首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T lymphocytes of the strain BALB/cHeA exhibit a low proliferative response to IL-2 and a high response to the anti-CD3 monoclonal antibodies, while the strain STS/A lymphocyte response to these stimuli is the opposite. We analyzed the genetic basis of this strain difference, using a novel genetic tool: the recombinant congenic strains (RCS). Twenty BALB/c-c-STS/Dem (CcS/Dem) RCS were used, each containing a different random set of approximately 12.5% of the genes from STS and the remainder from BALB/c. Consequently, the genes participating in the multigenic control of a phenotypic difference between BALB/c and STS become separated into different CcS strains where they can be studied individually. The strain distribution patterns of the proliferative responses to IL-2 and anti-CD3 in the CcS strains are different, showing that different genes are involved. The large differences between individual CcS strains in response to IL-2 or anti-CD3 indicate that both reactions are controlled by a limited number of genes with a relatively large effect. The high proliferative response to IL-2 is a dominant characteristic. It is not caused by a larger major cell subset size, nor by a higher level of IL-2R expression. The response to anti-CD3 is known to be controlled by polymorphism in Fc receptor 2 (Fcgr2) and the CcS strains carrying the low responder Fcgr2 allele indeed responded weakly. However, as these strains do respond to immobilized anti-CD3, while the STS strain does not, and as some CcS strains with the BALB/c allele of Fcgr2 are also low responders, additional gene(s) of the STS strain strongly depress the anti-CD3 response. In a backcross between the high responder and the low responder strains CcS-9 and CcS-11, one of these unknown genes was mapped to the chromosome 10 near D10Mit14. The CcS mouse strains which carry the STS alleles of genes controlling the proliferative response to IL-2 and anti-CD3 allow the future mapping, cloning, and functional analysis of these genes and the study of their biological effects in vivo.  相似文献   

2.
Lymphocytes of mouse strains BALB/cHeA (BALB/c) and STS/A (STS) differ in their response to CD3 antibody (anti-CD3). We analyzed the genetic basis of this strain difference, using the Recombinant Congenic Strains (RCS) of the BALB/c-c-STS/Dem (CcS/Dem) series. Each of the 20 CcS/Dem strains carries a different, random combination of 12.5% genes from the nonresponding strain STS and 87.5% genes of the intermediate responder strain BALB/c. Differences in the magnitude of anti-CD3-induced response among CcS/Dem strains indicated that in addition to Fcγ receptor 2 (Fcgr2) other genes are involved in the control of this response as well, and we have already mapped loci Tria1 (T cell receptor-induced activation 1), Tria2, and Tria3. In order to map additional Tria genes, we tested F2 hybrids between the high responder RC strain CcS-9 and the low responder strain CcS-11. Proliferation in complete RPMI medium without anti-CD3 is controlled by locus Sprol1 (spontaneous proliferation 1) linked to the marker D4Mit23 on Chr 4. At concentration 0.375 μg/ml anti-CD3 mAb, the response was controlled by a locus Tria4, which maps to the marker D7Mit32 on Chr 7. The response to the higher concentration of mAb, 3 μg/ml, was controlled by Tria5, which mapped to the marker D9Mit15 on Chr 9. Anti-CD3 is being used for modulation of lymphocyte functions in transplantation reactions and in cancer treatment. Study of mechanisms of action of different Tria loci could lead to better understanding of genetic regulation of these reactions. Received: 28 October 1998 / Accepted: 17 March 1999  相似文献   

