首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High affinity folate binding protein (FBP) regulates as a soluble protein and as a cellular receptor intracellular trafficking of folic acid, a vitamin of great importance to cell growth and division. We addressed two issues of potential importance to the biological function of FBP, a possible decrease of the surface hydrophobicity associated with the ligand-induced conformation change of FBP, and protein-inter-protein interactions involved in self-association of hydrophobic apo-FBP. The extrinsic fluorescent apolar dye 1-anilinonaphthalene-8-sulphonate (ANS) exhibited enhanced fluorescence intensity and a blueshift of emission maximum from 510-520 to 460-470nm upon addition of apo-FBP indicating binding to a strongly hydrophobic environment. Neither enhancement of fluorescence nor blueshift of ANS emission maximum occurred when folate-ligated holo-FBP replaced apo-FBP. The drastic decrease in surface hydrophobicity of holo-FBP could have bearings on the biological function of FBP since changes in surface hydrophobicity have critical effects on the biological function of receptors and transport proteins. ANS interacts with exposed hydrophobic surfaces on proteins and may thereby block and prevent aggregation of proteins (chaperone-like effect). Hence, hydrophobic interactions seemed to participate in the concentration-dependent self-association of apo-FBP which was suppressed by high ANS concentrations in light scatter measurements.  相似文献   

2.
Equilibrium denaturation of streptomycin adenylyltransferase (SMATase) has been studied by CD spectroscopy, fluorescence emission spectroscopy, and binding of the hydrophobic dye 1-anilino-8-naphthalene sulfonic acid (ANS). Far-UV CD spectra show retention of 90% native-like secondary structure at 0.5 M guanidine hydrochloride (GdnHCl). The mean residue ellipticities at 222 nm and enzyme activity plotted against GdnHCl concentration showed loss of about 50 and 75% of secondary structure and 35 and 60% of activity at 0.75 and 1.5 M GdnHCl, respectively. At 6 M GdnHCl, there was loss of secondary structure and activity leading to the formation of GdnHCl-induced unfolded state as evidenced by CD and fluorescence spectroscopy as well as by measuring enzymatic activity. The denaturant-mediated decrease in fluorescence intensity and 5 nm red shift of λmax point to gradual unfolding of SMATase when GdnHCl is added up from 0.5 M to a maximum of 6 M. Decreasing of ANS binding and red shift (∼5 nm) were observed in this state compared to the native folded state, indicating the partial destruction of surface hydrophobic patches of the protein molecule on denaturation. Disruption of disulfide bonds in the protein resulted in sharp decrease in surface hydrophobicity of the protein, indicating that the surface hydrophobic patches are held by disulfide bonds even in the GdnHCl denatured state. Acrylamide and potassium iodide quenching of the intrinsic tryptophan fluorescence of SMATase showed that the native protein is in folded conformation with majority of the tryptophan residues exposed to the solvent, and about 20% of them are in negatively charged environment. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 11, pp. 1514–1523.  相似文献   

3.
Tropoelastin is the precursor of the extracellular protein elastin and is utilized in tissue engineering and implant technology by adapting the interface presented by surface-bound tropoelastin. The preferred orientation of the surface bound protein is relevant to biointerface interactions, as the C-terminus of tropoelastin is known to be a binding target for cells. Using recombinant human tropoelastin we monitored the binding of tropoelastin on hydrophilic silica and on silica made hydrophobic by depositing a self-assembled monolayer of octadecyl trichlorosilane. The layered organization of deposited tropoelastin was probed using neutron and X-ray reflectometry under aqueous and dried conditions. In a wet environment, tropoelastin retained a solution-like structure when adsorbed on silica but adopted a brush-like structure when on hydrophobized silica. The orientation of the surface-bound tropoelastin was investigated using cell binding assays and it was found that the C-terminus of tropoelastin faced the bulk solvent when bound to the hydrophobic surface, but a mixture of orientations was adopted when tropoelastin was bound to the hydrophilic surface. Drying the tropoelastin-coated surfaces irreversibly altered these protein structures for both hydrophilic and hydrophobic surfaces.  相似文献   

