首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The aim of our study was to assess the relationship between the serum lactate dehydrogenase isoenzyme 1 (S-LDH-1) activity in patients with testicular germ cell tumors and the number of copies of the short arm of chromosome 12 (12p) present in tumor. Twenty-seven adult patients with measurable tumor lesions were studied. Twenty-five had three or more copies of chromosome 12 per cell in the tumors. Nineteen had one or more copies of a specific chromosomal abnormality, an isochromosome of the short arm of chromosome 12, i(12p). Fourteen had increased S-LDH-1 levels. S-LDH-1 activity correlated significantly with the product of total tumor volume and the total number of copies of the short arm of chromosome 12 present per cell (total tumor 12p). We conclude that the total number of copies of the short arm of chromosome 12 in the tumors is most probably a factor contributing to the LDH-1 activity released from the tumors.  相似文献   

2.
Summary The study of banded chromosomes of nine sporadic unilateral retinoblastomas revealed near diploid karyotypes with multiple numerical and (or) structural abnormalities in all tumors. An identical marker i(6p) was noted in cells of the modal class of six retinoblastomas. Extra copies of the short arm of chromosome 6 were observed in seven tumors: +i(6p) in 6 and +6q- in one. Less regular but repeated findings were a loss of one sex chromosome, and markers 1p+ and 17q+. The structure of these markers was not identical in different tumors. Abnormalities of chromosome 13 were not observed in tumor cells, nor in blood lymphocytes stimulated by PHA.  相似文献   

3.
Summary Full cytogenetic analysis of 27 different retinoblastoma tumors is presented. Gross aneuploidy of chromosome arms 6p and 1q were very common, being observed in 15/27 and 21/27 tumors, respectively. However, we found that chromosome 13 was rarely missing: only 3/27 had a detectable monosomy affecting 13q14. Monosomy of chromosome 13 by small deletion or rearrangement was also not observed in any of 12 retinoblastoma tumor lines analyzed detail at the 300–400 chromosome band level. A novel observation in retinoblastoma was the discovery of non-random translocations at three specific breakpoints, 14q32 (4/12), 17p12 (5/12), and 10q25 (3/12). Genomic rearrangements similar to those described involving C-myc in Burkitt lymphoma 14q+ cells could not be demonstrated in the four 14q+ retinoblastoma lines using molecular techniques, and a probe mapping to the site implicated to have an activating role in lymphoma. These data suggest that there is a target for rearrangement at 14q32 but it is not the same sequence used in some Burkitt lymphomas. Two other breakpoints (2p24 and 8q24) coincided with the mapped position of cellular oncogenes, but also failed to show a molecular rearrangement with the oncogene probes. The breakpoints, 10q25 and 17p12, are constitutional fragile sites which may predispose these regions to act as acceptors of translocations in malignant cells. One line had double minute chromosomes, and was the only one of 16 (6%) tested with the N-myc probe which had an amplification. Different tumors from single patients with multifocal heritable retinoblastoma showed independent karyotype evolution. Unilateral non-heritable tumors exhibited a high level of karyotype stability throughout both in vivo and in vitro growth. The various common patterns of aneuploidy and translocations probably confer an early selective advantage to malignant cells, rather than induce malignant transformation.  相似文献   

4.
Two hypotheses are capable of explaining nonrandom loss of one parent's alleles at tumor suppressor loci in sporadic cases of several pediatric cancers, including retinoblastoma—namely, preferential germ-line mutation or chromosome imprinting. We have examined 74 cases of sporadic retinoblastoma for tumors in which at least two genetic events—loss of heterozygosity for chromosome 13q markers and formation of an isochromosome 6p—have occurred. Sixteen cases were found to contain both events. In 13 of 16 such tumors, the chromosomes 13q that were lost and chromosomes 6p that were duplicated are derived from the same parent. These data may be explained within the framework of the genome imprinting model but are not predicted by preferential germ-line mutation.  相似文献   

5.
Reddy KS  Murphy T 《Human genetics》2000,107(3):268-275
A newborn was found to have an isochromosome for the short arm of chromosome 9, i(9p) and a jumping translocation of the whole long arm. In 94.4% metaphases, 9q was fused to the telomere of chromosome 19p and, in 5.6% of metaphases, 9q was fused to the telomere of chromosome 8p. The net result was trisomy for the short arm of chromosome 9. With the pan telomere probe, fluorescent in situ hybridization (FISH) investigations found an interstitial telomere on the der(19) and der(8). The 9 beta and classical satellite probes gave a signal only on the long arm of chromosome 9 involved in the jumping translocation. The 9 alpha satellite probe hybridized to i(9p) and not to the other derivative chromosomes. A combination of chromosome 9 (red) and chromosome 19 (green) paint probes used to rapidly screen metaphases for the jumping translocation found 88 metaphases had a der(19)t(9;19) and 4metaphases had a der(8)t(8;9). For the first time, the junction of a jumping translocation has been shown to involve the telomere sequence (TTAGGG)n and beta-satellite sequences by FISH. In this paper, we also review the simultaneous occurrence of an isochromosome for the short arm and translocation of the whole long arm and constitutional jumping translocations.  相似文献   