3.
The inbred strain STS/A exhibits a higher proliferative response in the mixed lymphocyte culture (MLC) to stimulator cells of all 11 tested inbred mouse strains with 10 different major histocompatibility complex (MHC) haplotypes, as well as to stimulation with IL-2 than does the strain BALB/cHeA. However, alloantigen-stimulated BALB/c cells produce more IL-2 than STS/A cells. To study the genetic basis of these differences, we used 20 recombinant congenic strains (RCS) of the CcS/Dem series. Each of these CcS/Dem RC strains contains a different subset of about 12.5% of genes from the STS/A strain and the remaining approximately 87.5% of BALB/c origin genes. As a result the multiple non-linked genes responsible for phenotypic differences between BALB/c and STS/A became separated into different CcS/Dem strains. The strain distribution pattern (SDP) of high or low MLC response of individual CcS/Dem strains to stimulator cells of four different strains was almost identical, indicating that differences in responsiveness, rather than the alloantigenic difference itself, determine the magnitude of the response, and that the responsiveness to different alloantigens is largely controlled by the same genes. The SDP of IL-2 stimulation was different from that of MLC responsiveness. The differences in the proliferative responses observed among individual CcS/Dem strains were not due to differences in numbers of CD3+, CD4+ or CD8+ cells or to the observed differences in IL-2 production, and hence they likely reflect genetically determined intrinsic properties of T cells. These results show that a set of non-linked genes controls proliferative responses in MLC irrespective of the MHC haplotype of the stimulator cells, and that stimulation with IL-2 and production of IL-2 are controlled by different subsets of genes. Since the genomes of all RCS are extensively characterized by microsatellite markers, they can be used to map the genes controlling proliferative responsiveness to stimulation with alloantigens and IL-2.  相似文献   

4.
Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes was performed by counting dead cells in histologically processed thymuses after 0.5 Gy of whole-body X-irradiation, using recombinant congenic (CcS/Dem) strains derived from inbred mouse strains BALB/cHeA (susceptible) and STS/A (resistant). A high (8/20) number of strains with lower dead cell scores than BALB/cHeA among CcS/ Dem recombinant congenic strains (RCS), which contain 12.5% of STS/A genome in the genetic background of BALB/cHeA strain, indicates that the difference between BALB/cHeA and STS/A is caused by several genes and that susceptibility probably requires BALB/ cHeA alleles at more than one locus. Similar results were obtained with CXS/Hg recombinant inbred (CXS/ Hg) strains. Analysis of F2 hybrids between BALB/ cHeA and CcS-7, one of the CcS/Dem strains that showed lower dead cell scores than BALB/cHeA, demonstrated that a novel gene (Rapop1, radiation-induced apoptosis 1) controlling susceptibility to radiation-induced apoptosis in the thymus is located in the proximal region of mouse chromosome 16.  相似文献   

5.
The strain distribution pattern of susceptibility to thymocyte apoptosis induced by ionizing radiation in 20 CcS/Dem recombinant congenic (RC) strains derived from the strains BALB/cHeA (susceptible) and STS/A (resistant) indicates that this trait is controlled by several genes. Recently, we mapped a novel apoptosis susceptibility gene Rapop1 (radiation-induced apoptosis 1) to chromosome 16 (N. Mori et al., 1995, Genomics 25: 604-614). In the present study, the analysis of F2 crosses between the resistant RC strain CcS-8 and the susceptible strain BALB/cHeA or the highly susceptible RC strain CcS-10 demonstrated two additional apoptosis susceptibility genes, Rapop2 and Rapop3, located in the proximal region of chromosome 9 and the telomeric region of chromosome 3, respectively. The possible candidate genes for these loci are discussed.  相似文献   

6.
Apoptosis, a mechanism for removal of genetically damaged cells and for maintenance of desired size of cell populations, has been implicated in tumor development. Previously, we defined polymorphic loci for susceptibility to apoptosis of thymocytes Rapop1, Rapop2, and Rapop3 on mouse Chromosomes 16, 9, and 3, respectively, using recombinant congenic CcS/Dem strains, each of which contains a random set of 12.5% STS/A genome in the genetic background of BALB/cHeA. The STS/A alleles at these loci confer lower susceptibility to radiation-induced apoptosis of thymocytes than the BALB/cHeA. In the present study, we tested susceptibility of colon crypt cells to radiation-induced apoptosis. In contrast to apoptosis in thymus, the STS/A mice were more susceptible to apoptosis in colon than the BALB/cHeA. Among the CcS/Dem strains, CcS-4, CcS-7, and CcS-16 were more susceptible to apoptosis in colon than the BALB/cHeA; in thymus, the CcS-7 mice are less susceptible, and the CcS-4 and CcS-16 are not different from the BALB/cHeA. Thus, individual CcS/Dem strains showed different apoptosis susceptibility in the two organs. Analysis of (CcS-7 × BALB/cHeA)F2 hybrids revealed linkage of susceptibility to radiation-induced apoptosis of colon crypt cells to two loci on Chrs 9 and 16, to which Rapop2 and Rapop1 are mapped. The STS/A allele at the locus on chromosome 9 results in high susceptibility to apoptosis of colon crypt cells in mice homozygous for the BALB/cHeA allele at the locus on Chr 16. Although these two loci may be identical to Rapop1 and Rapop2, they affect apoptosis in colon in a way different from that in thymus. Received: 9 October 1997 / Accepted: 29 December 1997  相似文献   

