首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a single-step method for the purification of NADP+-dependent alcohol dehydrogenase fromEntamoeba histolyticaand NAD+-dependent alcohol dehydrogenase fromSaccharomyces cerevisiae.It is based on the affinity for zinc of both enzymes. The amebic enzyme was purified almost 800 times with a recovery of 54% and the yeast enzyme was purified 30 times with a recovery of 100%. The kinetic constants of the purified enzymes were similar to those reported for other purification methods. With mammalian alcohol dehydrogenase, we obtained a 40-kDa band suggestive of purified alcohol dehydrogenase, but we failed to retain enzymatic activity in this preparation. Our results suggest that the described method is more applicable to the purification of tetrameric alcohol dehydrogenases.  相似文献   

2.
In young (4-week-old) male and female spontaneously hypertensive (SH) rats, ethanol metabolic rate in vivo and hepatic alcohol dehydrogenase activity in vitro are high and not different in the two sexes. In males, ethanol metabolic rate falls markedly between 4 and 10 weeks of age, which coincides with the time of development of sexual maturity in the rat. Alcohol dehydrogenase activity is also markedly diminished in the male SH rat and correlates well with the changes in ethanol metabolism. There is virtually no influence of age on ethanol metabolic rate and alcohol dehydrogenase activity in the female SH rat. Castration of male SH rats prevents the marked decrease in ethanol metabolic rate and alcohol dehydrogenase activity, whereas ovariectomy has no effect on these parameters in female SH rats. Chronic administration of testosterone to castrated male SH rats and to female SH rats decreases ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in mature males. Chronic administration of oestradiol-17β to male SH rats results in marked stimulation of ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in female SH rats. Chronic administration of ethanol to male SH rats from 4 to 11 weeks of age prevents the marked age-dependent decreases in ethanol metabolic rate and alcohol dehydrogenase activity, but has virtually no effect in castrated rats. In the intoxicated chronically ethanol-fed male SH rats, serum testosterone concentrations are significantly depressed. In vitro, testosterone has no effect on hepatic alcohol dehydrogenase activity of young male and female SH rats. In conclusion, in the male SH rat, ethanol metabolic rate appears to be limited by alcohol dehydrogenase activity and is modulated by testosterone. Testosterone has an inhibitory effect and oestradiol has a testosterone-dependent stimulatory effect on alcohol dehydrogenase activity and ethanol metabolic rate in these animals.  相似文献   

3.
Yeast alcohol dehydrogenase was successfully immobilized on tresyl-chloride-activated agarose; the optimized conditions allowed an enzyme activity recovery of over 90%. Comparison of free and immobilized enzyme properties showed an unchanged intrinsic activation energy of the reaction and a shift of optimum activity to a higher pH medium after immobilization. Comparison of the kinetic parameters for both substrates of the reaction showed that the Michaelis-Menten model could not take into consideration all the constraints induced by the immobilization on the enzyme properties but that the Theorell-Chance model was more appropriate. These results are discussed taking into consideration the factors affecting the immobilized enzyme. Finally, we discuss the possibilities of cofactor regeneration with this immobilized alcohol dehydrogenase.  相似文献   

4.
The EE and SS isozymes of horse liver alcohol dehydrogenase have been immobilized separately to weakly CNBr-activated Sepharose 4B. The resulting immobilized dimeric preparations lost practically all of their activity after treatment with 6 M urea. However, enzyme activity was regenerated by allowing the urea-treated Sepharose-bound alcohol dehydrogenase to interact specifically with either soluble subunits of dissociated horse liver alcohol dehydrogenase or soluble dimeric enzyme. The regeneration of steroid activity in the immobilized preparations after treatment of the bound S subunits with soluble E subunits seems to show that true reassociation of the enzyme had taken place on the solid phase, since only isozymes with an S-polypeptide chain are active when using 5 beta-dihydrotestosterone as substrate. The results presented in this paper indicate that immobilized single subunits of horse liver alcohol dehydrogenase are inactive and that dimer formation is a prerequisite for the enzymic activity.  相似文献   