4.
This study reports the interaction between furosemide and human carbonic anhydrase II (hCA II) using fluorescence, UV-vis and circular dichroism (CD) spectroscopy. Fluorescence data indicated that furosemide quenches the intrinsic fluorescence of the enzyme via a static mechanism and hydrogen bonding and van der Walls interactions play the major role in the drug binding. The binding average distance between furosemide and hCA II was estimated on the basis of the theory of F?rster energy transfer. Decrease of protein surface hydrophobicity was also documented upon furosemide binding. Chemical modification of hCA II using N-bromosuccinimide indicated decrease of the number of accessible tryptophans in the presence of furosemide. CD results suggested the occurance of some alterations in α-helical content as well as tertiary structure of hCA II upon drug binding.  相似文献   

5.
In this study we have investigated binding of the fluorescent hydrophobicity probe Nile Red to the photoactive yellow protein (PYP), to characterize the exposure and accessibility of hydrophobic surface upon formation of the signaling state of this photoreceptor protein. Binding of Nile Red, reflected by a large blue shift and increase in fluorescence quantum yield of the Nile Red emission, is observed exclusively when PYP resides in its signaling state. N-terminal truncation of the protein allows assignment of the region surrounding the chromophore as the site where Nile Red binds to PYP. We also observed a pH dependence of the affinity of Nile Red for pB, which we propose is caused by pH dependent differences of the structure of the signaling state. From a comparative analysis of the kinetics of Nile Red binding and transient absorption changes in the visible region we can conclude that protonation of the chromophore precedes the exposure of a hydrophobic surface near the chromophore binding site, upon formation of the signaling state. Furthermore, the data presented here favor the view that the signaling state is structurally heterogeneous.  相似文献   

6.
The structure of the wheat gamma 46 gliadin was investigated, in aqueous solutions, under high pressure or temperature by the use of ultraviolet and fluorescence spectroscopic techniques. We found that high pressure (above 400 MPa) induces a change in the protein conformation that results in a decrease of the polarity of the environment of aromatic amino acids. This new conformation was able to bind the hydrophobic probe, 8-anilino-1-naphtalene-sulfonic acid (ANS), indicating an increase in the gliadin surface hydrophobicity. Thermodynamic parameters of this conformational change were measured and infrared spectroscopy studies were used to probe the potential secondary structure modifications. The high stability of gamma 46 gliadin could be related to its elastic character, as the observed changes were always found to be reversible.  相似文献   

7.
The secondary structure and the thermostability of bovine serum albumin (BSA), before adsorption and after homomolecular displacement from silica and polystyrene particles, are studied by circular dichroism spectroscopy and differential scanning calorimetry. The structural perturbations induced by the hydrophilic silica surface are reversible, i.e. BSA completely regains the native structure and stability after being exchanged. On the other hand, the adsorption on, and subsequent desorption from, polystyrene particles causes irreversible changes in the stability and (secondary) structure of BSA. The exchanged proteins have a higher denaturation temperature and a lower enthalpy of denaturation than native BSA. The alpha-helix content is reduced while the beta-turn fraction is increased in the exchanged molecules. Both effects are more pronounced when the protein is displaced from less crowded sorbent surfaces. The irreversible surface-induced conformational change may be related to some aggregation of BSA molecules after being exposed to a hydrophobic surface.  相似文献   

