首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the fine structure of migrating granule cell neurons in cerebellar microexplant cultures. Radially migrating bipolar cells extended microspikes or small filopodia from their soma and processes and frequently made contact with neighboring cells. These microspikes contained microfilaments but no microtubules. At the later phase of the migration, in which they had symmetrical bipolar long processes, filopodia extending from perikarial region of cells contained microtubules, suggesting that they are precursors of the future thick perpendicular processes. When cell bodies changed orientation from radial to perpendicular, microtubules that were nucleated from perinuclear centrioles frequently extended into both thick radial and perpendicular processes from the perikarial region. Bundles of 10nm intermediate filaments also appeared in these processes. During migration by the perpendicular contact guidance, many filopodia extending from both the thick leading processes and thin trailing processes made close contacts with the radial parallel neurite. These findings suggest that; 1) The direct contact of the filopodia from both the growth cones and their processes of the granule cells to the neurite bundle plays roles in both the parallel and perpendicular contact guidances. 2) The spacial and temporal changes of cytoskeletons and the association of microtubules with perinuclear centrioles are important for the formation of perpendicular processes and initiation of the perpendicular contact guidance.  相似文献   

2.
The neural crest is a highly migratory cell population, unique to vertebrates, that forms much of the craniofacial skeleton and peripheral nervous system. In exploring the cell biological basis underlying this behavior, we have identified an unconventional myosin, myosin-X (Myo10) that is required for neural crest migration. Myo10 is highly expressed in both premigratory and migrating cranial neural crest (CNC) cells in Xenopus embryos. Disrupting Myo10 expression using antisense morpholino oligonucleotides leads to impaired neural crest migration and subsequent cartilage formation, but only a slight delay in induction. In vivo grafting experiments reveal that Myo10-depleted CNC cells migrate a shorter distance and fail to segregate into distinct migratory streams. Finally, in vitro cultures and cell dissociation-reaggregation assays suggest that Myo10 may be critical for cell protrusion and cell-cell adhesion. These results demonstrate an essential role for Myo10 in normal cranial neural crest migration and suggest a link to cell-cell interactions and formation of processes.  相似文献   

3.
The neural crest provides an excellent model system to study invasive cell migration, however it is still unclear how molecular mechanisms direct cells to precise targets in a programmed manner. We investigate the role of a potential guidance factor, neuropilin-1, and use functional knockdown assays, tissue transplantation and in vivo confocal time-lapse imaging to analyze changes in chick cranial neural crest cell migratory patterns. When neuropilin-1 function is knocked down in ovo, neural crest cells fail to fully invade the branchial arches, especially the 2nd branchial arch. Time-lapse imaging shows that neuropilin-1 siRNA transfected neural crest cells stop and collapse filopodia at the 2nd branchial arch entrances, but do not die. This phenotype is cell autonomous. To test the influence of population pressure and local environmental cues in driving neural crest cells to the branchial arches, we isochronically transplanted small subpopulations of DiI-labeled neural crest cells into host embryos ablated of neighboring, premigratory neural crest cells. Time-lapse confocal analysis reveals that the transplanted cells migrate in narrow, directed streams. Interestingly, with the reduction of neuropilin-1 function, neural crest cells still form segmental migratory streams, suggesting that initial neural crest cell migration and invasion of the branchial arches are separable processes.  相似文献   

