首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
The polymerization of 7S IgMs from normal rabbit lymphoid cells, stimulated either with antigen or with mitogen (Con A), has been studied. The process was analyzed by characterizing the various molecular forms by sucrose gradient sedimentation and susceptibility to anti-μ serum and 2-mercaptoethanol. It has been shown that native J chain and an enzyme are both required for the proper assembly of IgM pentamer. The enzyme preparation (PMF) is active only if it is extracted from spleen cells stimulated to IgM production. When the extract is prepared from nonstimulated lymphoid cells, or from liver cells, incubation of IgMs with PMF does not lead to the formation of 19S IgM, but to molecules of intermediate size and to various aggregates. It is shown that antibody activity of IgMs and of these heterogeneous polymers are not susceptible to treatment with 2-mercaptoethanol. In contrast, antibody activity of the pentameric IgM is completely inhibited by 2-mercaptoethanol. A PMF inhibitory substance was present in the postmicrosomal supernatant. When added in the incubation medium, this substance prevented the proper polymerization. Its eventual role in IgM biosynthesis in nonstimulated, and specifically stimulated cells is discussed compared with mitogen stimulated cells, and tumor lymphoid cells.  相似文献   

2.
The assembly of reduced pro-alpha chains of type I and type II procollagen into the native triple-helical molecule was examined in vitro in the presence and absence of pure protein disulfide isomerase. The data clearly indicates that protein disulfide isomerase is able to accelerate the formation of native interchain disulfide bonds in these procollagens. It takes about 6 min after disulfide bonding before triple-helical molecules exist, while the time required to produce triple-helical type I procollagen in the presence of protein disulfide isomerase is 9.4 min and that for type II procollagen 17.2 min. These values agree with those obtained for type I and II procollagen in vivo suggesting that protein disulfide isomerase is also an enzyme catalyzing interchain disulfide bond formation in procollagen in vivo. The formation of native disulfide bonds can proceed without any enzyme catalysis but then requires the presence of reduced and oxidized glutathione. Bonding is rather slow in such a case, however, resulting in a delay in the formation of the triple helix.  相似文献   

3.
A complex between secretory component and an immunoglobulin A (IgA) myeloma dimer has been studied in vitro as a model to elucidate the mechanism of the formation of disulfide bonds during assembly in vivo of secretory immunoglobin A. A small amount of free thiol groups, totally about 0.4 groups per mole of protein, were shown to be present on both the heavy and light chains of the IgA dimer, but not on its J-chain, while no such groups could be demonstrated on free secretory component. The SH-groups on IgA most likely exist as a result of incomplete oxidation of some intra-or interchain disulfide bonds of the molecule, analogous to what has been suggested for IgG. Several types of evidence indicated that the disulfide bonds between secretory component and IgA are formed after the noncovalent association of the two proteins by a sulfhydryl group-disulfide bond exchange reaction, in which the small amount of free sulfhydryl groups on the IgA dimer initiate the reaction by reducing a reactive disulfide bond on secretory component. This exchange reaction, which thus proceeds by the mechanism of so-called disulfide interchange reactions, requires certain conformational features of one or both of the proteins and leads to the formation of presumably two new interchain disulfide bonds between secretory component and IgA. The reaction does not progress to completion, however, but ends in an equilibrium so that a small proportion of the secretory component molecules always are unattached by disulfide bonds.  相似文献   

4.
5.
Ly108: a new member of the mouse CD2 family of cell surface proteins   总被引:3,自引:0,他引:3  
Peck SR  Ruley HE 《Immunogenetics》2000,52(1-2):63-72
  相似文献   

