首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A tool called Locfind for the sequence-based prediction of the localization of eukaryotic proteins is introduced. It is based on bidirectional recurrent neural networks trained to read sequentially the amino acid sequence and produce localization information along the sequence. Systematic variation of the network architecture in combination with an efficient learning algorithm lead to a 91% correct localization prediction for novel proteins in fivefold cross-validation. The data and evaluation procedure are the same as the non-plant part of the widely used TargetP tool by Emanuelsson et al. The Locfind system is available on the WWW for predictions (http://www.stepc.gr/~synaptic/locfind.html).  相似文献   

2.
Genome-wide linkage and association studies have demonstrated promise in identifying genetic factors that influence health and disease. An important challenge is to narrow down the set of candidate genes that are implicated by these analyses. Protein-protein interaction (PPI) networks are useful in extracting the functional relationships between known disease and candidate genes, based on the principle that products of genes implicated in similar diseases are likely to exhibit significant connectivity/proximity. Information flow?based methods are shown to be very effective in prioritizing candidate disease genes. In this article, we utilize the topology of PPI networks to infer functional information in the context of disease association. Our approach is based on the assumption that PPI networks are organized into recurrent schemes that underlie the mechanisms of cooperation among different proteins. We hypothesize that proteins associated with similar diseases would exhibit similar topological characteristics in PPI networks. Utilizing the location of a protein in the network with respect to other proteins (i.e., the "topological profile" of the proteins), we develop a novel measure to assess the topological similarity of proteins in a PPI network. We then use this measure to prioritize candidate disease genes based on the topological similarity of their products and the products of known disease genes. We test the resulting algorithm, Vavien, via systematic experimental studies using an integrated human PPI network and the Online Mendelian Inheritance in Man (OMIM) database. Vavien outperforms other network-based prioritization algorithms as shown in the results and is available at www.diseasegenes.org.  相似文献   

3.
Kaleel  Manaz  Torrisi  Mirko  Mooney  Catherine  Pollastri  Gianluca 《Amino acids》2019,51(9):1289-1296

Predicting the three-dimensional structure of proteins is a long-standing challenge of computational biology, as the structure (or lack of a rigid structure) is well known to determine a protein’s function. Predicting relative solvent accessibility (RSA) of amino acids within a protein is a significant step towards resolving the protein structure prediction challenge especially in cases in which structural information about a protein is not available by homology transfer. Today, arguably the core of the most powerful prediction methods for predicting RSA and other structural features of proteins is some form of deep learning, and all the state-of-the-art protein structure prediction tools rely on some machine learning algorithm. In this article we present a deep neural network architecture composed of stacks of bidirectional recurrent neural networks and convolutional layers which is capable of mining information from long-range interactions within a protein sequence and apply it to the prediction of protein RSA using a novel encoding method that we shall call “clipped”. The final system we present, PaleAle 5.0, which is available as a public server, predicts RSA into two, three and four classes at an accuracy exceeding 80% in two classes, surpassing the performances of all the other predictors we have benchmarked.

  相似文献   

4.
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.  相似文献   

5.
Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a pertinent framework to model local cortical dynamics and their contribution to higher cognitive function.  相似文献   

6.
The increasing interest in systems biology has resulted in extensive experimental data describing networks of interactions (or associations) between molecules in metabolism, protein-protein interactions and gene regulation. Comparative analysis of these networks is central to understanding biological systems. We report a novel method (PHUNKEE: Pairing subgrapHs Using NetworK Environment Equivalence) by which similar subgraphs in a pair of networks can be identified. Like other methods, PHUNKEE explicitly considers the graphical form of the data and allows for gaps. However, it is novel in that it includes information about the context of the subgraph within the adjacent network. We also explore a new approach to quantifying the statistical significance of matching subgraphs. We report similar subgraphs in metabolic pathways and in protein-protein interaction networks. The most similar metabolic subgraphs were generally found to occur in processes central to all life, such as purine, pyrimidine and amino acid metabolism. The most similar pairs of subgraphs found in the protein-protein interaction networks of Drosophila melanogaster and Saccharomyces cerevisiae also include central processes such as cell division but, interestingly, also include protein sub-networks involved in pre-mRNA processing. The inclusion of network context information in the comparison of protein interaction networks increased the number of similar subgraphs found consisting of proteins involved in the same functional process. This could have implications for the prediction of protein function.  相似文献   

