共查询到20条相似文献,搜索用时 0 毫秒
1.
In vivo analysis reveals a critical role for neuropilin-1 in cranial neural crest cell migration in chick 总被引:1,自引:0,他引:1
The neural crest provides an excellent model system to study invasive cell migration, however it is still unclear how molecular mechanisms direct cells to precise targets in a programmed manner. We investigate the role of a potential guidance factor, neuropilin-1, and use functional knockdown assays, tissue transplantation and in vivo confocal time-lapse imaging to analyze changes in chick cranial neural crest cell migratory patterns. When neuropilin-1 function is knocked down in ovo, neural crest cells fail to fully invade the branchial arches, especially the 2nd branchial arch. Time-lapse imaging shows that neuropilin-1 siRNA transfected neural crest cells stop and collapse filopodia at the 2nd branchial arch entrances, but do not die. This phenotype is cell autonomous. To test the influence of population pressure and local environmental cues in driving neural crest cells to the branchial arches, we isochronically transplanted small subpopulations of DiI-labeled neural crest cells into host embryos ablated of neighboring, premigratory neural crest cells. Time-lapse confocal analysis reveals that the transplanted cells migrate in narrow, directed streams. Interestingly, with the reduction of neuropilin-1 function, neural crest cells still form segmental migratory streams, suggesting that initial neural crest cell migration and invasion of the branchial arches are separable processes. 相似文献
2.
This Review focuses on recent advances in the field of cranial neural crest cell migration in Xenopus laevis with specific emphasis on cell adhesion and the regulation of cell migration. Our goal is to combine the understanding of cell adhesion to the extracellular matrix with the regulation of cell-cell adhesion and the involvement of the planar cell polarity signaling-pathway in guiding the migration of cranial neural crest cells during embryogenesis.Key words: neural crest, cell migration, extracellular matrix, cell adhesion, Wnt, planar cell polarity 相似文献
3.
《Cell Adhesion & Migration》2013,7(4):553-560
This review focuses on recent advances in the field of cranial neural crest cell migration in Xenopus laevis with specific emphasis on cell adhesion and the regulation of cell migration. Our goal is to combine the understanding of cell adhesion to the extracellular matrix with the regulation of cell-cell adhesion and the involvement of the planar cell polarity signaling-pathway in guiding the migration of cranial neural crest cells during embryogenesis. 相似文献
4.
Cranial neural crest cells (NCCs) migrate into the pharyngeal arches in three primary streams separated by two cranial neural crest (NC)-free zones. Multiple tissues have been implicated in the guidance of cranial NCC migration; however, the signals provided by these tissues have remained elusive. We investigate the function of semaphorins (semas) and their receptors, neuropilins (nrps), in cranial NCC migration in zebrafish. We find that genes of the sema3F and sema3G class are expressed in the cranial NC-free zones, while nrp2a and nrp2b are expressed in the migrating NCCs. sema3F/3G expression is expanded homogeneously in the head periphery through which the cranial NCCs migrate in lzr/pbx4 mutants, in which the cranial NC streams are fused. Antisense morpholino knockdown of Sema3F/3G or Nrp2 suppresses the abnormal cranial NC phenotype of lzr/pbx4 mutants, demonstrating that aberrant Sema3F/3G-Nrp2 signaling is responsible for this phenotype and suggesting that repulsive Sema3F/3G-Npn2 signaling normally contributes to the guidance of migrating cranial NCCs. Furthermore, global over-expression of sema3Gb phenocopies the aberrant cranial NC phenotype of lzr/pbx4 mutants when endogenous Sema3 ligands are knocked down, consistent with a model in which the patterned expression of Sema3 ligands in the head periphery coordinates the migration of Nrp-expressing cranial NCCs. 相似文献
5.
Cardiac and cephalic neural crest cells (NCCs) are essential components of the craniofacial and aortic arch mesenchyme. Genetic disruption of the platelet-derived growth factor receptor alpha (PDGFRalpha) results in defects in multiple tissues in the mouse, including neural crest derivatives contributing to the frontonasal process and the aortic arch. Using chimeric analysis, we show that loss of the receptor in NCCs renders them inefficient at contributing to the cranial mesenchyme. Conditional gene ablation in NCCs results in neonatal lethality because of aortic arch defects and a severely cleft palate. The conotruncal defects are first observed at E11.5 and are consistent with aberrant NCC development in the third, fourth and sixth branchial arches, while the bone malformations present in the frontonasal process and skull coincide with defects of NCCs from the first to third branchial arches. Changes in cell proliferation, migration, or survival were not observed in PDGFRalpha NCC conditional embryos, suggesting that the PDGFRalpha may play a role in a later stage of NCC development. Our results demonstrate that the PDGFRalpha plays an essential, cell-autonomous role in the development of cardiac and cephalic NCCs and provides a model for the study of aberrant NCC development. 相似文献
6.
