首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BAD, a proapoptotic molecule of the BCL2 family, is regulated by reversible phosphorylation. During survival, BAD is sequestered by 14-3-3 through serine 136 phosphorylation and is dissociated from BCL-X(L) through serine 155 phosphorylation. We report that phosphoserine 112 (pSer112) dephosphorylation functions as a gatekeeper for BAD-mediated apoptosis. During apoptosis, dephosphorylation of pSer112 preceded pSer136 dephosphorylation. Dephosphorylation of pSer112 accelerated dephosphorylation of pSer136, and inhibition of pSer112 dephosphorylation prevented pSer136 dephosphorylation, indicating that dephosphorylation of pSer112 is required for dephosphorylation of pSer136. Protein phosphatase 2A (PP2A) is the major pSer112 phosphatase. PP2A competed with 14-3-3 for BAD binding, and survival factor withdrawal enhanced PP2A association with BAD. Dephosphorylation of the critical residue, pSer136, could only be blocked by inhibition of all known subfamilies of serine/threonine phosphatases, suggesting that multiple phosphatases are involved in pSer136 dephosphorylation. Inhibition of PP2A rescued FL5.12 cells from apoptosis, demonstrating a physiologic role for PP2A-mediated pSer112 dephosphorylation. Thus, PP2A dephosphorylation of pSer112 is the key initiating event regulating the activation of BAD during interleukin-3 withdrawal-induced apoptosis.  相似文献   

2.
Phosphorylation of BAD, a pro-apoptotic member of the Bcl-2 protein family, on either Ser112 or Ser136 is thought to be necessary and sufficient for growth factors to promote cell survival. Here we report that Ser155, a site phosphorylated by protein kinase A (PKA), also contributes to cell survival. Ser112 is thought to be the critical PKA target, but we found that BAD fusion proteins containing Ala at Ser112 (S112A) or Ser136 (S136A) or at both positions (S112/136A) were still heavily phosphorylated by PKA in an in vitro kinase assay. BAD became insensitive to phosphorylation by PKA only when both Ser112 and Ser136, or all three serines (S112/136/155) were mutated to alanine. In HEK293 cells, BAD fusion proteins mutated at Ser155 were refractory to phosphorylation induced by elevation of cyclic AMP(cAMP) levels. Phosphorylation of the S112/136A mutant was >90% inhibited by H89, a PKA inhibitor. The S155A mutant induced more apoptosis than the wild-type protein in serum-maintained CHO-K1 cells, and apoptosis induced by the S112/136A mutant was potentiated by serum withdrawal. These data suggest that Ser155 is a major site of phosphorylation by PKA and serum-induced kinases. Like Ser112 and Ser136, phosphorylation of Ser155 contributes to the cancellation of the pro-apoptotic function of BAD.  相似文献   

3.
The Bcl-2 family protein BAD promotes apoptosis by binding through its BH3 domain to Bcl-x(L) and related cell death suppressors. When BAD is phosphorylated on either Ser(112) or Ser(136), it forms a complex with 14-3-3 in the cytosol and no longer interacts with Bcl-x(L) at the mitochondria. Here we show that phosphorylation of a distinct site Ser(155), which is at the center of the BAD BH3 domain, directly suppressed the pro-apoptotic function of BAD by eliminating its affinity for Bcl-x(L). Protein kinase A functioned as a BAD Ser(155) kinase both in vitro and in cells. BAD Ser(155) was found to be a major site of phosphorylation induced following stimulation by growth factors and prevented by protein kinase A inhibitors but not by inhibitors of the phosphatidylinositol 3-kinase/Akt pathway. Growth factors inhibited BAD-induced apoptosis in both a Ser(112)/Ser(136)- and a Ser(155)-dependent fashion. Thus, growth factors engage an anti-apoptotic signaling pathway that inactivates BAD by direct modification of its BH3 cell death effector domain.  相似文献   

