首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An Arabidopsis homolog of the abscisic acid (ABA)-inducible cotton D19 and wheat Em genes was cloned and its expression assayed at two developmental stages in wild-type, ABA-deficient (aba) and three ABA-insensitive (abi) lines of Arabidopsis thaliana. Expression of this gene was reduced slightly in seeds of aba mutants and approximately ten-fold in abi3 mutants, but seed expression was not decreased in either abi1 or abi2 monogenic mutants. In contrast, the abi1 and abi2 mutants showed a very slight reduction of ABA inducibility in 8-day-old plants, while the responses of aba and abi3 mutants were comparable to that of wild type. Although previous studies have shown that none of the abi mutations show completely stage-specific effects, the results reported here indicate that the importance of each of the ABI loci in regulating this single gene is stage-dependent. Furthermore, the fact that none of the abi mutations show more than minor effects on exogenous ABA inducibility of the Arabidopsis D19/Em homolog in young plants suggests that an additional ABA signalling pathway may be operating during vegetative growth.  相似文献   

3.
4.
Plant hormone abscisic acid (ABA) is found in a wide range of land plants, from mosses to angiosperms. However, our knowledge concerning the function of ABA is limited to some angiosperm plant species. We have shown that the basal land plant Physcomitrella patens and the model plant Arabidopsis thaliana share a conserved abscisic acid (ABA) signaling pathway mediated through ABI1-related type 2C protein phosphatases (PP2Cs). Ectopic expression of Arabidopsis abi1-1, a dominant allele of ABI1 that functions as a negative regulator of ABA signaling, or targeted disruption of Physcomitrella ABI1-related gene (PpABI1A) resulted in altered ABA sensitivity and abiotic stress tolerance of Physcomitrella, as demonstrated by osmostress and freezing stress. Moreover, transgenic Physcomitrella overexpressing abi1-1 showed altered morphogenesis. These trangenic plants had longer stem lengths compared to the wild type, and continuous growth of archegonia (female organ) with few sporophytes under non-stress conditions. Our results suggest that PP2C-mediated ABA signaling is involved in both the abiotic stress responses and developmental regulation of Physcomitrella.Key words: ABA, ABI1, Physcomitrella patens, PP2C, signaling  相似文献   

5.
An Arabidopsis homolog of the abscisic acid (ABA)-inducible cotton D19 and wheat Em genes was cloned and its expression assayed at two developmental stages in wild-type, ABA-deficient (aba) and three ABA-insensitive (abi) lines of Arabidopsis thaliana. Expression of this gene was reduced slightly in seeds of aba mutants and approximately ten-fold in abi3 mutants, but seed expression was not decreased in either abi1 or abi2 monogenic mutants. In contrast, the abi1 and abi2 mutants showed a very slight reduction of ABA inducibility in 8-day-old plants, while the responses of aba and abi3 mutants were comparable to that of wild type. Although previous studies have shown that none of the abi mutations show completely stage-specific effects, the results reported here indicate that the importance of each of the ABI loci in regulating this single gene is stage-dependent. Furthermore, the fact that none of the abi mutations show more than minor effects on exogenous ABA inducibility of the Arabidopsis D19/Em homolog in young plants suggests that an additional ABA signalling pathway may be operating during vegetative growth.  相似文献   

6.
The phytohormone abscisic acid (ABA) inhibits blue light‐induced apoplastic acidification of guard cells. The signal transduction pathway of ABA, mediating this response, was studied using ABA‐insensitive ( abi ) mutants of Arabidopsis thaliana . Apoplastic acidification was monitored with a flat tipped pH‐electrode placed on epidermal strips, in which only guard cells were viable. Blue light‐induced apoplastic acidification was reduced by vanadate and diethylstilbestrol (DES), indicating involvement of plasma membrane‐bound H+‐ATPases. In wild type epidermal strips, ABA reduced blue light‐induced acidification to 63%. The inhibition did not result from an increased cytoplasmic free Ca2+ concentration in guard cells, since factors that increase the Ca2+ concentration stimulated apoplastic acidification. Apoplastic acidification was not inhibited by ABA in abi1 and abi2 mutants. In abi1 epidermal strips ABA had no effect on the acidification rate, while it stimulated apoplastic acidification in abi2 . The ABA response in both mutants could be partially restored with protein kinase and phosphatase inhibitors. The abi1 guard cells became ABA responsive in the presence of okadaic acid, a protein phosphatase inhibitor. In abi2 guard cells the wild type ABA response was partially restored by K‐252a, a protein kinase inhibitor. Apoplastic inhibition is thus mediated through the protein phosphatases encoded by ABI1 and ABI2 . The results with protein kinase and protein phosphatase inhibitors indicate that ABI1 and ABI2 are involved in separate signal transduction pathways.  相似文献   