4.
We have examined the distribution and function of the defined cell adhesion molecules, N-cadherin and N-CAM, in the emigration of cranial neural crest cells from the neural tube in vivo. By immunocytochemical analysis, both N-cadherin and N-CAM were detected on the cranial neural folds prior to neural tube closure. After closure of the neural tube, presumptive cranial neural crest cells within the dorsal aspect of the neural tube had bright N-CAM and weak N-cadherin immunoreactivity. By the 10- to 11-somite stage, N-cadherin was prominent on all neural tube cells with the exception of the dorsal-most cells, which had little or no detectable immunoreactivity. N-CAM, but not N-cadherin, was observed on some migrating neural crest cells after their departure from the cranial neural tube. To examine the functional significance of these molecules, perturbation experiments were performed by injecting antibodies against N-CAM or N-cadherin into the cranial mesenchyme adjacent to the midbrain. Fab' fragments or whole IgGs of monoclonal and polyclonal antibodies against N-CAM caused abnormalities in the cranial neural tube and neural crest. Predominantly observed defects included neural crest cells in ectopic locations, both within and external to the neural tube, and mildly deformed neural tubes containing some dissociating cells. A monoclonal antibody against N-cadherin also disrupted cranial development, with the major defect being grossly distorted neural tubes and some ectopic neural crest cells outside of the neural tube. In contrast, nonblocking N-CAM antibodies and control IgGs had few effects. Embryos appeared to be sensitive to the N-CAM and N-cadherin antibodies for a limited developmental period from the neural fold to the 9-somite stage, with older embryos no longer displaying defects after antibody injection. These results suggest that the cell adhesion molecules N-CAM and N-cadherin are important for the normal integrity of the cranial neural tube and for the emigration of neural crest cells. Because cell-matrix interactions also are required for proper emigration of cranial neural crest cells, the results suggest that the balance between cell-cell and cell-matrix adhesion may be critical for this process.  相似文献   

5.
The neural crest is a migratory population of cells that produces many diverse structures within the embryo. Trunk neural crest cells give rise to such structures as the dorsal root ganglia (DRG) and sympathetic ganglia (SG), which form in a metameric pattern along the anterior-posterior axis of the embryo. While static analyses have provided invaluable information concerning the development of these structures, time-lapse imaging of neural crest cells navigating through their normal environment could potentially reveal previously unidentified cellular and molecular interactions integral to DRG and SG development. In this study, we follow fluorescently labeled trunk neural crest cells using a novel sagittal explant and time-lapse confocal microscopy. We show that along their dorsoventral migratory route, trunk neural crest cells are highly motile and interact extensively with neighboring cells and the environment, with many cells migrating in chain-like formations. Surprisingly, the segregated pattern of crest cell streams through the rostral somite is not maintained once these cells arrive alongside the dorsal aorta. Instead, neural crest cells disperse along the ventral outer border of the somite, interacting extensively with each other and their environment via dynamic extension and retraction of filopodia. Discrete sympathetic ganglia arise as a consequence of intermixing and selective reorganization of neural crest cells at the target site. The diverse cell migratory behaviors and active reorganization at the target suggest that cell-cell and cell-environment interactions are coordinated with dynamic molecular processes.  相似文献   

6.

Background

Collective neural crest cell migration is critical to the form and function of the vertebrate face and neck, distributing bone, cartilage, and nerve cells into peripheral targets that are intimately linked with head vasculature. The vasculature and neural crest structures are ultimately linked, but when and how these patterns develop in the early embryo are not well understood.

Results

Using in vivo imaging and sophisticated cell behavior analyses, we show that quail cranial neural crest and endothelial cells share common migratory paths, sort out in a dynamic multistep process, and display multiple types of motion. To better understand the underlying molecular signals, we examined the role of angiopoietin 2 (Ang2), which we found expressed in migrating cranial neural crest cells. Overexpression of Ang2 causes neural crest cells to be more exploratory as displayed by invasion of off-target locations, the widening of migratory streams into prohibitive zones, and differences in cell motility type. The enhanced exploratory phenotype correlates with increased phosphorylated focal adhesion kinase activity in migrating neural crest cells. In contrast, loss of Ang2 function reduces neural crest cell exploration. In both gain and loss of function of Ang2, we found disruptions to the timing and interplay between cranial neural crest and endothelial cells.