4.
Here we show that LNCaP, which is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, becomes sensitive to TRAIL after overexpression of full-length, wild-type BAD (BAD WT). TRAIL induces caspase-dependent cleavage of BAD WT that results in generation of a M(r) 15,000 protein. LNCaP stably expressing truncated BAD (tBAD) and cells expressing mutated BAD at the caspase cleavage site were less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Cytochrome c and Smac/DIABLO release from mitochondria into cytosol was found after TRAIL treatment only in cells overexpressing BAD WT. Furthermore, differences in phosphorylation of serine residues for BAD WT and tBAD were identified. BAD WT was phosphorylated at positions S136 and S155, whereas tBAD was phosphorylated at positions S112, S136, and S155. LNCaP stably expressing BAD mutated at serine 112 to alanine was less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Lastly, recombinant BAD cleaved by caspase-3 is a more potent inducer of cytochrome c and Smac/DIABLO release than BAD WT. In summary, BAD-mediated sensitivity of LNCaP to TRAIL depends on the phosphorylation status of BAD WT and tBAD.  相似文献   

5.
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.  相似文献   

6.
BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival   总被引:20,自引:0,他引:20  
The BH3 domain of BAD mediates its death-promoting activities via heterodimerization to the Bcl-XL family of death regulators. Growth and survival factors inhibit the death-promoting activity of BAD by stimulating phosphorylation at multiple sites including Ser-112 and Ser-136. Phosphorylation at these sites promotes binding of BAD to 14-3-3 proteins, sequestering BAD away from the mitochondrial membrane where it dimerizes with Bcl-XL to exert its killing effects. We report here that the phosphorylation of BAD at Ser-155 within the BH3 domain is a second phosphorylation-dependent mechanism that inhibits the death-promoting activity of BAD. Protein kinase A, RSK1, and survival factor signaling stimulate phosphorylation of BAD at Ser-155, blocking the binding of BAD to Bcl-XL. RSK1 phosphorylates BAD at both Ser-112 and Ser-155 and rescues BAD-mediated cell death in a manner dependent upon phosphorylation at both sites.  相似文献   

7.
SET, the translocation breakpoint-encoded protein in acute undifferentiated leukemia (AUL), is identified as a 39-kDa phosphoprotein found predominantly in the cell nuclei [1994, J. Biol. Chem. 269,2258-2262]. SET is fused to a putative oncoprotein, CAN, in AUL and is thought to regulate the transformation potential of SET-CAN by its nuclear localization and phosphorylation. We investigated in detail the in vivo phosphorylation of SET. Phosphorylation of SET occurred in all human cell lines examined in vivo, primarily on serine residues. Endoproteinase Glu-C digestion of phosphorylated SET yielded two phosphopeptides. By radiosequencing, we identified the in vivo phosphorylation sites of SET as Ser9 and Ser24. The surrounding sequences of Ser9 and Ser24 contained an apparent consensus site sequence for protein kinase C.  相似文献   

8.
We demonstrate here that neuronal nitric-oxide synthase (nNOS) is phosphorylated and inhibited by a constitutively active form of Ca2+/calmodulin (CaM)-dependent protein kinase I (CaM-K I1-293). Substitution of Ser741 to Ala in nNOS blocked the phosphorylation and the inhibitory effect. Mimicking phosphorylation at Ser741 by Ser to Asp mutation resulted in decreased binding of and activation by CaM, since the mutation was within the CaM-binding domain. CaM-K I1-293 gave phosphorylation of nNOS at Ser741 in transfected cells, resulting in 60–70% inhibition of nNOS activity. Wild-type CaM-K I also did phosphorylate nNOS at Ser741 in transfected cells, but either CaM-K II or CaM-K IV did not. These results raise the possibility of a novel cross-talk between nNOS and CaM-K I through the phosphorylation of Ser741 on nNOS.  相似文献   

9.
The Bcl-2 homology 3 (BH3) domain of prodeath Bcl-2 family members mediates their interaction with prosurvival Bcl-2 family members and promotes apoptosis. We report that survival factors trigger the phosphorylation of the proapoptotic Bcl-2 family member BAD at a site (Ser-155) within the BAD BH3 domain. When BAD is bound to prosurvival Bcl-2 family members, BAD Ser-155 phosphorylation requires the prior phosphorylation of Ser-136, which recruits 14-3-3 proteins that then function to increase the accessibility of Ser-155 to survival-promoting kinases. Ser-155 phosphorylation disrupts the binding of BAD to prosurvival Bcl-2 proteins and thereby promotes cell survival. These findings define a mechanism by which survival signals inactivate a proapoptotic Bcl-2 family member, and suggest a role for 14-3-3 proteins as cofactors that regulate sequential protein phosphorylation events.  相似文献   

