首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Each year about 2,000 women of childbearing age in the United States have a spinal cord injury. Only a few mostly anecdotal reports describe pregnancy after such an injury. In a retrospective study of 16 women with a spinal cord injury, half of whom have a complete injury and about half quadriplegia, 25 pregnancies occurred, with 21 carried to full term. The women delayed pregnancy an average of 6.5 years after their injury, with an average age at first pregnancy of 26.8 years. Cesarean section was necessary in 4 patients because of inadequate progress of labor. In 5 deliveries an episiotomy and local anesthesia were required, 7 required epidural anesthesia, including all cesarean sections, and 10 did not require anesthesia. Several complications have been identified in the antepartum, intrapartum, and postpartum periods including autonomic hyperreflexia, premature labor, pressure sores, urinary tract infections, abnormal presentation, and failure to progress. Ultrasonography and amniocentesis were used selectively. Women with spinal cord injuries can have healthy children, although there are significant risks and these women have special needs.  相似文献   

3.
Autonomic dysreflexia (AD) is a debilitating disorder producing episodes of extreme hypertension in patients with high-level spinal cord injury (SCI). Factors leading to AD include loss of vasomotor baroreflex control to regions below injury level, changes in spinal circuitry, and peripheral changes. The present study tested for peripheral changes below and above injury level 6 wk after a transection at the fourth thoracic spinal level. Changes in vascular conductance were recorded in the femoral, renal, brachial, and carotid arteries in response to intravenous injections of two alpha-adrenergic agonists, phenylephrine (PE; 0.03-100 microg/kg) and methoxamine (Meth; 1-300 microg/kg). Unlike PE, Meth is not subject to neuronal reuptake. Ganglionic blockade (0.6 mg/kg chlorisondamine) was used to eliminate the central component of the cardiovascular response. After ganglionic blockade, SCI animals exhibited prolonged vasoconstriction in response to PE in all blood vessels measured compared with those in intact animals (all, P < 0.035). However, the PE dose-response curves obtained after ganglionic blockade revealed no significant difference in the potency between the two groups (all, P > 0.06), indicating that the prolonged vasoconstriction was not due to supersensitivity to PE. In contrast to PE, vascular responses to Meth did not vary between intact and SCI groups (all P > 0.108). These results show the development of a widespread peripheral change producing prolonged vasoconstriction in response to PE, but not Meth, possibly due to reduced neuronal reuptake of PE after SCI. This is the first study to report such a change in blood vessels not only below but also above injury level. Interventions to correct this reduced reuptake may help limit the development of AD.  相似文献   

4.
The purpose of this report is to examine longitudinal bone mineral density (BMD) changes in individuals with spinal cord injury (SCI) who began unilateral soleus electrical stimulation early after injury. Twelve men with SCI and seven without SCI underwent peripheral quantitative computed tomography assessment of distal tibia BMD. After 4.5 to 6 years of training, average trained limb BMD was 27.5% higher than untrained limb BMD. The training effect was more pronounced in the central core of the tibia cross-section (40.5% between-limb difference). No between-limb difference emerged in the anterior half of the tibia (19.2 mg/cm(3) difference, p>0.05). A robust between-limb difference emerged in the posterior half of the tibia (76.1 mg/cm(3) difference, p=0.0439). The posterior tibia BMD of one subject remained within the range of non-SCI values for 3.8 years post-SCI. The results support that the constrained orientation of soleus mechanical loads, administered over several years, elicited bone-sparing effects in the posterior tibia. This study provides a demonstration of the bone-protective potential of a carefully controlled dose of mechanical load. The specific orientation of applied mechanical loads may strongly influence the manifestation of BMD adaptations in humans with SCI.  相似文献   

5.
6.
7.
Spinal cord injury (SCI) has been regarded clinically as an irreversible damage caused by tissue contusion due to a blunt external force. Past research had focused on the analysis of the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as tissue damage and neural cell death associated with secondary injury. Recent studies, however, have proven that neural stem (progenitor) cells are also present in the brain and spinal cord of adult mammals including humans. Analyses using spinal cord injury models have also demonstrated active dynamics of cells expressing several stem cell markers, and methods aiming at functional reconstruction by promoting the potential self-regeneration capacity of the spinal cord are being explored. Furthermore, reconstruction of the neural circuit requires not only replenishment or regeneration of neural cells but also regeneration of axons. Analysis of the tissue microenvironment after spinal cord injury and research aiming to remove axonal regeneration inhibitors have also made progress. SCI is one of the simplest central nervous injuries, but its pathogenesis is associated with diverse factors, and further studies are required to elucidate these complex interactions in order to achieve spinal cord regeneration and functional reconstruction.  相似文献   