8.
Human alpha 2-macroglobulin and pregnancy zone protein are related with regard to primary structure, physicochemical properties, and quarternary structure. Both proteins undergo conformational changes when they form complexes with proteinases or react with primary amines. The surface properties of the native, chymotrypsin-treated and methylamine-treated forms of alpha 2-macroglobulin and pregnancy zone protein were studied by partitioning in aqueous two-phase systems composed of 7.5% dextran T70 and 5% poly(ethylene glycol) 8000. All proteins and their derivatives had a high potential for hydrophobic interaction as analyzed in terms of affinity for poly(ethylene glycol) esters of fatty acids included in the phase systems. Treatment of alpha 2-macroglobulin with methylamine or chymotrypsin increased the surface hydrophobicity significantly compared to that of the native protein. No difference in hydrophobic interaction was found for native and methylamine-treated pregnancy zone protein, but the chymotrypsin-treated protein showed a marked increase in binding to the hydrophobic ligand. The changes in surface hydrophobicity parallel changes in receptor binding properties of the derivatized forms of alpha 2-macroglobulin and could be a signal for binding to cell-surface receptors, followed by internalization.  相似文献   

9.
Understanding protein aggregation may hold important clues to understanding what goes wrong with protein folding in neurodegenerative disorders and in bioreactors in which proteins are overexpressed. Unfortunately, aggregates tend to be intractable to most standard methods of biochemical investigation. Thus, relatively little is even now known about the micro- and macro-structural features of aggregates. To gain insights into the thermal aggregation of a model globular protein [bovine carbonic anhydrase (BCA)], we have used spectrofluorimetry to examine the binding of a hydrophobic dye, 8-anilinonaphthalene sulfonate (ANS), to hydrophobic clusters on the protein's surface both before and after heat-induced aggregation and upon cooling. Whereas native BCA shows no surface hydrophobicity, thermally aggregated BCA displays significant hydrophobicity both in the heated state and upon cooling. The timing of the addition of ANS in the course of aggregation makes no net difference to the ANS bound; we argue that this suggests that aggregates are essentially porous. Cooling of aggregates results in a dramatic, fully reversible increase in ANS binding that cannot be explained by the temperature dependence of fluorescence quantum yield alone; we argue that the enhancement of fluorescence upon cooling indicates possible structural consolidation of unfolded regions within aggregates (akin to refolding), with the required structural reorganization being facilitated by porosity. Finally, implications of porosity in aggregates are discussed, in particular, for the possible immobilization of enzymes through fusion with aggregation-prone protein domains.  相似文献   

10.
The effect of different molar ratios of polyethylene glycol (PEG) on the conformational stability of protein, bovine serum albumin (BSA), was studied. The binding of PEG with BSA was observed by fluorescence spectroscopy by measuring the fluorescence intensity after displacement of PEG with chromophore ANS and had further been confirmed by measuring the intrinsic fluorescence of tryptophan residues of BSA. Co-lyophilization of BSA with PEG at optimum BSA:PEG molar ratio led to the formation of the stable protein particles. Circular dichroism (CD) spectroscopy study suggested that a conformational change had occurred in the protein after PEG interaction and demonstrated the highest stability of protein at the optimum BSA:PEG molar ratio of 1:0.75. Additional differential scanning calorimetry (DSC) study suggested strong binding of PEG to protein leading to thermal stability at optimum molar ratio. Molecular mechanism operating behind the polyethylene glycol (PEG) mediated stabilization of the protein suggested that strong physical adsorption of PEG on the hydrophobic core of the protein (BSA) along with surface adsorption led to the stability of protein.  相似文献   