6.
Previous studies of follicular thyroid tumors have shown loss of heterozygosity (LOH) on the short arm of chromosome 3 in carcinomas, and on chromosome 10 in atypical adenomas and carcinomas, but not in common adenomas. We studied LOH on these chromosomal arms in 15 follicular thyroid carcinomas, 19 atypical follicular adenomas and 6 anaplastic (undifferentiated) carcinomas. Deletion mapping of chromosome 10 using 15 polymorphic markers showed that 15 (37.5%) of the tumors displayed LOH somewhere along the long arm. Thirteen of these tumors showed deletions involving the telomeric part of chromosome 10q, distal to D1OS 187. LOH on chromosome 3p was found in 8 (20%) cases. Seven of these also showed LOH on chromosome 10q. In eight cases LOH was seen on chromosome 10q but not 3p. In comparison, the retinoblastoma gene locus at chromosome 13q showed LOH in 22% of the tumors. Most of these also had deletions on chromosome 10q. The results indicate that a region at the telomeric part of 10q may be involved in progression of follicular thyroid tumors.  相似文献   

7.
Two chromosomes that undergo nonrandom changes in carcinoma of the cervix and have been studied for several decades in this laboratory are discussed. The first, chromosome 5, is discussed in view of the frequent appearance of an isochromosome for 5p, often in two or more copies and commonly associated with fewer that the expected number of normal copies of this chromosome. The second is chromosome 17, where a translocation involving another chromosome may result in a 17p+, and the significant change appears to be a loss from 17p that may include the p53 gene (TP53) and/or other tumor-suppressor genes located on this chromosome arm.  相似文献   

8.
Neuroblastomas often show loss of heterozygosity of the chromosomal region 1p36 (LOH 1p), probably reflecting loss of a tumor-suppressor gene. Here we describe three neuroblastoma tumors and two cell lines in which LOH 1p results from an unbalanced translocation between the p arm of chromosome 1 and the q arm of chromosome 17. Southern blot and cytogenetic analyses show that in all cases the chromosome 17 homologue from which the 1;17 translocation was derived is still present and intact. This suggests a model in which a translocation between the short arm of chromosome 1 and the long arm of chromosome 17 takes place in the S/G2 phase of the cell cycle and results in LOH 1p. Nonhomologous mitotic recombination in the S/G2 phase is a novel mechanism of LOH.  相似文献   

9.
Summary In one family a duplicated 21q was shown to be a true isochromosome, which segregates from mosaic mother to non-mosaic child with full Down syndrome phenotype. Densitometric analysis of Southern blots, using probe pPW228C for the distal long arm of chromosome 21, indicated that the 21q duplication contains two copies of the allele detected by the probe. Maternal mosaic karyotype of 45,XX,-21/46,XX/46, XX,-21,+21i(21q) also suggested transverse mitotic centromere division as the origin of the 21q isochromosomes. Morphologic analysis of chromosome heteromorphisms strengthened this interpretation because the free 21 missing in the cell line with 45 chromosomes was also missing in cells with the isochromosome. In a second family the cytogenetic data also suggested transmission of an i(21q) from mosaic mother to nonmosaic Down syndrome child but molecular evidence did not prove identity of alleles in the duplicated chromosome 21.  相似文献   

10.
Centric fission consequences in man   总被引:1,自引:0,他引:1  
The authors summarise the consequences of centric fission in man as follows: classical (monocentric) isochromosomes; usually either for p or q, exceptionally for both arms; stable telocentrics for either one or both arms; isochromosome for one arm, stable telocentric for the other; isochromosome for one arm concurring with translocation of the telocentric for the other; telocentric/isochromosome mosaicism for the same arm; stable telocentric for a part of one arm, the remaining of the chromosome forming a smaller element (obviously this rearrangement requires an additional break outside the centromere), and whole-arm translocations. These events are discussed in the light of current notions about centromere structure and function.  相似文献   