6.
H F Gilbert 《Biochemistry》1989,28(18):7298-7305
Protein disulfide-isomerase, a protein localized to the lumen of the endoplasmic reticulum of eukaryotic cells, catalyzes the posttranslational formation and rearrangement of protein disulfide bonds. As isolated from bovine liver, the enzyme contains 0.8 free sulfhydryl group per mole of protein monomer and 3.1 disulfide bonds. Single-turnover experiments in which the disulfide bonds of the native enzyme are reduced by glutathione reveal three distinct reduction steps corresponding to the sequential reduction of the three disulfide bonds. The fastest disulfide to be reduced undergoes a change in the rate-determining step with increasing GSH concentration from a step which is second-order with respect to GSH concentration to a step which is first-order in GSH concentration. The disulfide which is reduced at an intermediate rate displays kinetics that are first-order in GSH concentration, and the slowest disulfide to be reduced exhibits kinetics which are second-order in GSH concentration. The enzyme catalyzes the steady-state reduction of a disulfide-containing hexapeptide (CYIQNC) by GSH. Initial velocity kinetic experiments are consistent with a sequential addition of the substrates to the enzyme. Saturation behavior is not observed at high levels of both substrates (Km for GSH much greater than 14 mM, Km for CYIQNC much greater than 1 mM). Only one of the three disulfides appears to be kinetically competent in the steady-state reduction of CYIQNC by GSH. The second-order thiol/disulfide exchange reactions catalyzed by the enzyme are 400-6000-fold faster than the corresponding uncatalyzed reactions.  相似文献   

7.
Few experimental models have been used to investigate how proteins fold inside a cell. Using the formation of disulfide bonds as an index of conformational changes during protein folding, we have developed a unique system to determine the intracellular folding pathway of the beta subunit of human chorionic gonadotropin (hCG). Three folding intermediates of the beta subunit were purified from [35S]cysteine-labeled JAR choriocarcinoma cells by immunoprecipitation and by reverse-phase high performance liquid chromatography (HPLC). To identify unformed disulfide bonds, nonreduced folding intermediates were treated with trypsin to liberate non-disulfide-bound, [35S]cysteine-containing peptides from the disulfide-linked peptides. Released peptides were purified by HPLC and identified by amino acid sequencing. The amount of a peptide that was released indicated the extent of disulfide bond formation involving the cysteine in that peptide. Of the six disulfide bonds in hCG-beta, bonds 34-88 and 38-57 form first. The rate-limiting event of folding involves the formation of the S-S bonds between cysteines 23 and 72 and cysteines 9 and 90. Disulfide bond 93-100, the formation of which appears to be necessary for assembly with the alpha subunit of the hCG heterodimer, forms next. Finally, disulfide bond 26-110 forms after assembly with the alpha subunit, suggesting that completion of folding of the COOH terminus in the beta subunit occurs after assembly with the alpha subunit.  相似文献   

8.
We have shown previously that immunoglobulin M (IgM) is present within IgM-forming cells mainly in its 7S subunit form (IgMs), whereas only fully assembled IgM pentamers are secreted. There is no spontaneous polymerization of intracellular IgMs in cell lysates, suggesting that the 7S subunits had blocked cysteine residues. This suggestion was explored and confirmed in the present paper. Radioactive IgM (secreted) and IgMs (intracellular) were prepared by sucrose-density-gradient centrifugation after incubation of cells of the IgM-producing mouse myeloma MOPC 104E with [(3)H]leucine. We investigated the susceptibility to reduction of fully assembled mouse IgM and its reconstitution from subunits by analysis by polyacrylamide-gel electrophoresis under dissociating conditions. With increasing concentrations of dithioerythritol, interchain disulphide bonds were cleaved in the following order: inter-IgMs subunit, intra-IgMs subunit H-H, intra-IgMs subunit H-L. Removal of the reducing agent from IgM-reduction mixtures by filtration through Sephadex G-25 caused partial reconstitution of IgM at low protein concentrations (5-100mug/ml) and total reconstitution at higher protein concentrations (300mug/ml or more). Isolated radioactive intracellular IgMs showed no tendency to polymerize unless first treated with a reducing agent; under optimum conditions removal of the reducing agent caused 70% of the subunits to be assembled into IgM. Similar assembly occurred when IgMs was isolated from cells that had been lysed in the presence of an irreversible alkylating reagent (iodoacetamide). The intracellular IgMs cysteine residues responsible for inter-IgMs linkage therefore appear to be reversibly blocked within the cells. Assembly into IgM is thus controlled by removal of this block during secretion.  相似文献   