10.
This study investigated the expression and activation of Akt/PKB in developing and adult rat uterus. Expression of Akt was observed in uteri from adult ovariectomized and 7–35-day-old rats and no changes were observed in response to in vivo estradiol treatment (1–100 μg/100 g b.w.). To examine the mechanisms of PKB/Akt activation, phosphorylation at Thr308 and Ser473 regulatory sites were studied in uteri. Akt was constitutively phosphorylated on Ser473 residue in the untreated, control uteri, while phosphorylation of Thr308 was observed only after estradiol 17β (E2) treatment. The effects of E2 treatment were age dependent, no response was induced in 11-day-old uteri, while in 28 days and older rats the activation of Akt at both regulatory sites, Ser473 and Thr308, increased, the first response was detected 2 h after treatment, reaching the highest rate at 6 h. The rate of phosphorylation was stronger at Ser473 residue. The results suggest that the regulation of Akt activation at two regulatory sites in rat uteri are different, phosphorylation of Thr308 seems to be entirely estrogen dependent, while the phosphorylation of Ser473 is regulated by other factors as well as estrogen.  相似文献   

11.
Both MAPK and protein kinase C (PKC) signaling pathways promote cell survival and protect against cell death. Here, we show that 12-O-tetradecanoylphorbol-13-acetate (TPA) prevents Fas-induced apoptosis in T lymphocytes. The effect of TPA was specifically abolished by the PKC inhibitor GF109203X and by dominant negative PKCtheta, PKCepsilon, and PKCalpha, suggesting that novel and conventional PKC isoforms mediate phorbol ester action. Moreover, TPA stimulated phosphorylation of BAD at serine 112, an effect abrogated by GF109203X but not by the MEK inhibitor PD98059. Expression of constitutively active PKC increased the phosphorylation of BAD at serine 112 but not at serine 136. Additionally, Fas-mediated cell death was enhanced by overexpression of a catalytically inactive form of p90Rsk (Rsk2-KN). Finally, Rsk2-KN abolished the protective effect of constitutively active PKC and totally blocked phosphorylation of BAD on serine 112. Thus, novel PKCtheta and PKCepsilon rescue T lymphocytes from Fas-mediated apoptosis via a p90Rsk-dependent phosphorylation and inactivation of BAD.  相似文献   

12.
In this study, a neuroblastoma N2a cell line was applied to investigate mechanisms of apoptosis induced either by selective inhibition of protein kinase C (PKC) by low amounts of staurosporine (STS(10) ) or by inhibition PI3-K after wortmannin (WM) treatment. We present evidence that, in the absence of serum in the medium, decreased phosphorylation of Raf-1 and BAD112, as well as Akt and BAD136, proteins and their translocation to mitochondria coincided with STS10 - or WM-induced apoptosis, respectively. Concomitantly, release of cytochrome c into the cytosol indicated a BCL-2-dependent mode of cell death after both treatments. Furthermore, in typical 'gain of function' experiments, cells with overexpression of permanently active Raf-1 or Akt transgenes displayed a significantly higher and independent resistance to either STS10 or WM. Thus, our results indicate that PKC/Raf-1/BAD112, as well as PI3-K/Akt/BAD136 signalling pathways, are both necessary for N2a cell survival and thus are unable to functionally substitute for each other as long as the cells do not receive additional signal(s) derived from serum. However, in the presence of serum, undefined trophic signal(s) can stimulate cross-talk between these two pathways at a level upstream from Raf-1 and Akt phosphorylation. In this case, only simultaneous inhibition of PKC and PI3-K is able to induce apoptosis.  相似文献   