Sarkar S Petiot A Copp A Ferretti P Thorogood P 《Development (Cambridge, England)》2001,128(11):2143-2152
The cranial neural crest gives rise to most of the skeletal tissues of the skull. Matrix-mediated tissue interactions have been implicated in the skeletogenic differentiation of crest cells, but little is known of the role that growth factors might play in this process. The discovery that mutations in fibroblast growth factor receptors (FGFRs) cause the major craniosynostosis syndromes implicates FGF-mediated signalling in the skeletogenic differentiation of the cranial neural crest. We now show that, in vitro, mesencephalic neural crest cells respond to exogenous FGF2 in a dose-dependent manner, with 0.1 and 1 ng/ml causing enhanced proliferation, and 10 ng/ml inducing cartilage differentiation. In longer-term cultures, both endochondral and membrane bone are formed. FGFR1, FGFR2 and FGFR3 are all detectable by immunohistochemistry in the mesencephalic region, with particularly intense expression at the apices of the neural folds from which the neural crest arises. FGFRs are also expressed by subpopulations of neural crest cells in culture. Collectively, these findings suggest that FGFs are involved in the skeletogenic differentiation of the cranial neural crest. 相似文献
7.
Examining calcium dynamics within the neural crest (NC) has the potential to shed light on mechanisms that regulate complex cell migration and patterning events during embryogenesis. Unfortunately, typical calcium indicators are added to culture media or have low signal to noise after microinjection into tissue that severely limit analyses to cultured cells or superficial events. Here, we studied in vivo calcium dynamics during NC cell migration and patterning, using a genetically encoded calcium sensor, GCaMP3. We discovered that trunk NC cells displayed significantly more spontaneous calcium transients than cranial NC cells, and during cell aggregation versus cell migration events. Spontaneous calcium transients were more prevalent during NC cell aggregation into discrete sympathetic ganglia (SG). Blocking of N-cadherin activity in trunk NC cells near the presumptive SG led to a dramatic decrease in the frequency of spontaneous calcium transients. Detailed analysis and mathematical modeling of cell behaviors during SG formation showed NC cells aggregated into clusters after displaying a spontaneous calcium transient. This approach highlights the novel application of a genetically encoded calcium indicator to study subsets of cells during ventral events in embryogenesis. 相似文献
8.
An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vivo 总被引:21,自引:1,他引:21
M Bronner-Fraser 《Developmental biology》1986,117(2):528-536
Previous studies from this laboratory (M. Bronner-Fraser (1985). J. Cell Biol. 101, 610) have demonstrated that an antibody to a cell surface receptor complex caused alterations in avian neural crest cell migration. Here, these observations are extended to examine the distribution and persistency of injected antibody, the dose dependency of the effect, and the long-term influences of antibody injection. The CSAT antibody, which recognizes a cell surface receptor for fibronectin and laminin, was injected lateral to the mesencephalic neural tube at the onset of cranial neural crest migration. Injected antibody molecules did not cross the midline, but appeared to diffuse throughout the injected half of the mesencephalon, where they remained detectable by immunocytochemistry for about 22 hr. Embryos were examined either during neural crest migration (up to 24 hr after injection) or after formation of neural crest-derived structures (36-48 hr after injection). In those embryo fixed within the first 24 hr, the major defects were a reduction in the neural crest cell number on the injected side, a buildup of neural crest cells within the lumen of the neural tube, and ectopically localized neural crest cells. In embryos allowed to survive for 36 to 48 hr after injection, the neural crest derivatives appeared normal on both the injected and control side, suggesting that the embryos compensated for the reduction in neural crest cell number on the injected side. However, the embryos often had severely deformed neural tubes and ectopic aggregates of neural crest cells. In contrast, several control antibodies had no effect. These findings suggest that the CSAT receptor complex is important in the normal development of the neural crest and neural tube. 相似文献
9.