9.
Summary The assembly domain of cartilage oligomeric matrix protein (COMP) forms an α-helical coiled coil homopentamer with a conserved polar glutamine in the interior (d) position. We substituted Gln54 for apolar Leu in the recombinant fragment of the rat COMP domain. Biochemical studies and circular dichroism (CD) spectroscopy showed that the mutant, similarly to the wild-type (w.t.) peptide, forms spontaneously an α-helical pentamer. Thermal transitions of the w.t. and mutant pentamers were analyzed by CD spectroscopy and differential scanning calorimetry. The Gln54Leu mutation increased the thermal stability of the pentamer with reduced disulfide bonds from 73°C to 104°C. The denaturation of the disulfide bonded w.t. pentamer was observed at 108°C while the mutant pentamer cannot be denatured up to 120°C (the apparatus limit). Thus, by Gln54Leu mutation we found a way to significantly stabilize the coiled coil pentamer, making this peptide even more attractive as an oligomerization tool for various biotechnological applications.  相似文献   

10.
A new database search algorithm has been developed to identify disulfide-linked peptides in tandem MS data sets. The algorithm is included in the newly developed tandem MS database search program, MassMatrix. The algorithm exploits the probabilistic scoring model in MassMatrix to achieve identification of disulfide bonds in proteins and peptides. Proteins and peptides with disulfide bonds can be identified with high confidence without chemical reduction or other derivatization. The approach was tested on peptide and protein standards with known disulfide bonds. All disulfide bonds in the standard set were identified by MassMatrix. The algorithm was further tested on bovine pancreatic ribonuclease A (RNaseA). The 4 native disulfide bonds in RNaseA were detected by MassMatrix with multiple validated peptide matches for each disulfide bond with high statistical scores. Fifteen nonnative disulfide bonds were also observed in the protein digest under basic conditions (pH = 8.0) due to disulfide bond interchange. After minimizing the disulfide bond interchange (pH = 6.0) during digestion, only one nonnative disulfide bond was observed. The MassMatrix algorithm offers an additional approach for the discovery of disulfide bond from tandem mass spectrometry data.  相似文献   

11.
The final assembly of rotavirus particles takes place in the endoplasmic reticulum (ER). In this work, we evaluated by RNA interference the relevance to rotavirus assembly and infectivity of grp78, protein disulfide isomerase (PDI), grp94, calnexin, calreticulin, and ERp57, members of the two ER folding systems described herein. Silencing the expression of grp94 and Erp57 had no effect on rotavirus infectivity, while knocking down the expression of any of the other four chaperons caused a reduction in the yield of infectious virus of about 50%. In grp78-silenced cells, the maturation of the oligosaccharide chains of NSP4 was retarded. In cells with reduced levels of calnexin, the oxidative folding of VP7 was impaired and the trimming of NSP4 was accelerated, and in calreticulin-silenced cells, the formation of disulfide bonds of VP7 was also accelerated. The knockdown of PDI impaired the formation and/or rearrangement of the VP7 disulfide bonds. All these conditions also affected the correct assembly of virus particles, since compared with virions from control cells, they showed an altered susceptibility to EGTA and heat treatments, a decreased specific infectivity, and a diminished reactivity to VP7 with monoclonal antibody M60, which recognizes only this protein when its disulfide bonds have been correctly formed. In the case of grp78-silenced cells, the virus produced bound less efficiently to MA104 cells than virus obtained from control cells. All these results suggest that these chaperones are involved in the quality control of rotavirus morphogenesis. The complexity of the steps of rotavirus assembly that occur in the ER provide a useful model for studying the organization and operation of the complex network of chaperones involved in maintaining the quality control of this organelle.  相似文献   