7.

Background

Trypanosoma brucei brucei infects livestock, with severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to this parasite. However, no genes controlling these differences were mapped.

Methods

We studied the genetic control of survival after T. b. brucei infection using recombinant congenic (RC) strains, which have a high mapping power. Each RC strain of BALB/c-c-STS/A (CcS/Dem) series contains a different random subset of 12.5% genes from the parental “donor” strain STS/A and 87.5% genes from the “background” strain BALB/c. Although BALB/c and STS/A mice are similarly susceptible to T. b. brucei, the RC strain CcS-11 is more susceptible than either of them. We analyzed genetics of survival in T. b. brucei-infected F2 hybrids between BALB/c and CcS-11. CcS-11 strain carries STS-derived segments on eight chromosomes. They were genotyped in the F2 hybrid mice and their linkage with survival was tested by analysis of variance.

Results

We mapped four Tbbr (Trypanosoma brucei brucei response) loci that influence survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have effects on survival independent of inter-genic interactions (main effects). Tbbr3 (chromosome 7) influences survival in interaction with Tbbr4 (chromosome 19). Tbbr2 is located on a segment 2.15 Mb short that contains only 26 genes.

Conclusion

This study presents the first identification of chromosomal loci controlling susceptibility to T. b. brucei infection. While mapping in F2 hybrids of inbred strains usually has a precision of 40–80 Mb, in RC strains we mapped Tbbr2 to a 2.15 Mb segment containing only 26 genes, which will enable an effective search for the candidate gene. Definition of susceptibility genes will improve the understanding of pathways and genetic diversity underlying the disease and may result in new strategies to overcome the active subversion of the immune system by T. b. brucei.  相似文献   

8.
The development of tumors in mice is under multigenic control, but, in spite of considerable efforts, the identification of the genes involved has so far been unsuccessful, because of the insufficient resolution power of the available genetic tools. Therefore, a novel genetic tool, the RC (Recombinant Congenic) strains system, was designed. In this system, a series of RC strains is produced from two inbred strains, a background strain and a donor strain. Each RC strain contains a different small subset of genes from the donor strain and the majority of genes from the background strain. As a consequence, the individual genes of the donor strain which are involved in the genetic control of a multigenic trait, become separated into different RC strains, where they can be identified and studied individually. One of the RC strains series which we produced is made from the parental strains BALB/cHeA (background strain) and STS/A (donor strain). We describe the genetic composition of this BALB/cHeA-C-STS/A (CcS/Dem) series and show, using 45 genetic autosomal markers, that it does not deviate from the theoretical expectation. We studied the usefulness of the CcS/Dem RC strains for analysis of the genetics of colon tumor development. The two parental strains, BALB/cHeA and STS/A, are relatively resistant and highly susceptible, respectively, to the induction of colon tumors by 1,2-dimethylhydrazine (DMH). The individual RC strains differ widely in colon tumor development after DMH treatment; some are highly susceptible, while others are very resistant. This indicates that a limited number of genes with a major effect are responsible for the high susceptibility of the STS strain. Consequently, these genes can be mapped by further analysis of the susceptible RC strains. The differences between the RC strains were not limited to the number of tumors, but the RC strains differed also in size of the tumors and the relative susceptibility of the two sexes. Our data indicate that the number of tumors and the size of tumors are not controlled by the same genes. The genetics of these different aspects of colon tumorigenesis can also be studied by the RC strains. The DMH-treated mice of the parental strains and the RC strains also developed anal tumors and haemangiomas in varying numbers. The strain distribution pattern (SDP) of susceptibility for each of the three types of tumors induced by DMH is different, indicating that development of these tumors is under control of different, largely non-overlapping, sets of genes. Thus, with a single series of RC strains, genes involved in tumorigenesis in various organs and tissues can be studied separately. These results indicate that the novel genetic tool, the RC strain system, offers new possibilities for analysis of the multigenic control of tumor development.  相似文献   