Isotretinoin embryopathy and the cranial neural crest: an in vivo and in vitro study 总被引:4,自引:0,他引:4
W S Webster M C Johnston E J Lammer K K Sulik 《Journal of craniofacial genetics and developmental biology》1986,6(3):211-222
Severe congenital malformations have been associated with the inadvertant use in early pregnancy of a new dermatological drug, isotretinoin. We present proposals for the pathogenesis of this embryopathy based on the study of animal models. The characteristic malformations of the face, thymus, and great vessels were induced in mice by prenatal exposure to the drug during the early somite stages of development. From histological examination of mouse embryos it was shown that the drug directly interferes with the development of cranial neural crest cells. Subsequent deficiency of crest cell-derived mesenchyme adequately explains most of the observed malformations. Rat embryo culture studies showed that, when used at concentrations of 500 ng/ml, both isotretinoin and its main metabolite in the human, 4-oxo-isotretinoin, induce malformations similar to those seen in vivo. Since during normal repetitive dosing in the human the mean trough blood concentration of isotretinoin ranges from 132 to 196 ng/ml, while 4-oxo-isotretinoin ranges from 610 to 791 ng/ml, it is likely that the metabolite plays a major role in the induction of the isotretinoin embryopathy. 相似文献
10.
Cranial neural crest (CNC) cells migrate extensively, typically in a pattern of cell streams. In Xenopus, these cells express the adhesion molecule Xcadherin-11 (Xcad-11) as they begin to emigrate from the neural fold. In order to study the function of this molecule, we have overexpressed wild-type Xcad-11 as well as Xcad-11 mutants with cytoplasmic (deltacXcad-11) or extracellular (deltaeXcad-11) deletions. Green fluorescent protein (GFP) was used to mark injected cells. We then transplanted parts of the fluorescent CNC at the premigratory stage into non-injected host embryos. This altered not only migration, but also the expression of neural crest markers. Migration of transplanted cranial neural crest cells was blocked when full-length Xcad-11 or its mutant lacking the beta-catenin-binding site (deltacXcad-11) was overexpressed. In addition, the expression of neural crest markers (AP-2, Snail and twist) diminished within the first four hours after grafting, and disappeared completely after 18 hours. Instead, these grafts expressed neural markers (2G9, nrp-I and N-Tubulin). Beta-catenin co-expression, heterotopic transplantation of CNC cells into the pharyngeal pouch area or both in combination failed to prevent neural differentiation of the grafts. By contrast, deltaeXcad-11 overexpression resulted in premature emigration of cells from the transplants. The AP-2 and Snail patterns remained unaffected in these migrating grafts, while twist expression was strongly reduced. Co-expression of deltaeXcad-11 and beta-catenin was able to rescue the loss of twist expression, indicating that Wnt/beta-catenin signalling is required to maintain twist expression during migration. These results show that migration is a prerequisite for neural crest differentiation. Endogenous Xcad-11 delays CNC migration. Xcad-11 expression must, however, be balanced, as overexpression prevents migration and leads to neural marker expression. Although Wnt/beta-catenin signalling is required to sustain twist expression during migration, it is not sufficient to block neural differentiation in non-migrating grafts. 相似文献
11.
Contributions of placodal and neural crest cells to avian cranial peripheral ganglia 总被引:16,自引:0,他引:16
The method of embryonic tissue transplantation was used to confirm the dual origin of avian cranial sensory ganglia, to map precise locations of the anlagen of these sensory neurons, and to identify placodal and neural crest-derived neurons within ganglia. Segments of neural crest or strips of presumptive placodal ectoderm were excised from chick embryos and replaced with homologous tissues from quail embryos, whose cells contain a heterochromatin marker. Placode-derived neurons associated with cranial nerves V, VII, IX, and X are located distal to crest-derived neurons. The generally larger, embryonic placodal neurons are found in the distal portions of both lobes of the trigeminal ganglion, and in the geniculate, petrosal and nodose ganglia. Crest-derived neurons are found in the proximal trigeminal ganglion and in the combined proximal ganglion of cranial nerves IX and X. Neurons in the vestibular and acoustic ganglia of cranial nerve VIII derive from placodal ectoderm with the exception of a few neural crest-derived neurons localized to regions within the vestibular ganglion. Schwann sheath cells and satellite cells associated with all these ganglia originate from neural crest. The ganglionic anlagen are arranged in cranial to caudal sequence from the level of the mesencephalon through the third somite. Presumptive placodal ectoderm for the VIIIth, the Vth, and the VIIth, IXth, and Xth ganglia are located in a medial to lateral fashion during early stages of development reflecting, respectively, the dorsolateral, intermediate, and epibranchial positions of these neurogenic placodes. 相似文献
12.
13.