5.
6.
Alcohol dehydrogenase and aldehyde dehydrogenase, the two principal enzymes of alcohol metabolism, were assayed in the livers of the inbred mouse strains C57BL/6J and DBA/2J. Previous work has shown that animals of various C57BL substrains prefer a 10% ethanol solution to water in a two-bottle preference test, and that animals of various DBA/2 substrains avoid alcohol. In the present study, C57BL/6J mice were found to have 300% more aldehyde dehydrogenase activity than DBA/2J mice and 30% more alcohol dehydrogenase activity. The F1 generation is intermediate to the parents in preference for the 10% alcohol solution and is also found to possess intermediate levels of alcohol and aldehyde dehydrogenase activity. These experiments suggest a systematic relationship between the behavioral trait of ethanol preference and the activity of aldehyde dehydrogenase and a similar but much less pronounced relationship with alcohol dehydrogenase.This research was supported by grant GM14547 from the National Institute of General Medical Sciences.  相似文献   

7.
8.
Potato tubers are shown to contain at least 3 alcohol dehydrogenases, one active with NAD and aliphatic alcohols, one active with NADP and terpene alcohols and one active with NADP and aromatic alcohols. The purification of the aliphatic alcohol dehydrogenase is described and its activity with a wide range of substrates is reported. On the basis of substrate specificity, the enzyme is shown to resemble yeast alcohol dehydrogenase rather than liver alcohol dehydrogenase. The enzyme shows high activity with and high affinity for ethanol, activity and affinity decline as the chain length is increased from ethanol to butanol, but a further increase in chain length leads to increased affinity for the alcohol. The physiological significance of the results is briefly discussed.  相似文献   

9.
Recrystallized alcohol dehydrogenase from horse liver was found to oxidize 17-hydroxystearic acid into 17-oxostearic acid, the 17-L-enantiomer faster than the 17-D-enantiomer. Alone at high pH or in combination with aldehyde dehydrogenase, the alcohol dehydrogenase also catalyzed conversion of 18-hydroxystearic acid into 1, 18-octadecadioic acid and 5β-cholestane-3α,7α,12α,26-tetrol into 3α,7α,12α-trihydroxy-5β-cholestanoic acid. All the activities as well as the ethanol dehydrogenase activity disappeared after specific carboxymethylation of a single cystein residue at the active site of alcohol dehydrogenase. These results conclusively show that alcohol dehydrogenase itself has ω-hydroxyfatty acid dehydrogenase activity and ω-hydroxysteroid dehydrogenase activity.  相似文献   

10.
Abstract— Chronic ethanol ingestion in rats leads to a slow rise in brain alcohol dehydrogenase activity which levels off after 2 weeks at approximately twice the initial activity. The half-time of the rise is approximately 8 days. Abrupt withdrawal of the ethanol is followed by a rapid decline of the brain alcohol dehydrogenase activity to the normal level with a half-time of approximately 15 h. The difference in time constants between the rise in enzyme activity during ethanol-feeding and its decline following withdrawal suggests that the increased enzyme activity is at least in part the result of a reduced rate constant of enzyme degradation in the presence of ethanol. The effect of ethanol on brain alcohol dehydrogenase activity is not altered by supplementation of the diet with carbohydrate or vitamins. The effect is seen only in the cerebral hemispheres and not in the brain-stem. Acquisition of tolerance to ethanol during chronic ethanol ingestion and its extinction following withdrawal follow almost the same time courses as the changes in brain alcohol dehydrogenase activity.  相似文献   

