首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intraperitoneal or oral administration of pyrazinamide and pyrazinoic acid (pyrazine 2-carboxylic acid) resulted in a marked increase of the NAD content in rat liver. The injections of pyrazine and pyrazine 2,3-dicarboxylic acid exhibited no significant effect on the hepatic NAD content. The boiled extract obtained from liver and kidney of rat injected with either pyrazinamide or pyrazinoic acid exhibited a potent inhibitory effect on the aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) activity in either lier or kidney, although pyrazinamide or pyrazinoic acid per se did not inhibit the enzyme activity. The unknown inhibitor of aminocarboxymuconate-semialdehyde decarboxylase was dialysable and heat-stable, and mostly excreted in urine by 6 and 12 h after injected of pyrazinoic acid and pyrazinamide, respectively. Pyrazine 2,3-dicarboxylic acid, pyrazine, nicotinamide, nicotinic acid, tryptophan, anthranilic acid, 5-hydroxyanthranilic acid and quinolinic acid exhibited no significant effect on the aminocarboxymuconate-semialdehyde decarboxylase activity in liver and kidney at the concentration of 1 mM in the reaction mixture. The expired 14CO2 from L-[benzen ring-U-14C]tryptophan was markedly decreased by the pyrazinamide injection, while the urinary excretion of 14C-labeled metabolites from L-tryptophan, mainly quinolinic acid, was markedly increased. These results suggest that the glutarate pathway of L-tryptophan was strongly inhibited by the inhibitor produced after the administration of pyrazinoic acid and pyrazinamide. Pyrazinamide but not pyrazinoic acid also exhibited a significant inhibition of the nuclear enzyme poly(ADP-ribose) synthetase in rat liver.  相似文献   

2.
Resting suspensions of cells of Saccharomyces cerevisiae grown in iron-rich or iron-deficient conditions were studied by following the fluorescence emission changes (lambda em. 400-460 nm, lambda exc. 300-340 nm) occurring in these suspensions upon addition of glucose and ferric iron. The results show that, in addition to NAD(P)H, metabolites of the aromatic amino acid pathway interfere with the fluorescence measurements, and that they could be involved in ferric iron reduction. Wild-type strains of S. cerevisiae are known to excreted anthranilic acid and 3-hydroxyanthranilic acid in response to glucose. The major fluorescing compound excreted by a chorismate-mutase-deficient mutant strain of S. cerevisiae was identified as anthranilic acid. The excretion of anthranilic and 3-hydroxyanthranilic acids was correlated with the ferric-reducing capacity of the extracellular medium. Excretion during growth was much greater by cells cultured in iron-rich medium than by cells grown in iron-deficient medium. The possibility was examined that a link could exist between the biosynthesis of aromatics and the ferri-reductase activity of the cells, via chorismate synthase and its putative diaphorase-associated activity. Two ferri-reductase-deficient mutants excreted much less 3-hydroxyanthranilate than did the parental wild-type strains. However, the ferri-reductase activity of a chorismate-synthase-deficient mutant was comparable to that of the parental strain.  相似文献   