8.
Spinal cord injury (SCI) has been regarded clinically as an irreversible damage caused by tissue contusion due to a blunt external force. Past research had focused on the analysis of the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as tissue damage and neural cell death associated with secondary injury. Recent studies, however, have proven that neural stem (progenitor) cells are also present in the brain and spinal cord of adult mammals including humans. Analyses using spinal cord injury models have also demonstrated active dynamics of cells expressing several stem cell markers, and methods aiming at functional reconstruction by promoting the potential self-regeneration capacity of the spinal cord are being explored. Furthermore, reconstruction of the neural circuit requires not only replenishment or regeneration of neural cells but also regeneration of axons. Analysis of the tissue microenvironment after spinal cord injury and research aiming to remove axonal regeneration inhibitors have also made progress. SCI is one of the simplest central nervous injuries, but its pathogenesis is associated with diverse factors, and further studies are required to elucidate these complex interactions in order to achieve spinal cord regeneration and functional reconstruction.Key words: glia, regeneration, spinal cord, injury, axon  相似文献   

9.
We have investigated the localization and regulation of a putative extracellular chaperone, clusterin, in the rat spinal cord after lesion. In control animals, clusterin is expressed in motoneurons, in meningeal and ependymal cells, and in astrocytes mainly located beneath the pial surface. Beginning at day 2 after hemisection at segmental level C6, clusterin levels increase in GFAP-positive astrocytes within the lesioned segment. Three weeks after trauma, clusterin mRNA and protein are elevated in neurons close to the lesion site and in glial elements within scar tissue and within degenerating fiber tracts rostral and caudal to the lesion. This study provides evidence for a role of clusterin in the subacute and late phase of spinal cord injury.  相似文献   

10.
《Neuron》2023,111(14):2155-2169.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
13.
The influence of exogenous rat growth hormone on spinal cord injury induced alterations in spinal cord evoked potentials (SCEP) and edema formation was examined in a rat model. Repeated topical application of rat growth hormone (20microl of 1microg/ml solution) applied 30min before injury and at 0min (at the time of injury), 10min, 30min, 60min, 120min, 180min, and 240min, resulted in a marked preservation of SCEP amplitude after injury. In addition, the treated traumatised cord showed significantly less edema and cell changes. These observations suggest that growth hormone has the capacity to improve spinal cord conduction and attenuate edema formation and cell injury in the cord indicating a potential therapeutic implication of this peptide in spinal cord injuries.  相似文献   

14.
Macrophages from the peripheral circulation and those derived from resident microglia are among the main effector cells of the inflammatory response that follows spinal cord trauma. There has been considerable debate in the field as to whether the inflammatory response is good or bad for tissue protection and repair. Recent studies on macrophage polarization in non-neural tissues have shed much light on their changing functional states. In the context of this literature, we discuss the activation of macrophages and microglia following spinal cord injury, and their effects on repair. Harnessing their anti-inflammatory properties could pave the way for new therapeutic strategies for spinal cord trauma.  相似文献   

15.
Neutrophil infiltration has been implicated in the secondary destructive pathomechanisms after initial mechanical injury to the spinal cord. Tissue myeloperoxidase (MPO) activity has been shown to be an exclusive indicator of the extent of post-traumatic neutrophil infiltration. We have studied the effect of magnesium sulphate on MPO activity after spinal cord injury in rats. Rats were randomly allocated into 5 groups. Group 1 was control and normal spinal cord samples were obtained after clinical examination. Forty g-cm contusion injury was introduced to Group 2. Group 3 was vehicle, 1 ml of physiological saline was injected post-trauma. Group 4 was given 30 mg/kg methylprednisolone sodium succinate (MPSS) immediately after trauma. Group 5 was given 600 mg/kg magnesium sulphate immediately after trauma. Animals were examined by inclined plane technique of Rivlin and Tator 24 h after trauma. Spinal cord samples obtained following clinical evaluations. Magnesium sulphate treatment improved early functional scores and decreased MPO activity. These findings revealed that magnesium sulphate treatment possesses neuroprotection on early clinical results and on neutrophil infiltration after acute contusion injury to the rat spinal cord.  相似文献   