12.
Antibodies provide an excellent system to study the folding and assembly of all beta-sheet proteins and to elucidate the hierarchy of intra/inter chain disulfide bonds formation during the folding process of multimeric and multidomain proteins. Here, the folding process of the Fc fragment of the heavy chain of the antibody MAK33 was investigated. The Fc fragment consists of the C(H)3 and C(H)2 domains of the immunoglobulin heavy chain, both containing a single S-S bond. The folding process was investigated both in the absence and presence of the folding catalyst protein-disulfide isomerase (PDI), monitoring the evolution of intermediates by electrospray mass spectrometry. Moreover, the disulfide bonds present at different times in the folding mixture were identified by mass mapping to determine the hierarchy of disulfide bond formation. The analysis of the uncatalyzed folding showed that the species containing one intramolecular disulfide predominated throughout the entire process, whereas the fully oxidized Fc fragment never accumulated in significant amounts. This result suggests the presence of a kinetic trap during the Fc folding, preventing the one-disulfide-containing species (1S2H) to reach the fully oxidized protein (2S). The assignment of disulfide bonds revealed that 1S2H is a homogeneous species characterized by the presence of a single disulfide bond (Cys-130-Cys-188) belonging to the C(H)3 domain. When the folding experiments were carried out in the presence of PDI, the completely oxidized species accumulated and predominated at later stages of the process. This species contained the two native S-S bonds of the Fc protein. Our results indicate that the two domains of the Fc fragment fold independently, with a precise hierarchy of disulfide formation in which the disulfide bond, especially, of the C(H)2 domain requires catalysis by PDI.  相似文献   

13.
The elicitation of contact sensitivity (CS) to local skin challenge with the hapten trinitrophenyl (TNP) chloride requires an early process that is necessary for local recruitment of CS-effector T cells. This is called CS initiation and is due to the B-1 subset of B cells activated at immunization to produce circulating IgM Ab. At challenge, the IgM binds hapten Ag in a complex that locally activates C to generate C5a that aids in T cell recruitment. In this study, we present evidence that CS initiation is indeed mediated by C-activating classic IgM anti-TNP pentamer. We further demonstrate the involvement of IgM subunits derived either from hybridomas or from lymphoid cells of actively immunized mice. Thus, reduced and alkylated anti-TNP IgM also initiates CS, likely due to generated H chain-L chain dimers, as does a mixture of separated H and L chains that still could weakly bind hapten, but could not activate C. Remarkably, anti-TNP kappa L chains alone mediated CS initiation that was C-independent, but was dependent on mast cells. Thus, B-1 cell-mediated CS initiation required for T cell recruitment is due to activation of C by specific IgM pentamer, and also subunits of IgM, while kappa L chains act via another C-independent but mast cell-dependent pathway.  相似文献   

14.
Rotavirus undergoes a unique mode of assembly in the rough endoplasmic reticulum (RER) of infected cells. Luminal RER proteins undergo significant cotranslational and posttranslational modifications, including disulfide bond formation. Addition of a reducing agent (dithiothreitol [DTT]) to rotavirus-infected cells did not significantly inhibit translation or disrupt established disulfide bonds in rotavirus proteins but prevented the formation of new disulfide bonds and infectious viral progeny. In DTT-treated, rotavirus-infected cells, all vp4, vp6, and ns28 epitopes but no vp7 epitopes were detected by immunohistochemical staining with a panel of monoclonal antibodies. When oxidizing conditions were reestablished in DTT-treated cells, intramolecular disulfide bonds in vp7 were rapidly and correctly established with the restoration of antigenicity, although prolonged DTT treatment led to the accumulation of permanently misfolded vp7. Electron microscopy revealed that cytosolic assembly of single-shelled particles and budding into the ER was not affected by DTT treatment but that outer capsid assembly was blocked, leading to the accumulation of single-shelled and enveloped intermediate subviral particles in the RER lumen.  相似文献   