Conclusions

Together, these data demonstrate a role for Ang2 in maintaining collective cranial neural crest cell migration and suggest interdependence with endothelial cell migration during vertebrate head patterning.
  相似文献   

7.
Ultrastructural characteristics of tooth buds of the polyphyodont adult lizards Liolaemus tenuis and Liolaemus gravenhorsti have been elucidated. Xenoplastic combinations of lizard whole tooth buds and neural crest cells from embryos of the quail Coturnix coturnix japonica have been cultured in vitro. Mesenchymal cells (preodontoblasts) of lizard teeth early develop filopodia that contact the basal lamina. Fragments of quail neural crest isolated by dissection were recombined with isolated lizard tooth buds and cultured for 84 hours in dishes kept in an incubator at 37.8 degrees C in air. Some identifiable quail cells in these recombinants developed a cytoplasmic extension like that of an odontoblastic process. These results suggest that lizard tooth rudiments already determined for tooth development produce some non-species specific transmissible constituents which are capable of inducing quail cranial neural crest cells to express certain dental characteristics (odontoblastogenesis) not expressed in their normal development in vivo.  相似文献   

8.
9.
We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the beta 1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cranial and trunk neural crest cell attachment to laminin, but not to fibronectin. An antiserum to alpha 1 intergrin inhibited attachment of trunk, but not cranial, neural crest cells to laminin and collagen type I, though interactions with fibronectin or collagen type IV were unaffected. The surface properties of trunk and cranial neural crest cells differed in several ways. First, trunk neural crest cells attached to collagen types I and IV, but cranial neural crest cells did not. Second, their divalent cation requirements for attachment to ECM molecules differed. For fibronectin substrata, trunk neural crest cells required divalent cations for attachment, whereas cranial neural crest cells bound in the absence of divalent cations. However, cranial neural crest cells lost this cation-independent attachment after a few days of culture. For laminin substrata, trunk cells used two integrins, one divalent cation-dependent and the other divalent cation-independent (Lallier, T. E. and Bronner-Fraser, M. (1991) Development 113, 1069-1081). In contrast, cranial neural crest cells attached to laminin using a single, divalent cation-dependent receptor system. Immunoprecipitations and immunoblots of surface labelled neural crest cells with HNK-1, alpha 1 integrin and beta 1 integrin antibodies suggest that cranial and trunk neural crest cells possess biochemically distinct integrins. Our results demonstrate that cranial and trunk cells differ in their mechanisms of adhesion to selected ECM components, suggesting that they are non-overlapping populations of cells with regard to their adhesive properties.  相似文献   

10.
Morphology and behaviour of neural crest cells of chick embryo in vitro   总被引:2,自引:0,他引:2  
Summary Neural primordia of chick embryos were cultured for three days and the behaviour of migrating neural crest cells studied. Somite cells were used as a comparison. Crest cells were actively multipolar with narrow projections which extended and retracted rapidly, contrasting to the gradual extension of somite-cell lamellae. On losing cell contact, somite cells were also more directionally persistent. The rate of displacement of isolated crest cells was particularly low when calculated over a long time base. Both crest and somite cells were monolayered; contact paralysis occurred in somite cell collisions but was not ascertained for crest cells. However, crest cells in a population were far more directionally persistent than isolated cells. Contact duration between crest cells increased with time and they formed an open network. Eventually, retraction clumping occurred, initially and chiefly at the periphery of the crest outgrowth. Crest cells did not invade cultured embryonic mesenchymal or epithelial populations but endoderm underlapped them. No effects were observed on crest cells prior to direct contact. Substrate previously occupied by endoderm or ectoderm caused crest cells to flatten while substrate previously occupied by the neural tube caused them to round up and clump prematurely.  相似文献   

11.
Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca(2+)-calmodulin-binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration.  相似文献   