3.
The intraperitoneal or oral administration of pyrazinamide and pyrazinoic acid (pyrazine 2-carboxylic acid) resulted in a marked increase of the NAD content in rat liver. The injections of pyrazine and pyrazine 2,3-dicarboxylic acid exhibited no significant effect on the hepatic NAD content. The boiled extract obtained from liver and kidney of rat injected with either pyrazinamide or pyrazinoic acid exhibited a potent inhibitory effect on the aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) activity in either liver or kidney, although pyrazinamide or pyrazinoic acid per se did not inhibit the enzyme activity. The unknown inhibitor of aminocarboxymuconate-semialdehyde decarboxylase was dialysable and heat-stable, and mostly excreted in urine by 6 and 12 h after injection of pyrazinoic acid and pyrazinamide, respectively. Pyrazine 2,3-dicarboxylic acid, pyrazine, nicotinamide, nicotinic acid, tryptophan, anthranilic acid, 5-hydroxyanthranilic acid and quinolinic acid exhibited no significant effect on the aminocarboxymuconate-semialdehyde decarboxylase activity in liver and kidney at the concentration of 1 mM in the reaction mixture. The expired 14CO2 from l-[benzen ring-U-14C]tryptophan was markedly decreased by the pyrazinamide injection, while the urinary excretion of 14C-labeled metabolites from l-tryptophan, mainly quinolinic acid, was markedly increased. These results suggest that the glutarate pathway of l-tryptophan was strongly inhibited by the inhibitor produced after the administration of pyrazinoic acid and pyrazinamide. Pyrazinamide but not pyrazinoic acid also exhibited a significant inhibition of the nuclear enzyme poly(ADP-ribose) synthetase in rat liver.  相似文献   

4.
The effects of pyrazinamide on the metabolism of tryptophan to niacin and of tryptophan to serotonin were investigated to elucidate the mechanism for pyrazinamide action against tuberculosis. Weanling rats were fed with a diet with or without 0.25% pyrazinamide for 61 days. Urine samples were periodically collected for measuring the tryptophan metabolites. The administration of pyrazinamide significantly increased the metabolites, 3-hydroxyanthranilic acid and beyond, especially quinolinic acid, nicotinamide, N'-methylnicotinamide, and N1-methyl-4-pyridone-3-carboxamide, and therefore significantly increased the conversion ratio of tryptophan to niacin and the blood NAD level . However, no difference in the upper metabolites of the tryptophan to niacin pathway such as anthranilic acid, kynurenic acid and xanthurenic acid was apparent between the two groups. No difference in the concentrations of trytptophan and serotonin in the blood were apparent either. It is suggested from these results that the action of pyrazinamide against tuberculosis is linked to the increase in turnover of NAD and to the increased content of NAD in the host cells.  相似文献   

5.
Interferon-gamma-induced degradation of tryptophan by human cells in vitro   总被引:3,自引:0,他引:3  
Several human cells were investigated for their ability to degrade tryptophan and to synthesize neopterin upon induction by interferon-gamma (500 units/ml for 48 h). Concentrations of tryptophan, kynurenine, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, 7,8-dihydroneopterin and neopterin were assessed in the culture supernatants by HPLC. Fibroblasts, A-22 arachnoidea, HK-2351 scalp, T-2346 meningeom and HeLa cervical carcinoma cells but not HL-60 promyelocytic leukaemia cells were found to degrade tryptophan upon induction by interferon-gamma. Tryptophan is converted to kynurenine by fibroblasts, A-22 arachnoidea and HK-2351 scalp cells and to kynurenine and anthranilic acid by HeLa cervical carcinoma and T-2346 meningeom cells. Kynurenine and anthranilic acid always make up more than 82% of the tryptophan degraded. None of these cells synthesizes 3-hydroxyanthranilic acid, 3-hydroxykynurenine, 7,8-dihydroneopterin or neopterin. Human macrophages form 3-hydroxyanthranilic acid and neopterin, but not 3-hydroxykynurenine, beside kynurenine and anthranilic acid upon activation by interferon-gamma. These data indicate that several human cells can be induced by interferon-gamma to degrade tryptophan. The interferon-gamma induced synthesis of 3-hydroxyanthranilic acid and neopterin, however, appears to be restricted to human macrophages. A hypothesis explaining these findings is presented.  相似文献   

