were fluorescent, showing that they contained material sequestered from the cytosol and indicating that they conveyed this material to the cell body. When 29 examples of this class of organelle were identified by light microscopy and then relocated using correlative electron microscopy, they had a relatively constant ultrastructure consisting of a bilamellar or multilamellar boundary membrane and cytoplasmic contents, characteristic of autophagic vacuoles. When neurons took up Lucifer yellow, FITC-dextran, or Texas red-ovalbumin from the medium via endocytosis at the growth cone, 100% of the phase-dense organelles became fluorescent, demonstrating that they also contain products of endocytosis. Furthermore, pulse-chase experiments with fluorescent endocytic tracers confirmed that these organelles are formed in the most distal region of the axon and undergo net retrograde transport. Quantitative ratiometric imaging with endocytosed 8-hydroxypyrene-1,3,6- trisulfonic acid showed that the mean pH of their lumena was 7.05. These results indicate that the endocytic and autophagic pathways merge in the distal axon, resulting in a class of predegradative organelles that undergo regulated transport back to the cell body.  相似文献   

7.
In this study we try to simultaneously investigate the response of neurons and astrocytes of rats following hyperosmotic stimulation and test the possibility that the reciprocal pathways between medullary visceral zone (MVZ) and hypothalamic paraventricular nucleus (PVN) or supraoptic nucleus (SON). Hyperosmotic pressure animal model was established by administering 3% sodium chloride as drinking water to rats. The distribution and expression of the HRP retrogradely labeled neurons, Fos, tyrosine hydroxylase (TH) or vasopressin (VP) positive neuron and glial fibrillary acidic protein (GFAP) positive astrocytes in the MVZ, SON and PVN were observed by quadruplicate-labeling methods of WGA-HRP retrograde tracing combined with anti-Fos, TH (or VP) and GFAP immunohistochemical technique. Fos positive neurons within the MVZ, PVN and SON increased markedly. There were also a large number of GFAP positive structures in the brain and their distribution pattern was fundamentally similar or analogous to Fos positive neurons in the above-mentioned areas. The augmented GFAP reactivities took on hypertrophic cell bodies, thicker and longer processes. Quadruplicate immunohistochemical staining showed that a neuron could be closely surrounded by many astrocytes and they formed neuron-astrocytic complex (N-ASC). Fos+/TH+/HRP+/GFAP+ and Fos+/VP+/HRP+/GFAP+ quadruplicate labeled N-ASC could be found in the MVZ, PVN and SON, respectively. The present results indicated that the neurons and astrocytes might be very active following hyperosmotic pressure and N-ASC as a functional unit might serve to modulate osmotic pressure. There were reciprocal osmoregulation pathways between the MVZ and SON or PVN in the brain.  相似文献   

8.
The proteins of the bcl-2 family play an important role during apoptosis and may also regulate cell death in response to oxidative stress, which has been implicated in Parkinson's disease. In this study we examined the localization of the pro-apoptotic protein bax, and the anti-apoptotic proteins bcl-2 and bcl-xL in the substantia nigra (SN) of the adult rat and their response to oxidative stress caused by striatal injections of 6-hydroxydopamine (6-OHDA). Our data show that bcl-2, bcl-x and bax proteins are present in the SN. Bcl-2 and bax are localized primarily in neurons including all those positive for tyrosine hydroxylase (TH). The intraneuronal distribution of bcl-2 and bax were different. Bcl-2 was diffuse throughout the cell while bax was localized in well-defined structures around the nucleus and within processes. Bcl-x staining in neurons was weak, though it was strongly expressed in GFAP-positive astrocytes. 6-OHDA injections, which resulted in loss of dopamine neurons between 7–14 days post-lesion, altered the distribution of bax, bcl-2 and bcl-x proteins in the SN. Bcl-2 and bax were decreased in the TH-positive cells of the SN from 3 to 14 days post-lesion and many TH-positive neurons were bcl-2 negative. Neuronal bcl-x was initially unchanged after lesion, but increased in astrocytes between 3–7 days post-lesion before the increase in GFAP immunoreactivity, which was detectable at days 10–14. While the neuronal distribution of bcl-2 and bcl-x does not change following lesion, bax became evenly distributed thought the soma. Morphological features of apoptosis, including TUNEL labeling and chromatin condensation was not observed. These data suggest that striatal 6-OHDA lesions do not result in classical apoptosis in the SN of the adult rat, even though there are changes in the content and distribution of members of the bcl-2 family of proteins.  相似文献   