12.
13.
Perturbation of cranial neural crest migration by the HNK-1 antibody   总被引:15,自引:0,他引:15  
The HNK-1 antibody recognizes a carbohydrate moiety that is shared by a family of cell adhesion molecules and is also present on the surface of migrating neural crest cells. Here, the effects of the HNK-1 antibody on neural crest cells were examined in vitro and in vivo. When the HNK-1 antibody was added to neural tube explants in tissue culture, neural crest cells detached from laminin substrates but were unaffected on fibronectin substrates. In order to examine the effects of the HNK-1 antibody in vivo, antibody was injected lateral to the mesencephalic neural tube at the onset of cranial neural crest migration. The injected antibody persisted for approximately 16 hr on the injected side of the embryo and appeared to be most prevalent on the surface of neural crest cells. Embryos fixed within the first 24 hr after injection of HNK-1 antibodies (either whole IgMs or small IgM fragments) showed one or more of the following abnormalities: (1) ectopic neural crest cells external to the neural tube, (2) an accumulation of neural crest cell volume on the lumen of the neural tube, (3) some neural tube anomalies, or (4) a reduction in the neural crest cell volume on the injected side. The ectopic cells and neural tube anomalies persisted in embryos fixed 2 days postinjection. Only embryos having 10 or less somites at the time of injection were affected, suggesting a limited period of sensitivity to the HNK-1 antibody. Control embryos injected with a nonspecific antibody or with a nonblocking antibody against the neural cell adhesion molecule (N-CAM) were unaffected. Previous experiments from this laboratory have demonstrated than an antibody against integrin, a fibronectin and laminin receptor caused defects qualitatively similar to those resulting from HNK-1 antibody injection (M. Bronner-Fraser, J. Cell Biol., 101, 610, 1985). Coinjection of the HNK-1 and integrin antibodies resulted in a greater percentage of affected embryos than with either antibody alone. The additive nature of the effects of the two antibodies suggests that they act at different sites. These results demonstrate that the HNK-1 antibody causes abnormalities in cranial neural crest migration, perhaps by perturbing interactions between neural crest cells and laminin substrates.  相似文献   

14.
Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum GalTase. The antibodies specifically recognized two embryonic proteins of 77 and 67 kD, both of which express GalTase activity. The antibodies also immunoprecipitated and inhibited chick embryo GalTase activity, and inhibited neural crest cell migration on laminin matrices in vitro. Anti-GalTase antibodies were microinjected into the head mesenchyme of stage 7-9 chick embryos or cranial to Henson's node of stage 6 embryos. Anti-avian GalTase IgG decreased cranial neural crest cell migration on the injected side but did not cross the embryonic midline and did not affect neural crest cell migration on the uninjected side. Anti-avian GalTase Fab crossed the embryonic midline and perturbed cranial neural crest cell migration throughout the head. Neural fold elevation and neural tube closure were also disrupted by Fab fragments. Cell surface GalTase was localized to migrating neural crest cells and to the basal surfaces of neural epithelia by indirect immunofluorescence, whereas GalTase was undetectable on neural crest cells prior to migration. These results suggest that, during early embryogenesis, cell surface GalTase participates during neural crest cell migration, perhaps by interacting with laminin, a major component of the basal lamina. Cell surface GalTase also appears to play a role in neural tube formation, possibly by mediating neural epithelial adhesion to the underlying basal lamina.  相似文献   

15.
Cranial neural crest cells migrate in a precisely segmented manner to form cranial ganglia, facial skeleton and other derivatives. Here, we investigate the mechanisms underlying this patterning in the axolotl embryo using a combination of tissue culture, molecular markers, scanning electron microscopy and vital dye analysis. In vitro experiments reveal an intrinsic component to segmental migration; neural crest cells from the hindbrain segregate into distinct streams even in the absence of neighboring tissue. In vivo, separation between neural crest streams is further reinforced by tight juxtapositions that arise during early migration between epidermis and neural tube, mesoderm and endoderm. The neural crest streams are dense and compact, with the cells migrating under the epidermis and outside the paraxial and branchial arch mesoderm with which they do not mix. After entering the branchial arches, neural crest cells conduct an "outside-in" movement, which subsequently brings them medially around the arch core such that they gradually ensheath the arch mesoderm in a manner that has been hypothesized but not proven in zebrafish. This study, which represents the most comprehensive analysis of cranial neural crest migratory pathways in any vertebrate, suggests a dual process for patterning the cranial neural crest. Together with an intrinsic tendency to form separate streams, neural crest cells are further constrained into channels by close tissue apposition and sorting out from neighboring tissues.  相似文献   