6.
Nicotinamide-adenine dinucleotide (NAD+) synthetases catalyze the last step in NAD+ metabolism in the de novo, import, and salvage pathways that originate from tryptophan (or aspartic acid), nicotinic acid, and nicotinamide, respectively, and converge on nicotinic acid mononucleotide. NAD+ synthetase converts nicotinic acid adenine dinucleotide to NAD+ via an adenylylated intermediate. All of the known eukaryotic NAD+ synthetases are glutamine-dependent, hydrolyzing glutamine to glutamic acid to provide the attacking ammonia. In the prokaryotic world, some NAD+ synthetases are glutamine-dependent, whereas others can only use ammonia. Earlier, we noted a perfect correlation between presence of a domain related to nitrilase and glutamine dependence and then proved in the accompanying paper (Bieganowski, P., Pace, H. C., and Brenner, C. (2003) J. Biol. Chem. 278, 33049-33055) that the nitrilase-related domain is an essential, obligate intramolecular, thiol-dependent glutamine amidotransferase in the yeast NAD+ synthetase, Qns1. Independently, human NAD+ synthetase was cloned and shown to depend on Cys-175 for glutamine-dependent but not ammonia-dependent NAD+ synthetase activity. Additionally, it was claimed that a 275 amino acid open reading frame putatively amplified from human glioma cell line LN229 encodes a human ammonia-dependent NAD+ synthetase and this was speculated largely to mediate NAD+ synthesis in human muscle tissues. Here we establish that the so-called NADsyn2 is simply ammonia-dependent NAD+ synthetase from Pseudomonas, which is encoded on an operon with nicotinic acid phosphoribosyltransferase and, in some Pseudomonads, with nicotinamidase.  相似文献   

7.
Purine and pyridine metabolism were studied in ten Lesch-Nyhan patients, with virtually no hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity in erythrocytes. Increased NAD erythrocyte concentrations were found in all patients. Raised activities of two enzymes catalysing NAD synthesis from nicotinic acid (nicotinic acid phosphoribosyltransferase: NAPRT, and NAD synthetase: NADs) was found in erythrocyte lysates from all patients. The two enzymes had normal apparent Km for their substrates and increased Vmax. The rate of synthesis of pyridine nucleotides from nicotinic acid by intact erythrocytes in vitro was also increased in most patients. These findings suggest that raised NAD concentrations in HPRT- erythrocytes are due to enhanced synthesis as a result of increased enzyme activities.  相似文献   

8.
It has been shown recently that the L-kynurenine metabolite kynurenic acid lowers the efficacy of mitochondria ATP synthesis by significantly increasing state IV, and reducing respiratory control index and ADP/oxygen ratio of glutamate/malate-consuming heart mitochondria. In the present study we investigated the effect of L-tryptophan (1.25 microM to 5 mM) and other metabolites of L-kynurenine as 3-hydroxykynurenine (1.25 microM to 2.5 mM), anthranilic acid (1.25 microM to 5 mM) and 3-hydroxyanthranilic acid (1.25 microM to 5 mM) on the heart mitochondria function. Mitochondria were incubated with saturating concentrations of respiratory substrates glutamate/malate (5 mM), succinate (10 mM) or NADH (1 mM) in the presence or absence of L-tryptophan metabolites. Among tested substances, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and anthranilic acid but not tryptophan affected the respiratory parameters dose-dependently, however at a high concentration, of a micro molar range. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid lowered respiratory control index and ADP/oxygen ratio in the presence of glutamate/malate and succinate but not with NADH. While, anthranilic acid reduced state III oxygen consumption rate and lowered the respiratory control index only of glutamate/malate-consuming heart mitochondria. Co-application of anthranilic acid and kynurenic acid (125 or 625 microM each) to glutamate/malate-consuming heart mitochondria caused a non-additive deterioration of the respiratory parameters determined predominantly by kynurenic acid. Accumulated data indicate that within L-tryptophan metabolites kynurenic acid is the most effective, followed by anthranilic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic acid to influence the respiratory parameters of heart mitochondria. Present data allow to speculate that changes of kynurenic acid and/or anthranilic acid formation in heart tissue mitochondria due to fluctuation of L-kynurenine metabolism may be of functional importance for cardiovascular processes. On the other hand, beside the effect of 3-hydroxyanthranilic acid and 3-hydroxykynurenine on respiratory parameters, their oxidative reactivity may contribute to impairment of mitochondria function, too.  相似文献   