11.
The isochromosome studied was derived from the short arm of the satellite chromosome of rye (Secale cereale, 2n=14); the telocentrics represent both the short and long arms of the same chromosome. Three different combinations, tetrasomic for the short arm, have been composed and studied: I: 2 isochromosomes (short arm) + 2 telocentrics (long arm) + 6 normal pairs. II: 1 isochromosome + 2 telocentrics (short arm) + 2 telocentrics (long arm) + 6 normal pairs. III: 1 isochromosome + 1 telocentric (short arm) + 1 normal satellite chromosome + 1 telocentric (long arm) + 6 normal pairs. — Over 20,000 cells were analysed. Simple mathematical models describing the frequencies of the different types of MI configurations in terms of frequency of chiasmata in the different pairing combinations of the polysomic arms, and of the frequency of multivalent pairing of this arm, were developed. They were used to derive estimates for chiasma frequencies and multivalent pairing frequencies in the different chromosome constitutions from the observations on configuration frequencies. Variation between plants and within plants was studied, and it was concluded that much of the within plant heterogeneity was due to regulatory variation expressed independently in different chromosomal segments. There was also a significant genetic component. Analysis of the reasons for the models to fail under certain conditions led to suggestions for extension of the models.  相似文献   

12.
An isochromosome was found in the maize HiII Parent B line during somatic karyotyping with a multiprobe fluorescence in situ hybridization (FISH) system. Cytological analyses showed that it pairs with the short arm of chromosome 8 during the pachytene stage of meiosis. The chromosome 8 short arm origin of this isochromosome was also confirmed by FISH at mitotic metaphase. Knob heterochromatin signals were present at the short arms of chromosome 8 when subjected to prolonged exposure and also observed at both ends of the isochromosome. This isochromosome can be a univalent or a trivalent by pairing with the normal chromosome 8 short arms during meiosis. At anaphase and telophase, the isochromosome lagged behind other chromosomes. It had a transmission rate of 17%-20% from both male and female gametes. One plant homozygous for the isochromosome contained 2 isochromosomes that differed in the quantity of their CentC centromere repeat sequence. Both variations of the isochromosome were transmitted to the next generation. Because the 2 isochromosomes should be identical by descent, these observations document a radical change in copy number of the centromere repeat array within 1 generation. Plants with 1 isochromosome were not normal as compared with the original HiII Parent B plants. Those that contained a pair of this isochromosome (6 total copies of 8S) were even more abnormal and had reduced fertility. The results indicate the ability of the somatic karyotyping system to recognize and characterize chromosomal aberrations.  相似文献   

13.
An 18 1/2-year-old female is described with moderately severe mental retardation, the phenotype of the trisomy 9p syndromy, and an isochromosome for the short arm of a chromosome 9, contained in an unique karyotype, 46,XX,-9,t(7q9q),+ iso 9p.  相似文献   

14.
DNA copy number changes were studied by comparative genomic hybridization on 10 tumor specimens of squamous cell carcinoma of cervix obtained from Korean patients. DNA was extracted from paraffin-embedded sections after removal of non-malignant cells by microdissection technique. Copy number changes were found in 8/10 tumors. The most frequent changes were chromosome 19 gains (n=6) and losses on chromosomes 4 (n=4), 5 (n=3), and 3p (n=3). A novel finding was amplification in chromosome arm 9p21-pter in 2 cases. Gains in 1, 3q, 5p, 6p, 8q, 16p, 17, and 20q and losses at 2q, 6q, 8p, 9q, 10p, 11, 13, 16q, and 18q were observed in at least one of the cases.  相似文献   

15.
Chromosome changes characteristic of fully invasive neoplasms were found in direct preparations from a noninvasive ovarian carcinoma and three carcinomas in situ of the cervix uteri, two of which showed early stromal invasion. Abnormal chromosomes present included structurally changed chromosomes 6 and an isochromosome for the long arm of chromosome 17 (in the ovarian carcinoma and one carcinoma in situ), chromosomes 1 with long arm deletions (in two carcinomas in situ) and double minute chromatin bodies (in one of two metaphases obtained from the third carcinoma in situ). A chromosome of uncertain origin with a homogeneously staining region was also present in the ovarian carcinoma.  相似文献   

16.
Summary The data of the chromosome abnormalities in 15 colorectal tumors are presented. Rearrangements of the short arm of chromosome 17, leading to deletions of this arm or its part were noted in 12 tumors; in 2 other cases, one of the homologs of pair 17 was lost. The losses of at least one homolog of other chromosomal pairs were also found: chromosome 18, in 12 out of 13 cases with fully identified numerical abnormalities; chromosome 5, in 6 tumors; chromosome 21, in 5 cases; chromosomes 4, 15, and 22, in 4 cases each. Additional homologs of pair 20 were observed in 6 tumors, extra 8q was found in 5 tumors, and extra 13q in 6 cases. Rearrangements of the short arm of chromosome 1 and the long arm of chromosome 11 characterized 6 tumors each. The data recorded in our series differ from the data of other authors in two respects: the high incidence of the loss of sex chromosomes and the rearrangements of the long arm of chromosome 9. X chromosomes were missing in 4 out of 7 tumors in females, and Y chromosomes were absent in 5 out of 8 tumors in males. The long arm of chromosome 9 was rearranged in 8 cases, in 5 of them the breakpoint being at 9q22. Cytological manifestations of gene amplification (double minutes or multiple microchromosomes) were noted in 6 tumors.  相似文献   