16.
17.
A vital dye analysis of cranial neural crest migration in the chick embryo has provided a positional fate map of greater resolution than has been possible using labelled graft techniques. Focal injections of the fluorescent membrane probe DiI were made into the cranial neural folds at stages between 3 and 16 somites. Groups of neuroepithelial cells, including the premigratory neural crest, were labelled by the vital dye. Analysis of whole-mount embryos after 1-2 days further development, using conventional and intensified video fluorescence microscopy, revealed the pathways of crest cells migrating from mesencephalic and rhombencephalic levels of the neuraxis into the subjacent branchial region. The patterns of crest emergence and emigration correlate with the segmented disposition of the rhombencephalon. Branchial arches 1, 2 and 3 are filled by crest cells migrating from rhombomeres 2, 4 and 6 respectively, in register with the cranial nerve entry/exit points in these segments. The three streams of ventrally migrating cells are separated by alternating regions, rhombomeres 3 and 5, which release no crest cells. Rostrally, rhombomere 1 and the caudal mesencephalon also contribute crest to the first arch, primarily to its upper (maxillary) component. Both r3 and r5 are associated with enhanced levels of cell death amongst cells of the dorsal midline, suggesting that crest may form at these levels but is then eliminated. Organisation of the branchial region is thus related by the dynamic process of neural crest immigration to the intrinsic mechanisms that segment the neuraxis.  相似文献   

18.
Neural crest cells are pluripotent cells that emerge from the neural epithelium, migrate extensively and differentiate into numerous derivatives, including neurons, glial cells, pigment cells and connective tissue. Major questions concerning their morphogenesis include: (1) what establishes the pathways of migration? And (2), what controls the final destination and differentiation of various neural crest subpopulations? These questions will be addressed in this Review. Neural crest cells from the trunk level have been explored most extensively. Studies show that melanoblasts are specified shortly after they depart from the neural tube and this specification directs their migration into the dorsolateral pathway. We also consider other reports that present strong evidence for ventrally migrating neural crest cells being similarly fate restricted. Cranial neural crest cells have been less analyzed in this regard but the preponderance of evidence indicates that either the cranial neural crest cells are not fate-restricted or are extremely plastic in their developmental capability and that specification does not control pathfinding. Thus, the guidance mechanisms that control cranial neural crest migration and their behavior vary significantly from the trunk.The vagal neural crest arises at the axial level between the cranial and trunk neural crest and represents a transitional cell population between the head and trunk neural crest. We summarize new data to support this claim. In particular, we show that: (1) the vagal-level neural crest cells exhibit modest developmental bias; (2) there are differences in the migratory behavior between the anterior and the posterior vagal neural crest cells reminiscent of the cranial and the trunk neural crest, respectively and (3) the vagal neural crest cells take the dorsolateral pathway to the pharyngeal arches and the heart, but take the ventral pathway to the peripheral nervous system and the gut. However, these pathways are not rigidly specified because of prior fate restriction. Understanding the molecular, cellular and behavioral differences between these three populations of neural crest cells will be of enormous assistance when trying to understand the evolution of the neck.Key words: neural crest, morphogenesis, cell migration, chicken embryo, fate restriction, vagal neural crest, pathways  相似文献   

19.
The cranial neural crest has been shown to give rise to a diversity of cells and tissues, including cartilage, bone and connective tissue, in a variety of tetrapods and in the zebrafish. It has been claimed, however, that in the Australian lungfish these tissues are not derived from the cranial neural crest, and even that no migrating cranial neural crest cells exist in this species. We have earlier documented that cranial neural crest cells do migrate, although they emerge late, in the Australian lungfish. Here, we have used the lipophilic fluorescent dye, DiI, to label premigratory cranial neural crest cells and follow their fate until stage 43, when several cranial skeletal elements have started to differentiate. The timing and extent of their migration was investigated, and formation of mandibular, hyoid and branchial streams documented. Cranial neural crest was shown to contribute cells to several parts of the head skeleton, including the trabecula cranii and derivatives of the mandibular arch (e.g., Meckel's cartilage, quadrate), the hyoid arch (e.g., the ceratohyal) and the branchial arches (ceratobranchials I-IV), as well as to the connective tissue surrounding the myofibers in cranial muscles. We conclude that cranial neural crest migration and fate in the Australian lungfish follow the stereotyped pattern documented in other vertebrates.  相似文献   

20.
Neural crest contributions to the lamprey head   总被引:5,自引:0,他引:5  
The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号