15.
Conformation, structure, and oligomeric state of immunoglobulins not only control quality and functional properties of antibodies but are also critical for immunoglobulins secretion. Unassembled immunoglobulin heavy chains are retained intracellularly by delayed folding of the C(H)1 domain and irreversible interaction of BiP with this domain. Here we show that the three C(H)1 cysteines play a central role in immunoglobulin folding, assembly, and secretion. Remarkably, ablating all three C(H)1 cysteines negates retention and enables BiP cycling and non-canonical folding and assembly. This phenomenon is explained by interdependent formation of intradomain and interchain disulfides, although both bonds are dispensable for secretion. Substituting Cys-195 prevents formation not only of the intradomain disulfide, but also of the interchain disulfide bond with light chain, BiP displacement, and secretion. Mutating the light chain-interacting Cys-128 hinders disulfide bonding of intradomain cysteines, allowing their opportunistic bonding with light chain, without hampering secretion. We propose that the role of C(H)1 cysteines in immunoglobulin assembly and secretion is not simply to engage in disulfide bridges, but to direct proper folding and interact with the retention machinery.  相似文献   

16.
Lymphoid cell lines were isolated that were inducible for the expression of surface immunoglobulin by shift from 35.5 to 39.5 degrees C after infection of mouse bone marrow cells with a mutagen-treated Abelson murine leukemia virus. Virus produced by one of the cell lines (ts49) transmitted the temperature-sensitive phenotype to new lymphoid transformants as well as to NIH/3T3 cells. In addition, the tyrosine autophosphorylating activity of the p120gag-abl protein synthesized in ts49-transformed cells was found to be temperature-sensitive. Shift experiments using ts49-transformed lymphoid cells showed that at 39.5 degrees C they synthesize increased amounts of mu and kappa chain RNA and protein, and that they can be further induced to secrete IgM when treated with lipopolysaccharide.  相似文献   

17.
The in vivo formation of disulfide bonds, which is critical for the stability and/or activity of many proteins, is catalyzed by thiol-disulfide oxidoreductases. In the present studies, we show that the Gram-positive eubacterium Bacillus subtilis contains three genes, denoted bdbA, bdbB, and bdbC, for thiol-disulfide oxidoreductases. Escherichia coli alkaline phosphatase, containing two disulfide bonds, was unstable when secreted by B. subtilis cells lacking BdbB or BdbC, and notably, the expression levels of bdbB and bdbC appeared to set a limit for the secretion of active alkaline phosphatase. Cells lacking BdbC also showed decreased stability of cell-associated forms of E. coli TEM-beta-lactamase, containing one disulfide bond. In contrast, BdbA was not required for the stability of alkaline phosphatase or beta-lactamase. Because BdbB and BdbC are typical membrane proteins, our findings suggest that they promote protein folding at the membrane-cell wall interface. Interestingly, pre-beta-lactamase processing to its mature form was stimulated in cells lacking BdbC, suggesting that the unfolded form of this precursor is a preferred substrate for signal peptidase. Surprisingly, cells lacking BdbC did not develop competence for DNA uptake, indicating the involvement of disulfide bond-containing proteins in this process. Unlike E. coli and yeast, none of the thiol-disulfide oxidoreductases of B. subtilis was required for growth in the presence of reducing agents. In conclusion, our observations indicate that BdbB and BdbC have a general role in disulfide bond formation, whereas BdbA may be dedicated to a specific process.  相似文献   

18.
We have investigated the in vivo co-translational covalent modification of nascent immunoglobulin heavy and light chains. Nascent polypeptides were separated from completed polypeptides by ion-exchange chromatography of solubilized ribosomes on QAE-Sephadex. First, we have demonstrated that MPC 11 nascent heavy chains are quantitatively glycosylated very soon after the asparaginyl acceptor site passes through the membrane into the cisterna of the rough endoplasmic reticulum. Nonglycosylated completed heavy chains of various classes cannot be glycosylated after release from the ribosome, due either to rapid intramolecular folding and/or intermolecular assembly, which cause the acceptor site to become unavailable for the glycosylation enzyme. Second, we have shown that the formation of the correct intrachain disulfide loop within the first light chain domain occurs rapidly and quantitatively as soon as the appropriate cysteine residues of the nascent light chain pass through the membrane into the cisterna of the endoplasmic reticulum. The intrachain disulfide loop in the second or constant region domain of the light chain is not formed on nascent chains, because one of the cysteine residues involved in this disulfide bond does not pass through the endoplasmic reticulum membrane prior to chain completion and release from the ribosome. Third, we have demonstrated that some of the initial covalent assembly (formation of interchain disulfide bonds) occurs on nascent heavy chains prior to their release from the ribosome. The results are consistent with the pathway of covalent assembly of the cell line, in that completed light chains are assembled onto nascent heavy chains in MPC 11 cells (IgG2b), where a heavy-light half molecule is the major initial covalent intermediate; and completed heavy chains are assembled onto nascent heavy chains in MOPC 21 cells (IgG1), where a heavy chain dimer is the major initial disulfide linked intermediate.  相似文献   