7.
Pourtau N  Marès M  Purdy S  Quentin N  Ruël A  Wingler A 《Planta》2004,219(5):765-772
Leaf senescence can be triggered by a high availability of carbon relative to nitrogen or by external application of abscisic acid (ABA). Most Arabidopsis mutants with decreased sugar sensitivity during early plant development are either ABA insensitive (abi mutants) or ABA deficient (aba mutants). To analyse the interactions of carbon, nitrogen and ABA in the regulation of senescence, wild-type Arabidopsis thaliana (L.) Heynh. and aba and abi mutants were grown on medium with varied glucose and nitrogen supply. On medium containing glucose in combination with low, but not in combination with high nitrogen supply, senescence was accelerated and sucrose, glucose and fructose accumulated strongly. In abi mutants that are not affected in sugar responses during early development (abi1-1 and abi2-1), we observed no difference in the sugar-dependent regulation of senescence compared to wild-type plants. Similarly, senescence was not affected in the sugar-insensitive abi4-1 mutant. In contrast, the abi5-1 mutant did exhibit a delay in senescence compared to its wild type. As ABA has been reported to induce senescence and ABA deficiency results in sugar insensitivity during early development, we expected senescence to be delayed in aba mutants. However, the aba1-1 and aba2-1 mutants showed accelerated senescence compared to their wild types on glucose-containing medium. Our results show that, in contrast to sugar signalling in seedlings, ABA is not required for the sugar-dependent induction of leaf senescence. Instead, increased sensitivity to osmotic stress could have triggered early senescence in the aba mutants.Abbreviations ABA Abscisic acid - aba Abscisic acid deficient - abi Abscisic acid insensitive - Fv/Fm Maximum efficiency of photosystem II photochemistry  相似文献   

8.
9.
10.
The abi1-1 mutation blocks ABA signaling downstream of cADPR action   总被引:1,自引:0,他引:1  
Arabidopsis thaliana abscisic acid insensitive 1-1 (abi1-1) is a dominant mutant that is insensitive to the inhibition of germination and growth by the plant hormone, abscisic acid (ABA). The mutation severely decreases the catalytic activity of the ABI1 type 2C protein phosphatase (PP2C). However, the site of action of the abi1-1/ABI1 in the ABA signal transduction pathway has not yet been determined. Using single cell assays, we showed that microinjecting mutant abi1-1 protein inhibited the activation of RD29A-GUS and KIN2-GUS in response to ABA, cyclic ADP-ribose (cADPR), and Ca2+. The inhibitory effect of the mutant protein, however, was reversed by co-microinjection of an excess amount of the ABI1 protein. In transgenic Arabidopsis plants, overexpression of abi1-1 rendered the plants insensitive to ABA during germination, whereas overexpression of ABI1 did not have any apparent effect. Moreover, transgenic plants overexpressing abi1-1 were blocked in the induction of ABA-responsive genes; however, overexpression of ABI1 did not affect gene expression. Taken together, our results demonstrate that abi1-1 is likely to be a dominant negative mutation and ABI1 likely acts downstream of cADPR in the ABA-signaling pathway. Our results on ABI1 overexpression in Arabidopsis are not compatible with a negative regulatory role of this phosphatase in ABA responses.  相似文献   

11.
Chak RK  Thomas TL  Quatrano RS  Rock CD 《Planta》2000,210(6):875-883
 The ABA INSENSITIVE1 (ABI1) and ABI2 genes encode homologous type-2C protein phosphatases with redundant yet distinct functions in abscisic acid (ABA) responses. Results from Northern blot analysis showed that ABA- and mannitol-inducible expression of the COR47 and COR78/LTI78/RD29A (COR78) genes was more impaired in the abi2 mutant of Arabidopsis thaliana (L.) Heynh than in the abi1 mutant. Furthermore, ABA-plus-mannitol treatments were additive towards COR47 gene expression; however, the ABA-deficient aba1 mutant showed reduced COR expression relative to the wild type in response to mannitol and ABA-plus-mannitol treatments. These results support the notion that drought- and ABA-signalling pathways are separate yet overlapping. To facilitate quantitative analysis of the genetic control of tissue-specific ABA- and desiccation-response pathways, we analyzed ABA- and mannitol-inducible expression of a carrot (Daucus carota L.) Dc3 promoter:uidA (β-glucuronidase; GUS) chimaeric reporter (Dc3-GUS) in transgenic wild-type, ABA-deficient aba1, and ABA-insensitive abi1 and abi2 mutants. The Dc3 promoter directed ABA- and mannitol-inducible GUS expression in Arabidopsis guard cells and the two treatments were additive. The aba1, abi1, and abi2 mutant genotypes had reduced GUS expression in guard cells of cotyledons in response to mannitol, whereas abi1 and abi2 mutants were reduced in ABA-inducible GUS expression, consistent with overlapping ABA- and drought-response pathways. Quantitative fluorometric GUS assays of leaf extracts showed that abi2 mutants responded less to exogenous ABA than did abi1 mutants, and abi2 mutants responded more to mannitol than did abi1 mutants. We conclude that Dc3-GUSArabidopsis is a tractable system in which to study tissue-specific ABA and drought signalling and suggest that ABI2 functions predominantly over ABI1 in COR78 and COR47 gene expression and guard-cell Dc3-GUS expression. Received: 23 May 1999 / Accepted: 3 December 1999  相似文献   