9.
The unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based transport to deliver essential cargo into dendrites. To test different models of differential motor protein regulation and to understand how different compartments in neurons are supplied with necessary functional proteins, we studied mechanisms of dendritic transport, using Drosophila as a model system. Our data suggest that dendritic targeting systems in Drosophila and mammals are evolutionarily conserved, since mammalian cargoes are moved into appropriate domains in Drosophila. In a genetic screen for mutants that mislocalize the dendritic marker human transferrin receptor (hTfR), we found that kinesin heavy chain (KHC) may function as a dendritic motor. Our analysis of dendritic and axonal phenotypes of KHC loss-of-function clones revealed a role for KHC in maintaining polarity of neurons, as well as ensuring proper axonal outgrowth. In addition we identified adenomatous polyposis coli 1 (APC1) as an interaction partner of KHC in controlling directed transport and modulating kinesin function in neurons.  相似文献   

10.
In neurons, proper distribution of mitochondria in axons and at synapses is critical for neurotransmission, synaptic plasticity, and axonal outgrowth. However, mechanisms underlying mitochondrial trafficking throughout the long neuronal processes have remained elusive. Here, we report that syntabulin plays a critical role in mitochondrial trafficking in neurons. Syntabulin is a peripheral membrane-associated protein that targets to mitochondria through its carboxyl-terminal tail. Using real-time imaging in living cultured neurons, we demonstrate that a significant fraction of syntabulin colocalizes and co-migrates with mitochondria along neuronal processes. Knockdown of syntabulin expression with targeted small interfering RNA or interference with the syntabulin-kinesin-1 heavy chain interaction reduces mitochondrial density within axonal processes by impairing anterograde movement of mitochondria. These findings collectively suggest that syntabulin acts as a linker molecule that is capable of attaching mitochondrial organelles to the microtubule-based motor kinesin-1, and in turn, contributes to anterograde trafficking of mitochondria to neuronal processes.  相似文献   

11.
Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.  相似文献   

12.
《The Journal of cell biology》1987,105(6):2827-2835
We have examined the movements, composition, and cellular origin of phase-dense varicosities in cultures of chick sympathetic and sensory neurons. These organelles are variable in diameter (typically between 0.2 and 2 microns) and undergo saltatory movements both towards and away from the neuronal cell body. Their mean velocities vary inversely with the size of the organelle and are greater in the retrograde than the anterograde direction. Organelles stain with the lipophilic dye 1, 1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine and with antibodies to cytoskeletal components. In cultures double-stained with antibodies to alpha-tubulin and 70-kD neurofilament protein (NF-L), approximately 40% of the organelles stain for tubulin, 30% stain for NF- L, 10% stain for both tubulin and NF-L, and 40% show no staining with either antibody. The association of cytoskeletal proteins with the organelles shows that these proteins are able to move by a form of rapid axonal transport. Under most culture conditions the predominant direction of movement is towards the cell body, suggesting that the organelles are produced at or near the growth cone. Retrograde movements continue in culture medium lacking protein or high molecular mass components and increase under conditions in which the advance of the growth cone is arrested. There is a fourfold increase in the number of organelles moving retrogradely in neurites that encounter a substratum-associated barrier to elongation; retrograde movements increase similarly in cultures exposed to cytochalasin at levels known to block growth cone advance. No previously described organelle shows behavior coordinated with axonal growth in this way. We propose that the organelles contain membrane and cytoskeletal components that have been delivered to the growth cone, by slow or fast anterograde transport, in excess of the amounts required to synthesize more axon. In view of their rapid mobility and variable contents, we suggest that they be called "neuronal parcels."  相似文献   