We describe the development of the cranial neural crest cell streams relative to embryonic events such as neural tube formation and somite appearance in two Eurasian frog species belonging to the Ranidae, Rana temporaria and Sylvirana nigrovittata, and demonstrate developmental heterochronies. The mandibular stream appeared well developed in R. temporaria at a time when the embryo was still spherical, the neural folds were elevated, and the neural plate was wide open, thus earlier than known from any frog species so far. The appearance of the second stream and its division into hyoid and branchial portions was clearly accelerated in R. temporaria relative to other embryonic events when compared to S. nigrovittata. For example, in R. temporaria, the hyoid and branchial portions of the cranial neural crest cell streams were separated before the neural folds had started to fuse, whereas in S. nigrovittata this event took place only after the neural folds had fused completely. Such ostentatious heterochronies related to the characters used herein have formerly only been reported from comparisons between species belonging to different higher taxa. Our results re‐confirm that to understand the full dynamics of the evolution of development, studies need to implement comparative embryological approaches, and include phylogenetically relatively closely related taxa. 相似文献
14.
The neural crest is a highly migratory cell population, unique to vertebrates, that forms much of the craniofacial skeleton and peripheral nervous system. In exploring the cell biological basis underlying this behavior, we have identified an unconventional myosin, myosin-X (Myo10) that is required for neural crest migration. Myo10 is highly expressed in both premigratory and migrating cranial neural crest (CNC) cells in Xenopus embryos. Disrupting Myo10 expression using antisense morpholino oligonucleotides leads to impaired neural crest migration and subsequent cartilage formation, but only a slight delay in induction. In vivo grafting experiments reveal that Myo10-depleted CNC cells migrate a shorter distance and fail to segregate into distinct migratory streams. Finally, in vitro cultures and cell dissociation-reaggregation assays suggest that Myo10 may be critical for cell protrusion and cell-cell adhesion. These results demonstrate an essential role for Myo10 in normal cranial neural crest migration and suggest a link to cell-cell interactions and formation of processes. 相似文献
15.
Most of the bone, cartilage and connective tissue of the lower jaw is derived from cranial neural crest cells (NCCs) arising from the posterior midbrain and hindbrain. Multiple factors direct the patterning of these NCCs, including endothelin-1-mediated endothelin A receptor (Edn1/Ednra) signaling. Loss of Ednra signaling results in multiple defects in lower jaw and neck structures, including homeotic transformation of lower jaw structures into upper jaw-like structures. However, since the Ednra gene is expressed by both migrating and post-migrating NCCs, the actual function of Ednra in cranial NCC development is not clear. Ednra signaling could be required for normal migration or guidance of NCCs to the pharyngeal arches or in subsequent events in post-migratory NCCs, including proliferation and survival. To address this question, we performed a fate analysis of cranial NCCs in Ednra-/- embryos using the R26R;Wnt1-Cre reporter system, in which Cre expression within NCCs results in permanent beta-galactosidase activity in NCCs and their derivatives. We find that loss of Ednra does not detectably alter either migration of most cranial NCCs into the mandibular first arch and second arch or their subsequent proliferation. However, mesenchymal cell apoptosis is increased two fold in both E9.5 and E10.5 Ednra-/- embryos, with apoptotic cells being present in and just proximal to the pharyngeal arches. Based on these studies, Ednra signaling appears to be required by most cranial NCCs after they reach the pharyngeal arches. However, a subset of NCCs appear to require Ednra signaling earlier, with loss of Ednra signaling likely leading to premature cessation of migration into or within the arches and subsequent cell death. 相似文献
16.
Neural crest cells (NCCs) are migratory cells that delaminate from the neural tube early in development and then disseminate throughout the embryo to give rise to a wide variety of cell types that are key to the vertebrate body plan. During their journey from the neural tube to their peripheral targets, NCCs progressively differentiate, raising the question of when the fate of an individual NCC is sealed. One hypothesis suggests that the fate of a NCC is specified by target-derived signals emanating from the environment they migrate through, while another hypothesis proposes that NCCs are already specified to differentiate along select lineages at the time they are born in the neural tube, with environmental signals helping them to realize their prespecified fate potential. Alternatively, both mechanisms may cooperate to drive NCC diversity. This review highlights recent advances in our understanding of prespecification during trunk NCC development.Key words: neural crest cell, multipotent, prespecification, neuropilin, semaphorin, migration, cell fate 相似文献
17.