7.
Lateral and recurrent connections are ubiquitous in biological neural circuits. Yet while the strong computational abilities of feedforward networks have been extensively studied, our understanding of the role and advantages of recurrent computations that might explain their prevalence remains an important open challenge. Foundational studies by Minsky and Roelfsema argued that computations that require propagation of global information for local computation to take place would particularly benefit from the sequential, parallel nature of processing in recurrent networks. Such “tag propagation” algorithms perform repeated, local propagation of information and were originally introduced in the context of detecting connectedness, a task that is challenging for feedforward networks. Here, we advance the understanding of the utility of lateral and recurrent computation by first performing a large-scale empirical study of neural architectures for the computation of connectedness to explore feedforward solutions more fully and establish robustly the importance of recurrent architectures. In addition, we highlight a tradeoff between computation time and performance and construct hybrid feedforward/recurrent models that perform well even in the presence of varying computational time limitations. We then generalize tag propagation architectures to propagating multiple interacting tags and demonstrate that these are efficient computational substrates for more general computations of connectedness by introducing and solving an abstracted biologically inspired decision-making task. Our work thus clarifies and expands the set of computational tasks that can be solved efficiently by recurrent computation, yielding hypotheses for structure in population activity that may be present in such tasks.  相似文献   

8.
Analysis on the three dimensional structures of (alpha/beta)(8) barrel proteins provides ample light to understand the factors that are responsible for directing and maintaining their common fold. In this work, the hydrophobically enriched clusters are identified in 92% of the considered (alpha/beta)(8) barrel proteins. The residue segments with hydrophobic clusters have high thermal stability. Further, these clusters are formed and stabilized through long-range interactions. Specifically, a network of long-range contacts connects adjacent beta-strands of the (alpha/beta)(8) barrel domain and the hydrophobic clusters. The implications of hydrophobic clusters and long-range networks in providing a feasible common mechanism for the folding of (alpha/beta)(8) barrel proteins are proposed.  相似文献   

9.
The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 targets and 44.4% for the CAMEO targets in the top-L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top-L/5 long-range contact predictions. It was also shown that a simple re-training of the TripletRes model with more proteins can lead to further improvement with precisions comparable to state-of-the-art methods developed after CASP13. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library.  相似文献   

10.
TOUCHSTONEX, a new method for folding proteins that uses a small number of long-range contact restraints derived from NMR experimental NOE (nuclear Overhauser enhancement) data, is described. The method employs a new lattice-based, reduced model of proteins that explicitly represents C(alpha), C(beta), and the sidechain centers of mass. The force field consists of knowledge-based terms to produce protein-like behavior, including various short-range interactions, hydrogen bonding, and one-body, pairwise, and multibody long-range interactions. Contact restraints were incorporated into the force field as an NOE-specific pairwise potential. We evaluated the algorithm using a set of 125 proteins of various secondary structure types and lengths up to 174 residues. Using N/8 simulated, long-range sidechain contact restraints, where N is the number of residues, 108 proteins were folded to a C(alpha)-root-mean-square deviation (RMSD) from native below 6.5 A. The average RMSD of the lowest RMSD structures for all 125 proteins (folded and unfolded) was 4.4 A. The algorithm was also applied to limited experimental NOE data generated for three proteins. Using very few experimental sidechain contact restraints, and a small number of sidechain-main chain and main chain-main chain contact restraints, we folded all three proteins to low-to-medium resolution structures. The algorithm can be applied to the NMR structure determination process or other experimental methods that can provide tertiary restraint information, especially in the early stage of structure determination, when only limited data are available.  相似文献   

11.
Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.  相似文献   

12.
SUMMARY: Biological and engineered networks have recently been shown to display network motifs: a small set of characteristic patterns that occur much more frequently than in randomized networks with the same degree sequence. Network motifs were demonstrated to play key information processing roles in biological regulation networks. Existing algorithms for detecting network motifs act by exhaustively enumerating all subgraphs with a given number of nodes in the network. The runtime of such algorithms increases strongly with network size. Here, we present a novel algorithm that allows estimation of subgraph concentrations and detection of network motifs at a runtime that is asymptotically independent of the network size. This algorithm is based on random sampling of subgraphs. Network motifs are detected with a surprisingly small number of samples in a wide variety of networks. Our method can be applied to estimate the concentrations of larger subgraphs in larger networks than was previously possible with exhaustive enumeration algorithms. We present results for high-order motifs in several biological networks and discuss their possible functions. AVAILABILITY: A software tool for estimating subgraph concentrations and detecting network motifs (mfinder 1.1) and further information is available at http://www.weizmann.ac.il/mcb/UriAlon/  相似文献   