12.
The mechanisms by which plants respond to reduced water availability (low water potential) include both ABA-dependent and ABA-independent processes. Pro accumulation and osmotic adjustment are two important traits for which the mechanisms of regulation by low water potential, and the involvement of ABA, is not well understood. The ABA-deficient mutant, aba2-1, was used to investigate the regulatory role of ABA in low water potential-induced Pro accumulation and osmotic adjustment in seedlings of Arabidopsis thaliana. Low water potential-induced Pro accumulation required wild-type levels of ABA, as well as a change in ABA sensitivity or ABA-independent events. Osmotic adjustment, in contrast, occurred independently of ABA accumulation in aba2-1. Quantification of low water potential-induced ABA and Pro accumulation in five ABA-insensitive mutants, abi1-1, abi2-1, abi3, abi4, and abi5, revealed that abi4 had increased Pro accumulation at low water potential, but a reduced response to exogenous ABA. Both of these responses were modified by sucrose treatment, indicating that ABI4 has a role in connecting ABA and sugar in regulating Pro accumulation. Of the other abi mutants, only abi1 had reduced Pro accumulation in response to low water potential and ABA application. It was also observed that abi1-1 and abi2-1 had increased ABA accumulation. The involvement of these loci in feedback regulation of ABA accumulation may occur through an effect on ABA catabolism or conjugation. These data provide new information on the function of ABA in seedlings exposed to low water potential and define new roles for three of the well-studied abi loci.  相似文献   

13.
14.
The plant hormone abscisic acid (ABA) is a key regulator of seed maturation and germination and mediates adaptive responses to environmental stress. In Arabidopsis, the ABI1 gene encodes a member of the 2C class of protein serine/threonine phosphatases (PP2C), and the abi1-1 mutation markedly reduces ABA responsiveness in both seeds and vegetative tissues. However, this mutation is dominant and has been the only mutant allele available for the ABI1 gene. Hence, it remained unclear whether ABI1 contributes to ABA signaling, and in case ABI1 does regulate ABA responsiveness, whether it is a positive or negative regulator of ABA action. In this study, we isolated seven novel alleles of the ABI1 gene as intragenic revertants of the abi1-1 mutant. In contrast to the ABA-resistant abi1-1 mutant, these revertants were more sensitive than the wild type to the inhibition of seed germination and seedling root growth by applied ABA. They also displayed increases in seed dormancy and drought adaptive responses that are indicative of a higher responsiveness to endogenous ABA. The revertant alleles were recessive to the wild-type ABI1 allele in enhancing ABA sensitivity, indicating that this ABA-supersensitive phenotype results from a loss of function in ABI1. The seven suppressor mutations are missense mutations in conserved regions of the PP2C domain of ABI1, and each of the corresponding revertant alleles encodes an ABI1 protein that lacked any detectable PP2C activity in an in vitro enzymatic assay. These results indicate that a loss of ABI1 PP2C activity leads to an enhanced responsiveness to ABA. Thus, the wild-type ABI1 phosphatase is a negative regulator of ABA responses.  相似文献   

15.
The growth patterns of plants subjected to phosphorus starvation resemble those caused by treatment with ABA, suggesting that ABA could mediate the response of the plant to phosphorus starvation. We examined the role of ABA in phosphorus stress by comparing growth and biochemical responses of Arabidopsis thaliana ABA mutants aba-1 and abi2-1 to those of wild-type plants. We first characterized acid phosphatase production of wild-type Arabidopsis in response to phosphorus starvation. We found that several acid phosphatase isozymes are present in roots and shoots, but only a subset of these isozymes are induced by phosphorus stress, and they are induced in both organs. Production of acid phosphatase in response to phosphorus stress was not affected by the aba-1 or abi2-1 mutations. Low phosphorus also resulted in decreased growth of both wild-type and ABA mutant plants, and the root-to-shoot ratio was increased in both wild type and mutants. Anthocyanins accumulated in response to phosphorus stress in both wild-type and mutant plants, but the increase was reduced in the aba-1 mutant. Thus, two different ABA mutants responded normally in most respects to phosphorus stress. Our data do not support a major role for ABA in coordinating the phosphorus-stress response.  相似文献   