11.
Adsorption characteristics of zein protein on hydrophobic and hydrophilic surfaces have been investigated to understand the orientation changes associated with the protein structure on a surface. The protein is adsorbed by a self-assembly procedure on a monolayer-modified gold surface. It is observed that zein shows higher affinity toward hydrophilic than hydrophobic surfaces on the basis of the initial adsorption rate followed by quartz crystal microbalance studies. Reflection absorption infrared (RAIR) spectroscopic studies reveal the orientation changes associated with the adsorbed zein films. Upon adsorption, the protein is found to be denatured and the transformation of alpha-helix to beta-sheet form is inferred. This transformation is pronounced when the protein is adsorbed on hydrophobic surfaces as compared to hydrophilic surfaces. Electrochemical techniques (cyclic voltammetry and impedance techniques) are very useful in assessing the permeability of zein film. It is observed that the zein moieties adsorbed on hydrophilic surfaces are highly impermeable in nature and act as a barrier for small molecules. The topographical features of the deposits before and after adsorption are analyzed by atomic force microscopy. The protein adsorbed on hydrophilic surface shows rod- and disclike features that are likely to be the base units for the growth of cylindrical structures of zein. The thermal stability of the adsorbed zein film has been followed by variable-temperature RAIR measurements.  相似文献   

12.
Ribonuclease A has been immobilized on silica beads through glutaraldeyde-mediated chemical coupling in order to improve the stability of the protein against thermal denaturation. The thermodynamic and binding properties of the immobilized enzyme have been studied and compared with those of the free enzyme. The parameters describing the binding of the inhibitor 3′ -CMP (Ka and ΔH) as monitored by spectrophotometry and calorimetry were not significantly affected after immobilization. Conversely both the stability and unfolding mechanism drastically changed. Thermodynamic analysis of the DSC data suggests that uncoupling of protein domains has occurred as a consequence of the immobilization. The two state approximation of the protein unfolding process is not longer valid for the immobilized RNase. Protein stability strongly depends on the hydrophobicity properties of the support surface as well as on the presence of the inhibitor and pH. For example, after immobilization on a highly hydrophobic surface, the enzyme is partially in the unfolded state. The binding of a ligand is able to reorganize the protein structure into a native-like conformation. The refolding rates are different for the two protein domains and vary as a function of pH and presence of the inhibitor 3′-CMP. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The secondary structures of DnaK and the mutant DnaK756 heat-shock proteins from Escherichia coli have been investigated by Fourier transform infrared spectroscopy. The analysis of infrared data showed that DnaK and DnaK756 proteins have different secondary structures that are not affected by the presence of ATP or beta, gamma-methyleneadenosine 5'-triphosphate. The infrared data indicate also that the tertiary structures of DnaK and DnaK756 proteins are different and that DnaK protein undergoes conformational changes in its tertiary structure not only during binding of ATP but also during ATP hydrolysis. Using fluorescence spectroscopy of a single tryptophan located in the N-terminal domain of DnaK protein and fluorescence of 1,1'-bis(4-anilino)naphthalene-5,5'-disulfonic acid, which interacts with hydrophobic domains of DnaK protein, we were able to distinguish between two conformational states of DnaK protein. After binding of triphosphonucleotides, the C-terminal domain of DnaK protein changes in tertiary structure in such a way that fewer hydrophobic segments are exposed on the surface of the protein. After ATP hydrolysis, the number of hydrophobic segments on the surface of the protein is further reduced, and moreover the tertiary structure of the N-terminal domain of the protein changes. These data are discussed in terms of structural and functional relationships of both DnaK and DnaK756 proteins.  相似文献   

14.
The interaction of four representative polyanions with parathyroid hormone (PTH) residues 1-84 has been investigated utilizing a variety of spectroscopic and calorimetric techniques. Each of the polyanions employed demonstrate enthalpically driven binding to PTH (1-84) with significant affinity. The polyanions heparin, dextran sulfate, phytic acid, and sucrose octasulfate induce alpha-helical structure in PTH to varying extents depending on the ratio of polyanion to protein employed. Intrinsic and extrinsic fluorescence spectroscopy suggests significant protein tertiary structure alteration upon polyanion binding. Although structural modification occurred upon polyanion binding, PTH colloidal stability was increased depending on the ratio of polyanion to protein used. Nevertheless, the bioactivity of PTH in the presence of various ratios of heparin was not altered. The potential biological significance of PTH/polyanion interactions is discussed.  相似文献   