11.
The substrate-specific induction of wheat (Triticum aestivum L. cv Fenman) leaf cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) was examined in relation to its role in regulating the composition of defensive lignin induced at wound margins. Treatment of wounds with a partially acetylated chitosan hydrolysate or spores of the nonpathogen Botrytis cinerea elicited lignification at wound margins and invoked significant increases in phenylalanine ammonia-lyase (EC 4.3.1.5), peroxidase (EC 1.11.1.7), and CAD activities. The substrate-specific induction of CAD with time was determined in elicitor-treated leaves and in excised lignifying wounds. In whole leaf extracts no significant increases in p-cou-maryl and coniferyl alcohol dehydrogenase activities were detectable, but a significant 5-fold increase in sinapyl alcohol dehydrogenase activity was evident 32 h after elicitor treatment. Similarly, fungal challenge resulted in elevated levels of only sinapyl alcohol dehydrogenase in whole-leaf extracts. In excised lignifying tissues p-coumaryl alcohol dehydrogenase levels were similar to those observed in healthy tissue. A small yet significant increase in coniferyl alcohol dehydrogenase was apparent, but the most dramatic increase occurred in sinapyl alcohol dehydrogenase activity, which increased to values approximately 10 times higher than the untreated controls. Our results show for the first time that CAD induction in lignifying tissues of wheat is predominantly attributable to highly localized increases in sinapyl alcohol dehydrogenase activity.  相似文献   

12.
Reductive methylation of lysine residues activates liver alcohol dehydrogenase in the oxidation of primary alcohols, but decreases the activity of the enzyme towards secondary alcohols. The modification also desensitizes the dehydrogenase to substrate inhibition at high alcohol concentrations. Steady-state kinetic studies of methylated liver alcohol dehydrogenase over a wide range of alcohol concentrations suggest that alcohol oxidation proceeds via a random addition of coenzyme and substrate with a pathway for the formation of the productive enzyme-NADH-alcohol complex. To facilitate the analyses of the effects of methylation on liver alcohol dehydrogenase and factors affecting them, new operational kinetic parameters to describe the results at high substrate concentration were introduced. The changes in the dehydrogenase activity on alkylation were found to be associated with changes in the maximum velocities that are affected by the hydrophobicity of alkyl groups introduced at lysine residues. The desensitization of alkylated liver alcohol dehydrogenase to substrate inhibition is identified with a decrease in inhibitory Michaelis constants for alcohols and this is favoured by the steric effects of substituents at the lysine residues.  相似文献   

13.
Abstract Dye-linked alcohol dehydrogenase from Rhodopseudomonas acidophila strain M402, able to oxidize polyethylene glycols, was purified to homogeneity. The monomeric enzyme, having a molecular mass of 72 kDa, contains one PQQ and one haem c per enzyme molecule. In other respects also, the enzyme is very similar to the type I quinohaemoprotein alcohol dehydrogenases known to occur in Comamonas testosteroni, Comamonas acidovorans , and Pseudomonas putida species. However, dissimilarities exist with respect to the isoelectric points and the substrate specificities. On reinvestigating the substrate specificity of the C. testosteroni enzyme, it also appeared to exhibit good activity towards polyethylene glycols. Based on what has been reported for the polyethylene glycol-oxidizing alcohol dehydrogenase of Sphingomonas macrogoltabidus , this enzyme is quite different from that of R. acidophila . Keywords: Polyethylene glycol dehydrogenase activity; Alcohol dehydrogenase; PQQ; Haem c ; Rhodopseudomonas acidophila  相似文献   

14.
Abstract A soluble NADP-dependent alcohol dehydrogenase activity (EC 1.1.1.2) was found in all five strains of Acinetobacter calcoaceticus tested. In A. calcoaceticus NCIB8250, this dehydrogenase was not induced by growth on ethanol, but was present at approximately the same specific activity when this strain was grown on a variety of carbon sources. The specific activity of the NADP-dependent alcohol dehydrogenase is about 10% of the activity of the NAD-dependent alcohol dehydrogenase found in bacteria grown on ethanol. The distinct biochemical properties of the NADP-dependent dehydrogenase showed that this activity was not due to lack of nucleotide specificity of the NAD-dependent dehydrogenase.  相似文献   