9.
Regulation of Tryptophan Pyrrolase Activity in Xanthomonas pruni   总被引:3,自引:2,他引:1       下载免费PDF全文
Tryptophan pyrrolase was studied in partially purified extracts of Xanthomonas pruni. The dialyzed enzyme required both heme and ascorbate for maximal activity. Other reducing agents were able to substitute for ascorbate. Protoporphyrin competed with heme for the enzyme, suggesting that the native enzyme is a hemoprotein. The enzyme exhibited sigmoid saturation kinetics. Reduced nicotinamide adenine dinucleotide (NADH), reduced nicotinamide adenine dinucleotide phosphate (NADPH), nicotinic acid mononucleotide, and anthranilic acid enhanced the sigmoid kinetics and presumably bound to allosteric sites on the enzyme. The sigmoid kinetics were diminished in the presence of alpha-methyltryptophan. NAD, NADP, nicotinic acid, nicotinamide, nicotinamide mononucleotide, and several other related compounds were without effect on the activity of the enzyme. These data indicate that the activity of the enzyme is under feedback regulation by the ultimate end products of the pathway leading to NAD biosynthesis, as well as by certain intermediates of this pathway.  相似文献   

10.
3-Hydroxyanthranilic acid, a metabolite of tryptophan, was rapidly metabolized by human erythrocytes. The final product was determined to be cinnabarinic acid as detected by spectrophotometry, paper chromatography and t.l.c. The formation of cinnabarinic acid from 3-hydroxyanthranilic acid in the cells was markedly inhibited by CO when intracellular haemoglobin was in a ferrous state, and by cyanide when it was in a ferric state. Ferrous haemoglobin in erythrocytes was oxidized to (alpha 3+ beta 2+)2, (alpha 2+ beta 3+)2 and (alpha 3+ beta 3+)2 by 3-hydroxyanthranilic acid, and the oxidation rates were very high, like those of cinnabarinic acid formation, suggesting that the metabolism of 3-hydroxyanthranilic acid is coupled with oxidoreductive reactions of intracellular haemoglobin. This view was further confirmed by the findings that 3-hydroxyanthranilic acid was metabolized by ferrous or ferric haemoglobin and that ferrous and ferric haemoglobins were oxidized and reduced by the compound respectively. The significance of the metabolism of 3-hydroxyanthranilic acid and the oxidoreductive reactions of haemoglobin with this compound may be associated with the pathological conditions with increased 3-hydroxyanthranilic acid levels in the blood of diabetic subjects.  相似文献   

11.
The effects of dietary orotic acid on the metabolism of tryptophan to niacin in weaning rats was investigated. The rats were fed with a niacin-free, 20% casein diet containing 0% (control diet) or 1% orotic acid diet (test diet) for 29 d. Retardation of growth, development of fatty liver, and enlargement of liver were observed in the test group in comparison with the control group. The concentrations of NAD and NADP in liver significantly decreased, while these in blood did not decrease compared to the control group. The formation of the upper metabolites of tryptophan to niacin such as anthranilic acid, kynurenic acid, and 3-hydroxyanthranilic acid were not affected, but the quinolinic acid and beyond, such as nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide, were significantly reduced by the administration of orotic acid. Therefore, the conversion ratio of tryptophan to niacin significantly decreased in the test group in comparison with the control group.  相似文献   