17.
Summary An iso 12p chromosome from a patient with Pallister-Killian syndrome was successfully transferred into a mouse background by microcell-mediated chromosome transfer. The presence of the i(12p) chromosome was confirmed by karyotyping and by Southern blotting using five 12p and seven 12q probes. The isochromosome nature of the marker chromosome was confirmed by co-hybridization of a 12p probe with a 12q and an 8q probe. This cell line should be a valuable tool for physical mapping of 12p-derived DNA fragments; at the same time, it confirms the identity of the extra chromosome in the Pallister-Killian syndrome as i(12p).  相似文献   

18.
Retinoblastoma (Rb) is an uncommon childhood tumor of the neural retina with a significant genetic component in its etiology. A small proportion of patients have a deletion in chromosome 13 encompassing band 13q14, an observation which permitted the assignment of the RB1 locus to this region. About 20% of Rb tumors exhibit microscopic deletions of band 13q14 or monosomy 13. Trisomy 1q and i(6p) have also been reported in a high percentage of tumors. We analyzed the chromosome complements from direct preparations of 10 Rb tumors derived from seven patients. Modal chromosome numbers ranged from 45 to 48, and occasional duplications of the genomes were noted. In general, the tumors were chromosomally stable, although karyotypic evolution and random chromosome loss were encountered. Consistent abnormalities included trisomy 1q, i(6p), 6q-, and del(13)(q12----14). One patient with bilateral Rb had three tumor clones (two in one eye and one in the other) with chromosome abnormalities unrelated in origin. A second patient with unilateral Rb had two tumor clones with chromosome abnormalities again unrelated in origin. These two patients provide some of the first cytogenetic evidence for the multifocal origin of primary Rb. In the untreated tumor of a third patient, a homogeneously staining region (HSR) was detected in 1p32, indicating gene amplication in vivo; previously, an HSR at this site has been reported in the established Rb cell line Y79.  相似文献   

19.
Cytogenetic and molecular genetic analyses of human intraspecific HeLa x fibroblast hybrids have provided evidence for the presence of a tumor-suppressor gene(s) on chromosome 11 of normal cells. In the present study, we have carried out extensive RFLP analysis of various nontumorigenic and tumorigenic hybrids with at least 50 different chromosome 11-specific probes to determine the precise location of this tumor-suppressor gene(s). Two different hybrid systems, (1) microcell hybrids derived by the transfer of a normal chromosome 11 into a tumorigenic HeLa-derived hybrid cell and (2) somatic cell hybrids derived by the fusion of the HeLa (D98OR) cells to a retinoblastoma (Y79) cell line, were particularly informative. The analysis showed that all but one of the nontumorigenic hybrid cell lines contained a complete copy of the normal chromosome 11. This variant hybrid contained a segment of the long arm but had lost the entire short arm of the chromosome. The tumorigenic microcell and somatic cell hybrids had retained the short arm of the chromosome but had lost at least the q13-23 region of the chromosome. Thus, these results showed a perfect correlation between the presence of the long arm of chromosome 11 and the suppression of the tumorigenic phenotype. We conclude therefore that the gene(s) involved in the suppression of the HeLa cell tumors is localized to the long arm (q arm) of chromosome 11.  相似文献   

20.
Molecular characterization of de novo secondary trisomy 13.   总被引:12,自引:6,他引:6       下载免费PDF全文
Unbalanced Robertsonian translocations are a significant cause of mental retardation and fetal wastage. The majority of homologous rearrangements of chromosome 21 in Down syndrome have been shown to be isochromosomes. Aside from chromosome 21, very little is known about other acrocentric homologous rearrangements. In this study, four cases of de novo secondary trisomy 13 are presented. FISH using alpha-satellite sequences, rDNA, and a pTRI-6 satellite I sequence specific to the short arm of chromosome 13 showed all four rearrangements to be dicentric and apparently devoid of ribosomal genes. Three of four rearrangements retained the pTRI-6 satellite I sequence. Case 1 was the exception, showing a deletion of this sequence in the rearrangement, although both parental chromosomes 13 had strong positive hybridization signals. Eleven microsatellite markers from chromosome 13 were also used to characterize the rearrangements. Of the four possible outcomes, one maternal Robertsonian translocation, two paternal isochromosomes, and one maternal isochromosome were observed. A double recombination was observed in the maternally derived rob(13q13q). No recombination events were detected in any isochromosome. The parental origins and molecular chromosomal structure of these cases are compared with previous studies of de novo acrocentric rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号