15.
The interactions of three groups of probes (berberine alkaloids, tricyclic psychopharmaca and acridine derivatives) with isoenzymes of horse liver alcohol dehydrogenase and with rat liver alcohol dehydrogenase have been examined. These compounds inhibit the activity of the EE isoenzyme of horse liver alcohol dehydrogenase but differ in their behaviour towards the steroid-active enzymes (i.e. the ES isoenzyme of horse liver alcohol dehydrognase and alcohol dehydrogenase from rat liver): psychopharmaca inhibit, acridines activate and berberines do not bind. The ligands differ also in their influence on the modification of the EE isoenzyme by iodoacetate. Polarities (expressed as Kosower's Z values) of the respective binding sites on the EE isoenzyme were estimated from optical properties of bound probes. Berberines bind into a very hydrophobic area of the enzyme molecule, the binding site for psychopharmaca is moderately hydrophobic and that for acridines is rather polar. Steric arrangements of the binding sites are also discussed. The data presented confirm the existence of three distinct binding sites for these ligands in the substrate pocket of liver alcohol dehydrogenase.  相似文献   

16.
Summary The cessation of fermentation by Saccharamyces cerevisiae in a medium rich in sugar is not due to an inhibition of the activities of hexokinase and alcohol dehydrogenase. The activity of alcohol dehydrogenase was significantly increased in a medium of low sugar concentration supplemented with toxic substances, ethanol and fatty acids.  相似文献   

17.
The effects of ovariectomy and administration of estradiol on the activity of liver alcohol dehydrogenase and on the rate of ethanol elimination were determined in female Sprague-Dawley rats. The activity of the enzyme and the rates of ethanol elimination in the female sham-operated animals were higher than obtained previously in male rats of the same age. Ovariectomy had no effect on liver alcohol dehydrogenase and on rates of ethanol elimination. Estradiol administration resulted in an increase in liver weight and in total liver alcohol dehydrogenase activity per animal in sham-operated but not in ovariectomized animals. The increase in enzyme activity after estradiol administration in sham-operated animals was not associated with a significant increase in the rate of ethanol elimination, suggesting that the enzyme activity in female rats is not rate-limiting in in vivo ethanol oxidation.  相似文献   

18.
Abstract

On the functional activation of germinanting seeds. Note V. Alcohol dehydrogenase activity. — The activity of alcohol dehydrogenase is determined by spettrophotometric method on acetone precipitates of dry and germinating seeds of leguminous and graminaceous plants.

The activity of alcohol dehydrogenase is present, even with remarkable different values, in all seeds and in their various parts, singularly examined.

During germination in aerobic conditions, after a first, not strong, increase, the alcohol dehydrogenase activity sensibly decreases.  相似文献   

19.
Comparative studies have been made in the specific activity of sorbitol dehydrogenase, glucose-6-phosphate and alcohol dehydrogenases in the cytoplasm from the liver of wild and domestic ducks, hen and pheasant. High activity of all the three enzymes was found in ducks indicating the effective sorbitol (polyol) metabolism of glucose. The activity of glucose-6-phosphate dehydrogenase is an order lower as compared with the activity of sorbitol and alcohol dehydrogenases in the cytoplasm of hen liver. The same relationship was found for the activity of sorbitol dehydrogenase in the cytoplasm of pheasant liver.  相似文献   

20.
Three Drosophila alcohol dehydrogenase monoclonal antibodies have been prepared and characterized. These antibodies cross-react with alcohol dehydrogenase from different species as revealed by immunoblotting assay. An enzyme-linked immunosorbent assay has been devised to quantify alcohol dehydrogenase in several species, different strains and individual larval organs. The assay detects alcohol dehydrogenase via a double-antibody sandwich assay technique giving strictly proportional values for antigen concentration and optical densities in the range of 3-30 ng of antigen per 100 microliters of sample. When alcohol dehydrogenase specific activity is compared in different larval organs a remarkable similarity is observed, whereas protein distribution varies substantially. Larval fat body and larval alimentary canal contribute 63% and 26% respectively to recovered alcohol dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号