13.
Recent research has revealed that during continuous perception of movies or stories, humans display cortical activity patterns that reveal hierarchical segmentation of event structure. Thus, sensory areas like auditory cortex display high frequency segmentation related to the stimulus, while semantic areas like posterior middle cortex display a lower frequency segmentation related to transitions between events. These hierarchical levels of segmentation are associated with different time constants for processing. Likewise, when two groups of participants heard the same sentence in a narrative, preceded by different contexts, neural responses for the groups were initially different and then gradually aligned. The time constant for alignment followed the segmentation hierarchy: sensory cortices aligned most quickly, followed by mid-level regions, while some higher-order cortical regions took more than 10 seconds to align. These hierarchical segmentation phenomena can be considered in the context of processing related to comprehension. In a recently described model of discourse comprehension word meanings are modeled by a language model pre-trained on a billion word corpus. During discourse comprehension, word meanings are continuously integrated in a recurrent cortical network. The model demonstrates novel discourse and inference processing, in part because of two fundamental characteristics: real-world event semantics are represented in the word embeddings, and these are integrated in a reservoir network which has an inherent gradient of functional time constants due to the recurrent connections. Here we demonstrate how this model displays hierarchical narrative event segmentation properties beyond the embeddings alone, or their linear integration. The reservoir produces activation patterns that are segmented by a hidden Markov model (HMM) in a manner that is comparable to that of humans. Context construction displays a continuum of time constants across reservoir neuron subsets, while context forgetting has a fixed time constant across these subsets. Importantly, virtual areas formed by subgroups of reservoir neurons with faster time constants segmented with shorter events, while those with longer time constants preferred longer events. This neurocomputational recurrent neural network simulates narrative event processing as revealed by the fMRI event segmentation algorithm provides a novel explanation of the asymmetry in narrative forgetting and construction. The model extends the characterization of online integration processes in discourse to more extended narrative, and demonstrates how reservoir computing provides a useful model of cortical processing of narrative structure.  相似文献   

14.
An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.  相似文献   

15.
MOTIVATION: The study of biological systems, pathways and processes relies increasingly on analyses of networks. Most often, such analyses focus on network topology, thereby treating all proteins or genes as identical, featureless nodes. Integrating molecular data and insights about the qualities of individual proteins into the analysis may enhance our ability to decipher biological pathways and processes. RESULTS: Here, we introduce a novel platform for data integration that generates networks on the macro system-level, analyzes the molecular characteristics of each protein on the micro level, and then combines the two levels by using the molecular characteristics to assess networks. It also annotates the function and subcellular localization of each protein and displays the process on an image of a cell, rendering each protein in its respective cellular compartment. By thus visualizing the network in a cellular context we are able to analyze pathways and processes in a novel way. As an example, we use the system to analyze proteins implicated with Alzheimers disease and show how the integrated view corroborates previous observations and how it helps in the formulation of new hypotheses regarding the molecular underpinnings of the disease. AVAILABILITY: http://www.rostlab.org/services/pinat.  相似文献   

16.
The contact order is believed to be an important factor for understanding protein folding mechanisms. In our earlier work, we have shown that the long-range interactions play a vital role in protein folding. In this work, we analyzed the contribution of long-range contacts to determine the folding rate of two-state proteins. We found that the residues that are close in space and are separated by at least ten to 15 residues in sequence are important determinants of folding rates, suggesting the presence of a folding nucleus at an interval of approximately 25 residues. A novel parameter "long-range order" has been proposed to predict protein folding rates. This parameter shows as good a relationship with the folding rate of two-state proteins as contact order. Further, we examined the minimum limit of residue separation to determine the long-range contacts for different structural classes. We observed an excellent correlation between long-range order and folding rate for all classes of globular proteins. We suggest that in mixed-class proteins, a larger number of residues can serve as folding nuclei compared to all-alpha and all-beta proteins. A simple statistical method has been developed to predict the folding rates of two-state proteins using the long-range order that produces an agreement with experimental results that is better or comparable to other methods in the literature.  相似文献   

17.
Li W  Zhang Y  Skolnick J 《Biophysical journal》2004,87(2):1241-1248
The protein structure prediction algorithm TOUCHSTONEX that uses sparse distance restraints derived from NMR nuclear Overhauser enhancement (NOE) data to predict protein structures at low-to-medium resolution was evaluated as follows: First, a representative benchmark set of the Protein Data Bank library consisting of 1365 proteins up to 200 residues was employed. Using N/8 simulated long-range restraints, where N is the number of residues, 1023 (75%) proteins were folded to a C(alpha) root-mean-square deviation (RMSD) from native <6.5 A in one of the top five models. The average RMSD of the models for all 1365 proteins is 5.0 A. Using N/4 simulated restraints, 1206 (88%) proteins were folded to a RMSD <6.5 A and the average RMSD improved to 4.1 A. Then, 69 proteins with experimental NMR data were used. Using long-range NOE-derived restraints, 47 proteins were folded to a RMSD <6.5 A with N/8 restraints and 61 proteins were folded to a RMSD <6.5 A with N/4 restraints. Thus, TOUCHSTONEX can be a tool for NMR-based rapid structure determination, as well as used in other experimental methods that can provide tertiary restraint information.  相似文献   

18.
19.
20.
Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号