15.
Abraham S  So A  Unsworth LD 《Biomacromolecules》2011,12(10):3567-3580
Nonfouling polymer architectures are considered important to the successful implementation of many biomaterials. It is thought that how these polymers induce conformational changes in proteins upon adsorption may dictate the fate of the device being utilized. Herein, oxidized silicon nanoparticles (SiNP) were modified with various forms of poly(carboxybetaine methacrylamide) (PCBMA) for the express purpose of understanding how polymer chemistry affects film hydration, adsorbed protein conformation, and clot formation kinetics. To this end, carboxybetaine monomers differing in intercharge separating spacer groups were synthesized, and nitroxide-mediated free radical polymerization (NMP) was conducted using alkoxyamine initiators with hydrophobic (TEMPO) and hydrophilic (β-phosphonate) terminal groups. The physical properties (surface composition, thickness, grafting density, etc.) of the resulting polymer-SiNP conjugates were quantified using several techniques, including Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The effect of spacer group on the surface charge density was determined using zeta potential measurements. Three proteins, viz., lysozyme, bovine α-lactalbumin, and human serum albumin, were used to evaluate the effect film properties (charge, hydration, end-group) have on adsorbed protein conformation, as determined by circular dichroism (CD), fluorescence spectroscopy, and fluorescence quenching techniques. Hemocompatibility of these surfaces was observed by measuring clot formation kinetics using the plasma recalcification time assay. It was found that chain chemistry, as opposed to end-group chemistry, was a major determiner for water structure, adsorbed protein conformation, and clotting kinetics. It is thought that the systematic evaluation of how both chain (internal) and end-group (external) polymer properties affect film hydration, protein conformation, and clot formation will provide valuable insight that can be applied to all engineered surfaces for biomedical applications.  相似文献   

16.
The surface of polyhydroxybutyrate (PHB) storage granules in bacteria is covered mainly by proteins referred to as phasins. The layer of phasins stabilizes the granules and prevents coalescence of separated granules in the cytoplasm and nonspecific binding of other proteins to the hydrophobic surfaces of the granules. Phasin PhaP1(Reu) is the major surface protein of PHB granules in Ralstonia eutropha H16 and occurs along with three homologues (PhaP2, PhaP3, and PhaP4) that have the capacity to bind to PHB granules but are present at minor levels. All four phasins lack a highly conserved domain but share homologous hydrophobic regions. To identify the region of PhaP1(Reu) which is responsible for the binding of the protein to the granules, N-terminal and C-terminal fusions of enhanced green fluorescent protein with PhaP1(Reu) or various regions of PhaP1(Reu) were generated by recombinant techniques. The fusions were localized in the cells of various recombinant strains by fluorescence microscopy, and their presence in different subcellular protein fractions was determined by immunodetection of blotted proteins. The fusions were also analyzed to determine their capacities to bind to isolated PHB granules in vitro. The results of these studies indicated that unlike the phasin of Rhodococcus ruber, there is no discrete binding motif; instead, several regions of PhaP1(Reu) contribute to the binding of this protein to the surface of the granules. The conclusions are supported by the results of a small-angle X-ray scattering analysis of purified PhaP1(Reu), which revealed that PhaP1(Reu) is a planar, triangular protein that occurs as trimer. This study provides new insights into the structure of the PHB granule surface, and the results should also have an impact on potential biotechnological applications of phasin fusion proteins and PHB granules in nanobiotechnology.  相似文献   