9.
A new strain of mice with cataracts was developed in BALB/cHeA and STS/A recombinant inbred strain, CXS4 (D). In this study the mapping of spontaneous autosomal recessive cataract mutation is described. This mutation was characterized by ruptures of the lens nucleus, vitreous chamber through the posterior capsule, and the vacuolization of the lens. For the linkage analysis, we produced two kinds of backcross progenies, (BALB/cHeA × D)F1 and (STS/A × D)F1 females crossed to D male mice. The gene (lr2, lens rupture2) was mapped to the central part of Chromosome(Chr) 14, 0.7 ± 0.7cM from the micosatellite marker D14Mit28. Received: 13 October 1996 / Accepted: 22 July 1997  相似文献   

10.
Genetic predisposition controlled by susceptibility quantitative trait loci (QTLs) contributes to a large proportion of common cancers. Studies of genetics of cancer susceptibility, however, did not address systematically the relationship between susceptibility to cancers in different organs. We present five sets of data on genetic architecture of colon and lung cancer susceptibility in mice, humans and rats. They collectively show that the majority of genes for colon and lung cancer susceptibility are linked pair-wise and are likely identical or related. Four CcS/Dem recombinant congenic strains, each differing from strain BALB/cHeA by a different small random subset of ±12.5% of genes received from strain STS/A, suggestively show either extreme susceptibility or extreme resistance for both colon and lung tumors, which is unlikely if the two tumors were controlled by independent susceptibility genes. Indeed, susceptibility to lung cancer (Sluc) loci underlying the extreme susceptibility or resistance of such CcS/Dem strains, mapped in 226 (CcS-10 x CcS-19)F2 mice, co-localize with susceptibility to colon cancer (Scc) loci. Analysis of additional Sluc loci that were mapped in OcB/Dem strains and Scc loci in CcS/Dem strains, respectively, shows their widespread pair-wise co-localization (P = 0.0036). Finally, the majority of published human and rat colon cancer susceptibility genes map to chromosomal regions homologous to mouse Sluc loci. 12/12 mouse Scc loci, 9/11 human and 5/7 rat colon cancer susceptibility loci are close to a Sluc locus or its homologous site, forming 21 clusters of lung and colon cancer susceptibility genes from one, two or three species. Our data shows that cancer susceptibility QTLs can have much broader biological effects than presently appreciated. It also demonstrates the power of mouse genetics to predict human susceptibility genes. Comparison of molecular mechanisms of susceptibility genes that are organ-specific and those with trans-organ effects can provide a new dimension in understanding individual cancer susceptibility.  相似文献   

11.

Background

Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models.

Methods

We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured.

Principal Findings

Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain.

Conclusion

Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes.  相似文献   

12.
Cataract causing lr2 gene is found in the CXSD mouse, which is a recombinant inbred strain of BALB/c and STS mice. For the process of positional cloning of lr2, several candidate genes were selected in the middle region of chromosome 14, but most of them were excluded by combination of recombination and homozygosity mapping. Components of neurofilament proteins, neurofilament light polypeptide (Nefl) and neurofilament3 medium (Nef3), were linked to D14Mit87 which was not separated from the lr2 locus in the homozygosity mapping. When the expression levels of Nefl and Nef3 in eyes were compared in CXSD and BALB/c mice, there were no differences in expression levels. The cDNA sequences of the two genes from CXSD, BALB/c and STS mice were subsequently compared. Several nucleotide differences in cDNA sequences were detected between the mice strains but the majority of the changes were silent mutations that did not alter the amino acids. The sole amino acid difference, E567K in the glutamate rich region of Nfm, between BALB/c and CXSD was found to be a simple genetic polymorphism because the same substitution existed in STS, a non-cataract mouse strain. Therefore we excluded Nefl and Nef3 from the candidate genes for lr2 based on expression and mutation analyses.  相似文献   