16.
Arabidopsis abi3 and fus3 mutants are defective in late embryo development and their embryos show precocious growth. To understand the function and role of ABI3 and FUS3, we analyzed expression patterns of genes which were normally activated during late embryo development and germination in these mutants. Using the differential display method, both upregulated and downregulated genes were observed in immature siliques of the abi3 fus3 double mutant. Four clones having more abundant expression in the abi3 fus3 double mutant than in wild type were isolated. These genes were activated during wild-type germination, suggesting that some genes that are activated during wild-type germination are precociously activated in the abi3 fus3 mutant during late embryo development. Also, genes that were activated during wild-type germination were isolated and their expression patterns during late embryo development in the wild type and in abi3, fus3, and abi3 fus3 mutants were analyzed. Sixteen such clones were found, and 11 of these showed derepression or precocious activation of gene expression in the mutants. These results indicate that ABI3 and FUS3 negatively regulate a particular set of genes during late embryo development. We also showed that immature fus3 siliques accumulated one-third of the wild-type level of abscisic acid (ABA), but mature fus3 siliques accumulated ABA at a level comparable to that in the wild type. The possible mechanisms of controlling developmental timing in late embryo development as well as collaborative and distinct roles of ABI3 and FUS3 are discussed.  相似文献   

17.
We have examined the cold-induced enhancement of freezing tolerance and expression of cold-regulated (cor) genes in Arabidopsis thaliana (L.) Heynh (Landsberg erecta) and abscisic acid (ABA)-deficient (aba) and ABA-insensitive (abi) mutants derived from it. The results indicate that the abi mutations had no apparent effect on freezing tolerance, while the aba mutations did: cold-acclimated aba mutants were markedly impaired in freezing tolerance compared to wild-type plants. In addition, it was observed that non-frozen leaves from both control and cold-treated aba mutant plants were more ion-leaky than those from corresponding wild-type plants. These data are consistent with previous observations indicating that ABA levels can affect freezing tolerance. Whether ABA has a direct role in the enhancement of freezing tolerance that occurs during cold acclimation, however, is uncertain. Several studies have suggested that ABA might mediate certain changes in gene expression that occur during cold acclimation. Our data indicate that the ABA-induced expression of three ABA-regulated Arabidopsis cor genes was unaffected in the abi2, abi3, and aba-1 mutants, but was dramatically impaired in the abi1 mutant. Cold-regulated expression of all three cor genes, however, was nearly the same in wild-type and abi1 mutant plants. These data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms.  相似文献   

18.
In Arabidopsis thaliana, seed development in recombinants of the ABA-deficient aba mutant with the ABA response mutants abi1 or abi3 is compared to wild type and the monogenic parents. Aberrant seed development occurred in the aba,abi3 recombinant and was normal in aba,abi1, abi3 and aba,abi1 seeds. Embryos of the recombinant aba,abi3 seeds maintained the green color until maturity, the seeds kept a high water content, did not form the late abundant 2S and 12S storage proteins, were desiccation intolerant, and often showed viviparous germination. Application of ABA, and particularly of an ABA analog, to the roots of plants during seed development partially alleviated the aberrant phenotype. Seeds of aba,abi3 were normal when they developed on a mother plant heterozygous for Aba. In contrast to seed development, the induction of dormancy was blocked in all monogenic mutants and recombinants. Dormancy was only induced by embryonic ABA; it could not be increased by maternal ABA or ABA applied to the mother plant. It is concluded that endogenous ABA has at least two different effects in developing seeds. The nature of these responses and of the ABA response system is discussed.  相似文献   

19.
20.
In order to investigate the role of the plant hormones gibberellin (GA) and abscisic acid (ABA) in seed development and germination the GA biosynthetic inhibitor, Uniconazol, was used to isolate mutants with abnormal germination profiles. In one of these mutants, the ability to germinate on Uniconazol is due to a mutation in the ABI3 gene. However, unlike the previously reported abi3 mutant, this line displays an array of seed-specific developmental defects. The accumulation of seed reserve proteins is dramatically reduced due to reduced levels of the storage protein mRNA. The embryos remain green throughout development and are desiccation intolerant. However, immature seeds are completely non-dormant and grow normally. These results suggest the ABI3 gene is essential for the synthesis of seed storage proteins and for the protection of the embryo during desiccation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号