Cytochemical evidence for the neural crest origin of mammalian ultimobranchial C cells 总被引:4,自引:0,他引:4
Summary The cells of the neural crest have APUD properties at an early stage of devel opment (72 hours in the chick embryo). The FIF procedure provides a cytochemical means for their distinction.Using mouse embryos from mothers injected, intraperitoneally, 1 hr before removal, with l-DOPA (100 mg/kg), the peripheral stream of neural crest cells was clearly identifiable at the 7-somite stage (7–8 days). At the 10-somite stage (8–9 days) the cells were observed to invade the lateral processes of the foregut, and the foregut itself. A particularly high concentration of fluorescent APUD cells was observed in the anterior portion of the IVth pharyngeal pouch, destined to become the ultimobranchial body.At the 14-somite stage (11–12 days) the developing ultimobranchial body still contains fluorescent cells of neural crest origin.The implications of these findings on the question of the origin of the entire APUD series of endocrine polypeptide cells is discussed. 相似文献
18.
Alterations in migrating cranial neural crest cells in embryos of mice fed retinoic acid 总被引:1,自引:0,他引:1
Alterations in migrating neural crest cells induced by all-trans retinoic acid (RA) were studied morphologically and immunohistochemically in the cranial portion of 8-day-old mouse embryos which were derived from dams given 60, 40 or 0 mg kg of RA and killed 2 to 8 h later. Additionally, the embryos exposed to 4 mg/kg of actinomycin D (AD) on day 8 of gestation for 5 h were examined similarly. Light microscopy revealed that RA was cytotoxic and caused the appearance of pleomorphic nuclei, extra-large nucleoli and cytoplasmic budding which replaced lamellipodia and spike-like projections. Electron microscopy revealed pleomorphic nuclei containing nucleoli with major granular portions frequently surrounded with heterochromatin, monosomes, and phagosomes. A monosomal distribution pattern was different from that seen in the neural crest cells exposed to AD. The latter showed incomplete polyribosomal dispersion with fewer nucleolar components. Fewer neural crest cells with choline acetyltransferase-like immunoreactivity were detected in RA- and AD-exposed embryos than in the controls. These findings suggest that excess RA inhibits acetylcholine synthesis of the migrating neural crest cells, in a manner different from AD, and that it enhances phagocytosis. These phenomena modify the characteristics of neural crest cells resulting in craniofacial malformations. 相似文献
19.
Deflorian G Tiso N Ferretti E Meyer D Blasi F Bortolussi M Argenton F 《Development (Cambridge, England)》2004,131(3):613-627
In this study we analysed the function of the Meinox gene prep1.1 during zebrafish development. Meinox proteins form heterotrimeric complexes with Hox and Pbx members, increasing the DNA binding specificity of Hox proteins in vitro and in vivo. However, a role for a specific Meinox protein in the regulation of Hox activity in vivo has not been demonstrated. In situ hybridization showed that prep1.1 is expressed maternally and ubiquitously up to 24 hours post-fertilization (hpf), and restricted to the head from 48 hpf onwards. Morpholino-induced prep1.1 loss-of-function caused significant apoptosis in the CNS. Hindbrain segmentation and patterning was affected severely, as revealed by either loss or defective expression of several hindbrain markers (foxb1.2/mariposa, krox20, pax2.1 and pax6.1), including anteriorly expressed Hox genes (hoxb1a, hoxa2 and hoxb2), the impaired migration of facial nerve motor neurons, and the lack of reticulospinal neurons (RSNs) except Mauthner cells. Furthermore, the heads of prep1.1 morphants lacked all pharyngeal cartilages. This was not caused by the absence of neural crest cells or their impaired migration into the pharyngeal arches, as shown by expression of dlx2 and snail1, but by the inability of these cells to differentiate into chondroblasts. Our results indicate that prep1.1 has a unique genetic function in craniofacial chondrogenesis and, acting as a member of Meinox-Pbc-Hox trimers, it plays an essential role in hindbrain development. 相似文献
20.
During development neural crest cells give rise to a wide variety of specialized cell types in response to cytokines from surrounding tissues. Depending on the cranial-caudal level of their origin, different populations of neural crest cells exhibit differential competence to respond to these signals as exemplified by the unique ability of cranial neural crest to form skeletal cell types. We show that in addition to differences in whether they respond to particular signals, cranial neural crest cells differ dramatically from the trunk neural crest cells in how they respond to specific extracellular signals, such that under identical conditions the same signal induces dissimilar cell fate decisions in the two populations in vitro. Conversely, the same differentiated cell types are induced by different signals in the two populations. These in vitro differences in neural crest response are consistent with in vivo manipulations. We also provide evidence that these differences in responsiveness are modulated, at least in part, by differential expression of Hox genes within the neural crest. 相似文献