13.
To understand the role of genetic factors involved in the development of spontaneous arthritis in mice deficient in IL-1 receptor antagonist protein (IL_1RA), we have identified a genomic region containing a major quantitative trait locus (QTL) for this disease. The QTL is on chromosome 1 and appears to be the strongest genetic region regulating arthritis. To confirm the importance of the QTL and to identify potential candidate genes within it, we conducted speed congenic breeding to transfer the QTL region from DBA/1 mice that are resistant to spontaneous arthritis into BALB/c−/− which are susceptible. Genetic markers along every chromosome were used to assist in the selection of progeny in each generation to backcross to BALB/c−/−. By the 6th generation we determined that all of the chromosomes in the progeny were of BALB/c origin with the exception of portions of chromosome 1. At this stage we intercrossed selected mice to produce homozygous strains containing the genomic background of BALB/c−/− except for the QTL region on chromosome 1, which was from DBA/1. We were able to establish two congenic strains with overlapping DBA/1 DNA segments. These strains were observed for the development of spontaneous arthritis. Both congenic strains were relatively resistant to spontaneous arthritis and had delayed onset and reduced severity of disease. The gene/s that regulates this major QTL would appear to be located in the region of the QTL that is shared by both strains. The common transferred region is between D1Mit110 and D1Mit209 on chromosome 1. We evaluated this region for candidate genes and have identified a limited number of candidates. Confirmation of the identity and precise role of the candidates will require additional study.  相似文献   

14.

Background

Sex influences susceptibility to many infectious diseases, including some manifestations of leishmaniasis. The disease is caused by parasites that enter to the skin and can spread to the lymph nodes, spleen, liver, bone marrow, and sometimes lungs. Parasites induce host defenses including cell infiltration, leading to protective or ineffective inflammation. These responses are often influenced by host genotype and sex. We analyzed the role of sex in the impact of specific gene loci on eosinophil infiltration and its functional relevance.

Methods

We studied the genetic control of infiltration of eosinophils into the inguinal lymph nodes after 8 weeks of Leishmania major infection using mouse strains BALB/c, STS, and recombinant congenic strains CcS-1,-3,-4,-5,-7,-9,-11,-12,-15,-16,-18, and -20, each of which contains a different random set of 12.5% genes from the parental “donor” strain STS and 87.5% genes from the “background” strain BALB/c. Numbers of eosinophils were counted in hematoxylin-eosin-stained sections of the inguinal lymph nodes under a light microscope. Parasite load was determined using PCR-ELISA.

Results

The lymph nodes of resistant STS and susceptible BALB/c mice contained very low and intermediate numbers of eosinophils, respectively. Unexpectedly, eosinophil infiltration in strain CcS-9 exceeded that in BALB/c and STS and was higher in males than in females. We searched for genes controlling high eosinophil infiltration in CcS-9 mice by linkage analysis in F2 hybrids between BALB/c and CcS-9 and detected four loci controlling eosinophil numbers. Lmr14 (chromosome 2) and Lmr25 (chromosome 5) operate independently from other genes (main effects). Lmr14 functions only in males, the effect of Lmr25 is sex independent. Lmr15 (chromosome 11) and Lmr26 (chromosome 9) operate in cooperation (non-additive interaction) with each other. This interaction was significant in males only, but sex-marker interaction was not significant. Eosinophil infiltration was positively correlated with parasite load in lymph nodes of F2 hybrids in males, but not in females.