13.
Abstract: The relation between the availability of newly synthesized protein and lipid and the axonal transport of optically detectable organelles was examined in peripheral nerve preparations of amphibia (Rana catesbeiana and Xenopus laevis) in which intracellular traffic from the endo-plasmic reticulum to the Golgi complex was inhibited with brefeldin A (BFA). Accumulation of fast-transported radio-labeled protein or phospholipid proximal to a sciatic nerve ligature was monitored in vitro in preparations of dorsal root ganglia and sciatic nerve. Organelle transport was examined by computer-enhanced video microscopy of single myelinated axons. BFA reduced the amount of radiolabeled protein and lipid entering the fast-transport system of the axon without affecting either the synthesis or the transport rate of these molecules. The time course of the effect of BFA on axonal transport is consistent with an action at an early step in the intrasomal pathway, and with its action being related to the observed rapid (<1 h) disassembly of the Golgi complex. At a concentration of BFA that reduced fast-transported protein by >95%, no effect was observed on the flux or velocity of anterograde or retrograde organelle transport in axons for at least 20 h. Bidirectional axonal transport of organelles was similarly unaffected following suppression of protein synthesis by >99%. The findings suggest that the anterograde flux of transport organelles is not critically dependent on a supply of newly synthesized membrane precursors. The possibilities are considered that anterograde organelles normally arise from membrane components supplied from a post-Golgi storage pool, as well as from recycled retrograde organelles.  相似文献   

14.
To investigate the role that myosin Va plays in axonal transport of organelles, myosin Va-associated organelle movements were monitored in living neurons using microinjected fluorescently labeled antibodies to myosin Va or expression of a green fluorescent protein-myosin Va tail construct. Myosin Va-associated organelles made rapid bi-directional movements in both normal and dilute-lethal (myosin Va null) neurites. In normal neurons, depolymerization of microtubules by nocodazole slowed, but did not stop movement. In contrast, depolymerization of microtubules in dilute-lethal neurons stopped movement. Myosin Va or synaptic vesicle protein 2 (SV2), which partially colocalizes with myosin Va on organelles, did not accumulate in dilute-lethal neuronal cell bodies because of an anterograde bias associated with organelle transport. However, SV2 showed peripheral accumulations in axon regions of dilute-lethal neurons rich in tyrosinated tubulin. This suggests that myosin Va-associated organelles become stranded in regions rich in dynamic microtubule endings. Consistent with these observations, presynaptic terminals of cerebellar granule cells in dilute-lethal mice showed increased cross-sectional area, and had greater numbers of both synaptic and larger SV2 positive vesicles. Together, these results indicate that myosin Va binds to organelles that are transported in axons along microtubules. This is consistent with both actin- and microtubule-based motors being present on these organelles. Although myosin V activity is not necessary for long-range transport in axons, myosin Va activity is necessary for local movement or processing of organelles in regions, such as presynaptic terminals that lack microtubules.  相似文献   

15.
Mitochondria are distributed within cells to match local energy demands. We report that the microtubule-dependent transport of mitochondria depends on the ability of milton to act as an adaptor protein that can recruit the heavy chain of conventional kinesin-1 (kinesin heavy chain [KHC]) to mitochondria. Biochemical and genetic evidence demonstrate that kinesin recruitment and mitochondrial transport are independent of kinesin light chain (KLC); KLC antagonizes milton's association with KHC and is absent from milton-KHC complexes, and mitochondria are present in klc (-/-) photoreceptor axons. The recruitment of KHC to mitochondria is, in part, determined by the NH(2) terminus-splicing variant of milton. A direct interaction occurs between milton and miro, which is a mitochondrial Rho-like GTPase, and this interaction can influence the recruitment of milton to mitochondria. Thus, milton and miro are likely to form an essential protein complex that links KHC to mitochondria for light chain-independent, anterograde transport of mitochondria.  相似文献   