13.
We studied the roles of the phosphatidylinositol 3-kinase (PI-3K)-Akt-BAD cascade, ERK-BAD cascade, and Akt-Raf-1 cascade in the paclitaxel-resistant SW626 human ovarian cancer cell line, which lacks functional p53. Treatment of SW626 cells with paclitaxel activates Akt and ERK with different time frames. Interference with the Akt cascade either by treatment with PI-3K inhibitor (wortmannin or LY294002) or by exogenous expression of a dominant negative Akt in SW626 cells caused decreased cell viability following treatment with paclitaxel. Interference with the ERK cascade by treatment with an MEK inhibitor, PD98059, in SW626 cells also caused decreased cell viability following treatment with paclitaxel. Treatment of cells with paclitaxel also stimulated the phosphorylation of BAD at both the Ser-112 and Ser-136 sites. The phosphorylation of BAD at Ser-136 was blocked by treatment with wortmannin or cotransfection with the dominant negative Akt. On the other hand, the phosphorylation of BAD at Ser-112 was blocked by PD98059. We further examined the role of BAD in the viability following paclitaxel treatment using BAD mutants. Exogenous expression of doubly substituted BAD2SA in SW626 cells caused decreased viability following treatment with paclitaxel. Moreover, because paclitaxel-induced apoptosis is mediated by activated Raf-1 and the region surrounding Ser-259 in Raf-1 conforms to a consensus sequence for phosphorylation by Akt, the regulation of Raf-1 by Akt was examined. We demonstrated an association between Akt and Raf-1 and showed that the phosphorylation of Raf-1 on Ser-259 induced by paclitaxel was blocked by treatment with wortmannin or LY294002. Furthermore, interference with the Akt cascade induced by paclitaxel up-regulated Raf-1 activity, and expression of constitutively active Akt inhibited Raf-1 activity, suggesting that Akt negatively regulates Raf-1. Our findings suggest that paclitaxel induces the phosphorylation of BAD Ser-112 via the ERK cascade, and the phosphorylation of both BAD Ser-136 and Raf-1 Ser-259 via the PI-3K-Akt cascade, and that inhibition of either of these cascades sensitizes ovarian cancer cells to paclitaxel.  相似文献   

14.
Using a set of specific kinase inhibitors we demonstrate that Raf kinases phosphorylate BAD at serines 112, 136 and 155 in vivo and in vitro. Exploring unexpected lipid binding properties of BAD we identified two lipid-binding domains located in its C-terminal part. Furthermore, we believe to have uncovered how phosphorylation-driven interaction with 14-3-3 regulates intracellular membrane localization of BAD. Observed activity of lipid-bound BAD as a membrane receptor for Bcl-XL opens new horizons in apoptosis research.  相似文献   

15.
Protection from apoptosis by receptor tyrosine kinases, resistant to the inhibition of phosphatidylinositol 3 '-kinase/Akt and Ras/MEK pathways, has been reported in several cell types, including fibroblasts and epithelial prostate cancer cells; however, mechanisms of this effect were not clear. Here we report that in prostate cancer cells, epidermal growth factor activates two antiapoptotic signaling pathways that impinge on the proapoptotic protein BAD. One signaling cascade operates via the Ras/MEK module and induces BAD phosphorylation on Ser112. Another pathway predominantly relies on Rac/PAK1 signaling that leads to BAD phosphorylation on Ser136. Each of these two pathways is sufficient to protect cells from apoptosis, and therefore both have to be inhibited simultaneously to block epidermal growth factor-dependent survival. Redundancy of antiapoptotic signaling pathways should be considered when therapies targeting antiapoptotic mechanisms are designed.  相似文献   

16.
Reversible phosphorylation of the 22 kDa BAD protein is crucial for cell survival. Five phosphorylation sites, all serines, had been identified. Here we report on number six. It is threonine-117 phosphorylated by the constitutively active kinase, CK2. Phosphoamino acid analysis and phospho-specific antibodies confirmed Thr117 as additional phosphorylation site. Immunoprecipitation furthermore revealed that BAD is phosphorylated at Thr117 in cultured cortical neurons. PP1, PP2A and PP2C dephosphorylated BAD at Thr117, but PP2B did not. The discovery of the constitutively active CK2 phosphorylating BAD is shedding an unexpected light in the otherwise strictly signal-regulated phosphorylation events on BAD.  相似文献   