16.
Deep tissue injury (DTI) is a severe pressure ulcer initiating in weight-bearing skeletal muscles. Being common in spinal cord injury (SCI) patients, DTI is associated with mechanical cell damage and ischaemia. Muscle microanatomy in SCI patients is characterised by reduced myofibre sizes and smaller, fewer capillaries. We hypothesise that these changes influence mass transport in SCI muscles, making DTI more probable. Using multiphysics models of microscopic cross-sections through normal and SCI muscles, we studied effects of the following factors on transport of glucose and myoglobin (potential biomarker for early DTI detection): (i) abnormal SCI muscle microanatomy, (ii) large tissue deformations and (iii) ischaemia. We found that the build-up of concentrations of glucose and myoglobin is slower for SCI muscles, which could be explained by the pathological SCI microanatomy. These findings overall suggest that microanatomical changes in muscles post-SCI play an important role in the vulnerability of the SCI patients to DTI.  相似文献   

17.
Reduced pain perception while being distracted from pain is an everyday example of how cognitive processes can interfere with pain perception. Previous neuroimaging studies showed distraction-related modulations of pain-driven activations in various cortical and subcortical brain regions, but the precise neuronal mechanism underlying this phenomenon is unclear. Using high-resolution functional magnetic resonance imaging of the human cervical spinal cord in combination with thermal pain stimulation and a well-established working memory task, we demonstrate that this phenomenon relies on an inhibition of incoming pain signals in the spinal cord. Neuronal responses to painful stimulation in the dorsal horn of the corresponding spinal segment were significantly reduced under high working memory load compared to low working memory load. At the individual level, reductions of neuronal responses in the spinal cord predicted behavioral pain reductions. In a subsequent behavioral experiment, using the opioid antagonist naloxone in a double-blind crossover design with the same paradigm, we demonstrate a substantial contribution of endogenous opioids to this mechanism. Taken together, our results show that the reduced pain experience during mental distraction is related to a spinal process and involves opioid neurotransmission.  相似文献   

18.
Walker CL  Walker MJ  Liu NK  Risberg EC  Gao X  Chen J  Xu XM 《PloS one》2012,7(1):e30012
Secondary damage following primary spinal cord injury extends pathology beyond the site of initial trauma, and effective management is imperative for maximizing anatomical and functional recovery. Bisperoxovanadium compounds have proven neuroprotective effects in several central nervous system injury/disease models, however, no mechanism has been linked to such neuroprotection from bisperoxovanadium treatment following spinal trauma. The goal of this study was to assess acute bisperoxovanadium treatment effects on neuroprotection and functional recovery following cervical unilateral contusive spinal cord injury, and investigate a potential mechanism of the compound's action. Two experimental groups of rats were established to 1) assess twice-daily 7 day treatment of the compound, potassium bisperoxo (picolinato) vanadium, on long-term recovery of skilled forelimb activity using a novel food manipulation test, and neuroprotection 6 weeks following injury and 2) elucidate an acute mechanistic link for the action of the drug post-injury. Immunofluorescence and Western blotting were performed to assess cellular signaling 1 day following SCI, and histochemistry and forelimb functional analysis were utilized to assess neuroprotection and recovery 6 weeks after injury. Bisperoxovanadium promoted significant neuroprotection through reduced motorneuron death, increased tissue sparing, and minimized cavity formation in rats. Enhanced forelimb functional ability during a treat-eating assessment was also observed. Additionally, bisperoxovanadium significantly enhanced downstream Akt and mammalian target of rapamycin signaling and reduced autophagic activity, suggesting inhibition of the phosphatase and tensin homologue deleted on chromosome ten as a potential mechanism of bisperoxovanadium action following traumatic spinal cord injury. Overall, this study demonstrates the efficacy of a clinically applicable pharmacological therapy for rapid initiation of neuroprotection post-spinal cord injury, and sheds light on the signaling involved in its action.  相似文献   

19.
The rodent corticospinal tract (CST) has been used extensively to investigate regeneration and remodeling of central axons after injury. CST axons are currently visualized after injection of tracer dye, which is invasive, incomplete and prone to variation, and often does not show functionally crucial but numerically minor tract components. Here, we characterize transgenic mice in which CST fibers are specifically and completely labeled by yellow fluorescent protein (YFP). Using these CST-YFP mice, we show that minor CST components are responsible for most monosynaptic contacts onto motoneurons. Lesions of the main dorsal CST lead to extension of new collaterals, some of them originating from large, heavily myelinated axons within the minor dorsolateral and ventral CST components. Some of these new collaterals form additional direct synapses onto motoneurons. We propose that CST-YFP mice will be useful for evaluating strategies designed to maximize such remodeling and to promote regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号