19.
D C John  M E Grant    N J Bulleid 《The EMBO journal》1993,12(4):1587-1595
Prolyl 4-hydroxylase (P4-H) catalyses a vital post-translational modification in the biosynthesis of collagen. The enzyme consists of two distinct polypeptides forming an alpha 2 beta 2 tetramer (alpha = 64 kDa, beta = 60 kDa), the beta-subunit being identical to the multifunctional enzyme protein disulfide isomerase (PDI). By studying the cell-free synthesis of the rat alpha-subunit of P4-H we have shown that the alpha-subunit can be translocated, glycosylated and the signal peptide cleaved by dog pancreatic microsomal membranes to yield both singly and doubly glycosylated forms. When translations were carried out under conditions which prevent disulfide bond formation, the product synthesized formed aggregates which were associated with the immunoglobulin heavy chain binding protein (BiP). Translations carried out under conditions that promote disulfide bond formation yielded a product that was not associated with BiP but formed a complex with the endogenous beta-subunit (PDI). Complex formation was detected by co-precipitation of the newly synthesized alpha-subunit with antibodies raised against PDI, by sucrose gradient centrifugation and by chemical cross-linking. When microsomal vesicles were depleted of PDI, BiP and other soluble endoplasmic reticulum proteins, no complex formation was observed and the alpha-subunit aggregated even under conditions that promote disulfide bond formation. We have therefore demonstrated that the enzyme P4-H can be assembled at synthesis in a cell-free system and that the solubility of the alpha-subunit is dependent upon its association with PDI.  相似文献   

20.
Four cloned continuously cultured mouse T lymphoma cell lines, WEHI-22.1, WEHI-7.1, S49.1, and EL-4.1, were examined for immunoglobulin biosynthesis and the presence of immunoglobulin on the cell surface. Incorporation of [-3H]leucine into cellular proteins followed by serological analysis showed that immunoglobulin constituted between 0.1 and 1.1 percent of protein synthesized by the different cell lines during a 6-hr period. Under the same conditions cultured cells of nonlymphoid origin, the mastocytoma P-815 X-2.1, did not synthesize any detectable immunoglobulin. Lactoperoxidase-catalyzed radioiodination was used to label proteins on the surface of viable lymphoma and mastocytoma cells. Although the lymphoma lines lacked immunoglobulin as assessed by fluorescent antibody staining, immunoglobulin was detected in surface proteins of all four lymphoma lines. Estimates of the number of immunoglobulin molecules on the cell surface were 1.1 times 10-4/cell for S49.1 and EL-4.1, 1.7 times 10-4 for WEHI-7.1, and 4.3 times 10-4 for WEHI-22.1. Electrophoretic mobilities in sodium dodecyl sulfate polyacrylamide gel indicated that intact cell surface immunoglobulin was slightly larger than IgG, and on disulfide bond reduction to dissociate into two components, one with the mobility of serum immunoglobulin light chain, the other with a mobility similar to that of mu heavy chain. The heavy chain from the T lymphoma cells possessed an apparent molecular weight of about 65,000 compared with 70,000 for mu chain, although both chains shared antigenic determinants characteristic of mu chains. These findings are interpreted as support for other reports that T lymphocytes carry immunoglobulin on their surface and as direct evidence that thymus-derived lymphoid cells synthesize an immunoglobulin resembling the 7S subunit of IgM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号