16.
Rapp A  Gmeiner B  Hüttinger M 《Biochimie》2006,88(5):473-483
Apolipoprotein E (apoE) has been genetically linked to late-onset Alzheimer's disease. From the three common alleles (epsilon2, epsilon3 and epsilon4), epsilon4 has been suggested to promote amyloid beta (Ass) plaque fibrillation, one hallmark of Alzheimer's disease. It has been demonstrated that altered lipid content of hippocampal plasma membrane coincides with the disease. In this study, we show for the first time that the apoE dependent cholesterol metabolism in hippocampal neurons is higher than that of hippocampal astrocytes. Further, apoE-bound cholesterol is highly incorporated in membranous compartments in hippocampal neurons, whereas hippocampal astrocytes show higher intracellular distribution. This is an effect that coincides with cell-type dependent difference of low density lipoprotein receptor (LDLR) family member expression. Hippocampal neurons express high levels of the LDLR related protein (LRP), whereas hippocampal astrocytes are highly positive for LDLR. We could also demonstrate an apoE isoform (apoE2, apoE3 and apoE4) dependent cholesterol uptake in both cells types. In hippocampal neurons, we could find a decreased apoE4-bound cholesterol uptake. In contrast, hippocampal astrocytes show decreased internalization of apoE2-bound cholesterol. In addition, lipidated apoE4 is little associated with neurites in hippocampal neurons in comparison to the other two isoforms. In contrary, hippocampal astrocytes show faint apoE2 immunocytostaining intensity. Data presented indicate that the role of apoE4 in cholesterol homeostasis and apolipoprotein cell association is more pronounced in hippocampal neurons, showing significant alterations compared to the other two isoforms, suggesting that hippocampal neurons are affected by apoE4 associated altered cholesterol metabolism compared to hippocampal astrocytes.  相似文献   

17.
18.
Inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel that releases Ca2+ into the cytosol and its subcellular distribution is believed to have significant effects on Ca2+ signalling. We constructed a plasmid vector containing full-length rat type 3 IP3R linked to GFP (GFP-IP3R) for expression in mammalian cells. Western blot analyses revealed that the expressed fusion protein contained both GFP and full-length type 3 IP3R. Fluorescence confocal microscopy showed that the fluorescence of GFP-IP3R3 was distributed to reticular network structures, even after cell permeabilization with saponin. We further visualized intracellular membranes with DiOC6, a vital fluorescent marker for intracellular membranes, and provide evidence that the distribution of GFP-IP3R3 overlaps with the distribution of the endoplasmic reticulum. Our results indicate that GFP-IP3R3 can be used to visualize IP3R in living cells, and pave the way for subsequent mutational and functional studies.  相似文献   

19.
Possibility of the use of flow cytometry and spectrofluorimetry analysis for investigation mitochondria and plasma membrane polarization in myometrium cell suspension using potential-sensitive probe 3,3'-dihexyloxacarbocyanine [DiOC6(3)] has been demonstrated. The obtained results confirm the use of DiOC6(3) for studying the influence of effectors on transmembrane potentials of intact cell compartments.  相似文献   

20.
Heme oxygenase-2 gene deletion increases astrocyte vulnerability to hemin   总被引:5,自引:0,他引:5  
In a prior study, we observed that heme oxygenase-2 gene deletion protected murine cortical neurons from heme-mediated injury. In the course of these studies, constitutive HO-2 expression was observed in astrocyte cultures. The present study tested the hypothesis that astrocytes lacking the HO-2 gene would be less vulnerable to heme. Contrary to this hypothesis, gene deletion resulted in a 50-75% increase in cell death after 6h exposure to 30 or 60microM hemin, as measured by LDH release. A similar effect was observed when cell viability was assessed with the MTT assay. HO-2 gene deletion did not alter cellular expression of HO-1. The increased sensitivity of knockout astrocytes to hemin was reversed by increasing HO-1 expression by adenoviral gene transfer. These results suggest that heme oxygenase protects astrocytes from heme-mediated oxidative injury and highlight the disparate effect of HO in neurons and astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号