Conclusions

We demonstrated a strong influence of sex on numbers of eosinophils in the lymph nodes after L. major infection and present the first identification of sex-dependent autosomal loci controlling eosinophilic infiltration. The positive correlation between eosinophil infiltration and parasite load in males suggests that this sex-dependent eosinophilic infiltration reflects ineffective inflammation.
  相似文献   

15.
This work reports results of re-infection of BALB/c and C57BL/6 mice with different recombinant strains of Toxoplasma gondii. Mice were prime-infected with the non-virulent D8 strain and challenged with virulent strains. PCR–RFLP of cS10-A6 genetic marker of T. gondii demonstrated that BALB/c mice were re-infected with the EGS strain, while C57BL/6 mice were re-infected with the EGS and CH3 strains. Levels of IFN-γ and IL-10 after D8 prime-infection were lower in C57BL/6 than in BALB/c mice. Brain inflammation after D8 prime-infection was more intense in C57BL/6 than in BALB/c mice. It was shown that re-infection depends on mice lineage and genotype of the strain used in the challenge.  相似文献   

16.
A chlorambucil (CHL)-induced mutation of thejcpk(juvenile congenital polycystic kidney disease) gene causes a severe early onset polycystic kidney disease. In an intercross involvingMus musculus castaneus, jcpkwas precisely mapped 0.2 cM distal toD10Mit115and 0.8 cM proximal toD10Mit173.In addition, five genes,Cdc2a, Col6a1, Col6a2, Bcr,andAnk3were mapped in both thisjcpkintercross and a (BALB/c × CAST/Ei)F1× BALB/c backcross. All five genes were eliminated as possible candidates forjcpkbased on the mapping data. Thejcpkintercross allowed the orientation of theAnk3gene relative to the centromere to be determined.D10Mit115, D10Mit173, D10Mit199,andD10Mit200were separated genetically in this cross. The order and genetic distances of all markers and gene loci mapped in thejcpkintercross were consistent with those derived from the BALB/c backcross, indicating that the CHL-induced lesion has not generated any gross chromosomal abnormalities detectable in these studies.  相似文献   

17.
Strain distribution patterns (SDPs) of selected loci previously mapped to murine Chromosomes (Chrs) 10, 13, 17, and 18 are reported for the AXB, BXA recombinant inbred (RI) strain set derived from the progenitor strains A/J (A) and C57BL/6J (B). The loci included the simple sequence length polymorphisms (D10Nds1, D10Mit2, D10Mit10, D10Mit14, D13Mit3, D13Nds1, D13Mit10, D13Mit13, D13Mit7, D13Mit11, D17Mit18, D17Mit10, D17Mit20, D17Mit3, D17Mit2, D18Mit17, D18Mit9, and D18Mit4), the restriction fragment length polymorphisms Pdea and Csfmr, and the biochemical marker AS-1. These loci were chosen because they map to genomic regions that had few or no genetic markers in the AXB, BXA RI set. Several of these loci also were typed in backcross progeny of matings of the (AXB)F1 to strain A or B. The strain distribution patterns for chromosomes 10, 13, 17, and 18 are reported, and the gene order and map distances determined from the backcross data. The addition of these markers to the AXB, BXA RI strain set increases the genomic region over which linkage for new markers can be detected.  相似文献   

18.
19.
Using interspecific crosses between BALB/c and Mus spretus (SEG) mice, the murine reeler (rl) gene was mapped to the proximal region of chromosome 5 between the hepatocyte growth factor gene (Hgf) and the D5Mit66 microsatellite. The following order was defined: (centromere)-Cchl2a/Hgf-D5Mit1-D5Nam1/D5Nam2 - rl/D5Mit61 - D5Mit72 - Xmv45 - Htr5a - Peplb - D5Nam3-D5Mit66. Estimated distances between reeler and the nearest flanking markers D5Nam1 and D5Mit72 are 1.5 and 1.0 cM, respectively (95% confidence level), suggesting that the region could be physically mapped using a manageable number of YAC clones.  相似文献   

20.
(B10 × BALB/c)F1 anti B10.D2/n effector cells obtained after in vitro restimulation of spleen cells from in vivo primed mice react in the CML assay with B10.D2/n target cells and target cells from certain otherH-2D d carrying strains. The gene controlling the antigen involved maps proximal toH-2K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号