12.
NAD+ is a central cofactor that plays important roles in cellular metabolism and energy production in all living cells. Genomics-based reconstruction of NAD+ metabolism revealed that Leishmania protozoan parasites are NAD+ auxotrophs. Consequently, these parasites require assimilating NAD+ precursors (nicotinamide, nicotinic acid, nicotinamide riboside) from their host environment to synthesize NAD+ by a salvage pathway. Nicotinamidase is a key enzyme of this salvage pathway that catalyses conversion of nicotinamide (NAm) to nicotinic acid (Na), and that is absent in higher eukaryotes. We present here the biochemical and functional characterizations of the Leishmania infantum nicotinamidase (LiPNC1). Generation of Lipnc1 null mutants leads to a decrease in NAD+ content, associated with a metabolic shutdown-like phenotype with an extensive lag phase of growth. Both phenotypes could be rescued by an add-back construct or by addition of exogenous Na. In addition, Lipnc1 null mutants were unable to establish a sustained infection in a murine experimental model. Altogether, these results illustrate that NAD+ homeostasis is a fundamental component of Leishmania biology and virulence, and that NAm constitutes its main NAD+ source in the mammalian host. The crystal structure of LiPNC1 we solved allows now the design of rational inhibitors against this new promising therapeutic target.  相似文献   

13.
The NAD kinase gene (nadK) of Sphingomonas sp. A1 was cloned and then overexpressed in Escherichia coli, and the gene product (NadK) was purified from the E. coli cells through five steps with a 25% yield of activity. NadK was a homodimer of 32 kDa subunits, utilized ATP or other nucleoside triphosphates, but not inorganic polyphosphates, as phosphoryl donors for the phosphorylation of NAD, most efficiently at pH 8.0 and 50-55 degrees C, and was designated as ATP-NAD kinase (NadK). NadK showed no NADH kinase activity and was slightly inhibited by NADP(H). Precursors for NAD biosynthesis such as quinolinic acid, nicotinic acid mononucleotide, nicotinic acid adenine dinucleotide, and nicotinic acid had no effect on the NadK activity, as observed in the cases of the NAD kinases of Micrococcus flavus, Mycobacterium tuberculosis, and E. coli. Taken together with the report that the NAD kinase of Bacillus subtilis is activated by quinolinic acid [J. Bacteriol. 185 (2003) 4844], it is indicated that the regulatory patterns of NAD kinases differ even among bacterial NAD kinases.  相似文献   

14.
Utilization and metabolism of NAD by Haemophilus parainfluenzae   总被引:2,自引:0,他引:2  
The utilization of exogenous nicotinamide adenine dinucleotide (NAD) by Haemophilus parainfluenzae was studied in suspensions of whole cells using radiolabelled NAD, nicotinamide mononucleotide (NMN), and nicotinamide ribonucleoside (NR). The utilization of these compounds by H. parainfluenzae has the following characteristics. (1) NAD is not taken up intact, but rather is degraded to NMN or NR prior to internalization. (2) Uptake is carrier-mediated and energy-dependent with saturation kinetics. (3) There is specificity for the beta-configuration of the glycopyridine linkage. (4) An intact carboxamide groups is required on the pyridine ring. The intracellular metabolism of NAD was studied in crude cell extracts and in whole cells using carbonyl-14C-labelled NR, NMN, NAD, nicotinamide, and nicotinic acid as substrates in separate experiments. A synthetic pathway from NR through NMN to NAD that requires Mg2+ and ATP was demonstrated. Nicotinamide was found as an end-product of NAD degradation. Nicotinic acid mononucleotide and nicotinic acid adenine dinucleotide were not found as intermediates. The NAD synthetic pathway in H. parainfluenzae differs from the Preiss-Handler pathway and the pyridine nucleotide cycles described in other bacteria.  相似文献   