17.
Annexin V binds to membranes with very high affinity, but the factors responsible remain to be quantitatively elucidated. Analysis by isothermal microcalorimetry and calcium titration under conditions of low membrane occupancy showed that there was a strongly positive entropy change upon binding. For vesicles containing 25% phosphatidylserine at 0.15 m ionic strength, the free energy of binding was -53 kcal/mol protein, whereas the enthalpy of binding was -38 kcal/mol. Addition of 4 m urea decreased the free energy of binding by about 30% without denaturing the protein, suggesting that hydrophobic forces make a significant contribution to binding affinity. This was confirmed by mutagenesis studies that showed that binding affinity was modulated by the hydrophobicity of surface residues that are likely to enter the interfacial region upon protein-membrane binding. The change in free energy was quantitatively consistent with predictions from the Wimley-White scale of interfacial hydrophobicity. In contrast, binding affinity was not increased by making the protein surface more positively charged, nor decreased by making it more negatively charged, ruling out general ionic interactions as major contributors to binding affinity. The affinity of annexin V was the same regardless of the head group present on the anionic phospholipids tested (phosphatidylserine, phosphatidylglycerol, phosphatidylmethanol, and cardiolipin), ruling out specific interactions between the protein and non-phosphate moieties of the head group as a significant contributor to binding affinity. Analysis by fluorescence resonance energy transfer showed that multimers did not form on phosphatidylserine membranes at low occupancy, indicating that annexin-annexin interactions did not contribute to binding affinity. In summary, binding of annexin V to membranes is driven by both enthalpic and entropic forces. Dehydration of hydrophobic regions of the protein surface as they enter the interfacial region makes an important contribution to overall binding affinity, supplementing the role of protein-calcium-phosphate chelates.  相似文献   

18.
The de novo design and biophysical characterization of two 60-residue peptides that dimerize to fold as parallel coiled-coils with different hydrophobic core clustering is described. Our goal was to investigate whether designing coiled-coils with identical hydrophobicity but with different hydrophobic clustering of non-polar core residues (each contained 6 Leu, 3 Ile, and 7 Ala residues in the hydrophobic core) would affect helical content and protein stability. The disulfide-bridged P3 and P2 differed dramatically in alpha-helical structure in benign conditions. P3 with three hydrophobic clusters was 98% alpha-helical, whereas P2 was only 65% alpha-helical. The stability profiles of these two analogs were compared, and the enthalpy and heat capacity changes upon denaturation were determined by measuring the temperature dependence by circular dichroism spectroscopy and confirmed by differential scanning calorimetry. The results showed that P3 assembled into a stable alpha-helical two-stranded coiled-coil and exhibited a native protein-like cooperative two-state transition in thermal melting, chemical denaturation, and calorimetry experiments. Although both peptides have identical inherent hydrophobicity (the hydrophobic burial of identical non-polar residues in equivalent heptad coiled-coil positions), we found that the context dependence of an additional hydrophobic cluster dramatically increased stability of P3 (Delta Tm approximately equal to 18 degrees C and Delta[urea](1/2) approximately equal to 1.5 M) as compared with P2. These results suggested that hydrophobic clustering significantly stabilized the coiled-coil structure and may explain how long fibrous proteins like tropomyosin maintain chain integrity while accommodating polar or charged residues in regions of the protein hydrophobic core.  相似文献   

19.
SGLT1 as a Na+/glucose cotransporter is inhibited by phlorizin, a phloretin 2'-glucoside that has strong interactions with the C-terminal loop 13 (residues 541-638). Here we investigated the effect of a partial substitution of glycerol for water in the medium on the stability and phlorizin-binding function of loop 13 using fluorescence spectroscopy. Increasing the glycerol concentration promoted an increase in the stability of the protein to urea. The ability of loop 13 to expose hydrophobic surface promoted by phlorizin binding was partially lost in the presence of glycerol (20%). Glycerol also led to a decrease in the phlorizin affinity of loop 13 in solution. Approximately 15 molecules of water were taken up to cover additional surface area (137.7+/-27.9A(2)) upon formation of the loop 13-phlorizin complex. Together these results demonstrate quantitatively that the stability and phlorizin affinity of loop 13 are critically dependent on protein hydration.  相似文献   

20.
The structure of the adsorbing layers of native and denatured proteins (fibrinogen, gamma-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO(2) and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO(2) surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号