17.
Gu Q  Wang D  Wang X  Peng R  Liu J  Deng H  Wang Z  Jiang T 《Radiation research》2004,161(6):703-711
Radiation-induced endothelial cell apoptosis is involved in the development of many radiation injuries, including radiation-induced skin ulcers. The proangiogenic growth factor basic fibroblast growth factor (bFGF, NUDT6) enhances endothelial cell survival. In the present study, we set up a model of apoptosis in which primary cultured human umbilical vein endothelial cells (HUVECs) were irradiated with (60)Co gamma rays to explore the effects of bFGF on radiation-induced apoptosis of HUVECs and the signaling pathways involved. We found that bFGF inhibited radiation-induced apoptosis of HUVECs, and that the effect was mediated in part by the RAS/MEK/ MAPK/RSK (p90 ribosomal S6 kinase)/BAD pathway. This pathway was activated by exposure of irradiated HUVECs to bFGF, involving phosphorylation of FGFR, MEK and p44/42 MAPK. The survival-enhancing effect of bFGF was partly inhibited by U0126 and PD98059. The fact that the anti-apoptosis effect of bFGF on irradiated HUVECs was not completely abrogated by U0126 and PD98059 suggests that other survival signaling pathways may exist. Transfection of a dominant-negative form of RSK2 (DN RSK2) partly blocked the anti-apoptosis effect of bFGF in irradiated HUVECs. Moreover, we provide evidence for the first time that bFGF induced BAD phosphorylation (at serine 112) and CREB (cAMP response element-binding protein) activation (phosphorylation at serine 133) in gamma-irradiated HUVECs. In our model, inhibition of MAPK signaling-dependent phosphorylation of BAD at serine 112 promoted increased association with BCL-X(L), suggesting that MAPK pathway-dependent serine 112 phosphorylation of BAD is critical for the effect of bFGF on cell survival. These results showed that RAS/MAPK/BAD pathway participated in the bFGF-induced effect on survival of HUVECs exposed to radiation. It is suggested that RAS/ MAPK pathway in tumor vascular endothelium could be a potential therapeutic target to enhance the efficacy of ionizing radiation.  相似文献   

18.
19.
A mechanism that triggers neuronal apoptosis has been characterized. We report that the cell cycle-regulated protein kinase Cdc2 is expressed in postmitotic granule neurons of the developing rat cerebellum and that Cdc2 mediates apoptosis of cerebellar granule neurons upon the suppression of neuronal activity. Cdc2 catalyzes the phosphorylation of the BH3-only protein BAD at a distinct site, serine 128, and thereby induces BAD-mediated apoptosis in primary neurons by opposing growth factor inhibition of the apoptotic effect of BAD. The phosphorylation of BAD serine 128 inhibits the interaction of growth factor-induced serine 136-phosphorylated BAD with 14-3-3 proteins. Our results suggest that a critical component of the cell cycle couples an apoptotic signal to the cell death machinery via a phosphorylation-dependent mechanism that may generally modulate protein-protein interactions.  相似文献   

20.
Ye DZ  Jin S  Zhuo Y  Field J 《PloS one》2011,6(11):e27637

Background

Cell survival depends on the balance between protective and apoptotic signals. When the balance of signals tips towards apoptosis, cells undergo programmed cell death. This balance has profound implications in diseases including cancer. Oncogenes and tumor suppressors are mutated to promote cell survival during tumor development, and many chemotherapeutic drugs kill tumor cells by stimulating apoptosis. BAD is a pro-apoptotic member of the Bcl-2 family of proteins, which can be phosphorylated on numerous sites to modulate binding to Bcl-2 and 14-3-3 proteins and inhibit its pro-apoptotic activities. One of the critical phosphorylation sites is the serine 112 (S112), which can be phosphorylated by several kinases including Pak1.

Methodology/Principal Findings

We mapped the Pak phosphorylation sites by making serine to alanine mutations in BAD and testing them as substrates in in vitro kinase assays. We found that the primary phosphorylation site is not S112 but serine 111 (S111), a site that is sometimes found phosphorylated in vivo. In transfection assays of HEK293T cells, we showed that Pak1 required Raf-1 to stimulate phosphorylation on S112. Mutating either S111 or S112 to alanine enhanced binding to Bcl-2, but the double mutant S111/112A bound better to Bcl-2. Moreover, BAD phosphorylation at S111 was observed in several other cell lines, and treating one of them with the Pak1 inhibitor 2,2′-Dihydroxy-1,1′-dinaphthyldisulfide (IPA-3) reduced phosphorylation primarily at S112 and to a smaller extent at S111, while Raf inhibitors only reduced phosphorylation at S112.

Conclusion/Significance

Together, these findings demonstrate that Pak1 phosphorylates BAD directly at S111, but phosphorylated S112 through Raf-1. These two sites of BAD serve as redundant regulatory sites for Bcl-2 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号