15.
M Henderson  P A Kitos 《Teratology》1982,26(2):173-181
The hypothesis that organophosphate (OP) insecticides reduce the NAD+ levels of chick embryos by inhibiting kynurenine formamidase was tested. Fertile chicken eggs at 3 days of incubation were treated with a teratogenic dose of the organophosphate insecticide diazinon (DZN) in the presence or absence of exogenous L-tryptophan or nicotinamide, or one of the metabolic intermediates (L-kynurenine, 3-hydroxyanthranilic acid, quinolinic acid) between tryptophan and NAD+. By day 10 of development, DZN reduced the NAD+ content of the hind limbs of the embryos to less than 20% of normal and by day 15 it caused severe type I and type II teratogenic responses. The co-presence of tryptophan or one of its metabolites served to maintain the NAD+ levels of DZN-treated embryos close to or above normal and significantly alleviated the symptoms of type I teratisms. Tryptophan is virtually as effective as most of its metabolites in suppressing the effects of DZN on the NAD+ content and physical development of the embryos. This equivalence does not support the proposition that the inhibition of kynurenine formamidase causes the lowered NAD+ levels involved in OP-induced type I teratogenesis. It is consistent with the concept that the insecticide acts to decrease the availability of tryptophan to the embryo.  相似文献   

16.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

17.
大肠杆菌NZN111是敲除了乳酸脱氢酶的编码基因(ldhA)和丙酮酸-甲酸裂解酶的编码基因(pflB)的发酵生产丁二酸的潜力菌株。厌氧条件下NADH不能及时再生为NAD+,引起胞内辅酶NAD(H)的不平衡,最终导致厌氧条件下菌株不能利用葡萄糖生长代谢。nadD为催化NAD(H)合成途径中烟酸单核苷酸(NaMN)生成烟酸腺嘌呤二核苷酸(NaAD)的烟酸单核苷酸腺苷酰转移酶(Nicotinic acid mononucleotide adenylyltransferase,NAMNAT)的编码基因,通过过量表达nadD基因能够提高NAD(H)总量与维持合适的NADH/NAD+比例。文中构建了重组菌E.coli NZN111/pTrc99a-nadD,在厌氧摇瓶发酵过程中通过添加终浓度为1.0 mmol/L的IPTG诱导表达,重组菌E.coli NZN111/pTrc99a-nadD中NAD+和NADH的浓度分别比宿主菌E.coli NZN111提高了3.21倍和1.67倍,NAD(H)总量提高了2.63倍,NADH/NAD+从0.64降低为0.41,使重组菌株恢复了厌氧条件下生长和代谢葡萄糖的能力。重组菌与对照菌相比,72 h内可以消耗14.0 g/L的葡萄糖产6.23 g/L的丁二酸,丁二酸产量增加了19倍。  相似文献   

18.
大肠杆菌NZN111厌氧发酵的主要产物为丁二酸,是发酵生产丁二酸的潜力菌株。但是由于敲除了乳酸脱氢酶的编码基因 (ldhA) 和丙酮酸甲酸裂解酶的编码基因 (pflB),导致辅酶NADH/NAD+不平衡,厌氧条件下不能利用葡萄糖生长代谢。构建烟酸转磷酸核糖激酶的重组菌Escherichia coli NZN111/pTrc99a-pncB,在厌氧摇瓶发酵过程中通过添加0.5 mmol/L的烟酸、0.3 mmol/L的IPTG诱导后重组菌的烟酸转磷酸核糖激酶 (Nicotinic acid phosphor  相似文献   

19.
NAD(+) is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+) consuming enzymes. NAD(+) biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+) is synthesized from tryptophan and the three vitamin precursors of NAD(+): nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+) precursors increases intracellular NAD(+) levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+) metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+) metabolism by balancing import and export of NAD(+) precursor vitamins.  相似文献   

20.
The ability of nicotinic acid to protect human lymphocytes in vivo against oxygen radical-induced DNA strand breakage was tested. NAD+ concentrations rose progressively in lymphocytes to nearly 5 times baseline levels in human volunteers ingesting nicotinic acid (100 mg/day) for 8 weeks. Strand breaks decreased proportionately to NAD+ concentrations over this time period in lymphocytes exposed to oxygen radicals. After 8 weeks of supplementation with nicotinic acid, radical-treated lymphocytes incubated for 24 h evidenced significantly less DNA damage compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号