首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cell-based composite tissue constructs for regenerative medicine   总被引:4,自引:0,他引:4  
A major task of contemporary medicine and dentistry is restoration of human tissues and organs lost to diseases and trauma. A decade-long intense effort in tissue engineering has provided the proof of concept for cell-based replacement of a number of individual tissues such as the skin, cartilage, and bone. Recent work in stem cell-based in vivo restoration of multiple tissue phenotypes by composite tissue constructs such as osteochondral and fibro-osseous grafts has demonstrated probable clues for bioengineered replacement of complex anatomical structures consisting of multiple cell lineages such as the synovial joint condyle, tendon-bone complex, bone-ligament junction, and the periodontium. Of greater significance is a tangible contribution by current attempts to restore the structure and function of multitissue structures using cell-based composite tissue constructs to the understanding of ultimate biological restoration of complex organs such as the kidney or liver. The present review focuses on recent advances in stem cell-based composite tissue constructs and attempts to outline challenges for the manipulation of stem cells in tailored biomaterials in alignment with approaches potentially utilizable in regenerative medicine of human tissues and organs.  相似文献   

2.
Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering.  相似文献   

3.
Stem cells are the core of tissue repair and regeneration,and a promising cell source for novel therapies.In recent years,research into stem cell therapies has been particularly exciting in China.The remarkable advancements in basic stem cell research and clinically effective trials have led to fresh insights into regenerative medicine,such as treatments for sweat gland injury after burns,diabetes,and liver injury.High hopes have inspired numerous experimental and clinical trials.At the same time,government investment and policy support of research continues to increase markedly.However,numerous challenges must be overcome before novel stem cell therapies can achieve meaningful clinical outcomes.  相似文献   

4.
随着生物材料、生物反应器设计及对机体发育和创伤修复机制的深入理解,在体外构建用于修复替代人体丧失功能的组织器官这一人类理想,已发展成一门独立且蓬勃发展的学科——组织工程学(Tissue Engineering)。组织工程学是一个多学科交叉的新兴领域,至少涉及生命科学、医学及工程学等三个学科。种子细胞、支架材料和诱导信号是组织工程学的三个基本要素。目前种子细胞是制约组织工程发展的一个主要瓶颈。干细胞生物学的发展使人们看到了打破这个瓶颈的可能。干细胞体外扩增及定向分化的技术发展,及对其增殖和诱导分化机制的深入理解,使工程化组织可以获得理想的基本功能单位,使其应用于临床成为可能。  相似文献   

5.
Stem cell‐based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial‐based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell‐based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554–567, 2016  相似文献   

6.
Albumin, the most abundant plasma protein in mammals, is a versatile and easily obtainable biomaterial. It is pH and temperature responsive, dissolvable in high concentrations and gels readily in defined conditions. This versatility, together with its inexpensiveness and biocompatibility, makes albumin an attractive biomaterial for biomedical research and therapeutics. So far, clinical research in albumin has centered mainly on its use as a carrier molecule or nanoparticle to improve drug pharmacokinetics and delivery to target sites. In contrast, research in albumin-based hydrogels is less established albeit growing in interest over recent years. In this minireview, we report current literature and critically discuss the synthesis, mechanical properties, biological effects and uses, biodegradability and cost of albumin hydrogels as a xeno-free, customizable, and transplantable construct for tissue engineering and regenerative medicine.  相似文献   

7.
Premature ovarian failure (POF) usually happens former to the age of 40 and affects the female physiological state premenopausal period. In this condition, ovaries stop working long before the expected menopausal time. Of diagnostic symptoms of the disease, one can mention amenorrhea and hypoestrogenism. The cause of POF in most cases is idiopathic; however, cancer therapy may also cause POF. Commonly utilized therapies such as hormone therapy, in-vitro activation, and regenerative medicine are the most well-known treatments for POF. Hence, these therapies may be associated with some complications. The aim of the present study is to discuss the beneficial effects of tissue engineering for fertility rehabilitation in patients with POF as a newly emerging therapy.  相似文献   

8.
Both volumetric muscle loss (VML) and muscle degenerative diseases lead to an important decrease in skeletal muscle mass, condition that nowadays lacks an optimal treatment. This issue has driven towards an increasing interest in new strategies in tissue engineering, an emerging field that can offer very promising approaches. In addition, the discovery of induced pluripotent stem cells (iPSCs) has completely revolutionized the actual view of personalized medicine, and their utilization in skeletal muscle tissue engineering could, undoubtedly, add myriad benefits. In this review, we want to provide a general vision of the basic aspects to consider when engineering skeletal muscle tissue using iPSCs. Specifically, we will focus on the three main pillars of tissue engineering: the scaffold designing, the selection of the ideal cell source and the addition of factors that can enhance the resemblance with the native tissue.  相似文献   

9.
Heart disease is a leading cause of morbidity and mortality worldwide. Myocardial infarction leads to permanent loss of cardiac tissue and ultimately heart failure. However, current therapies could only stall the progression of the disease. Thus, new therapies are needed to regenerate damaged hearts to overcome poor prognosis of patients with heart failure. The shortage of heart donors is also a factor for innovating new therapies. Although the cardiac performance by cell-based therapy has improved, unsatisfactory cell retention and transplant survival still plague this technique. Because biomaterials can improve the cell retention, survival and differentiation, cardiac tissue engineering is now being explored as an approach to support cell-based therapies and enhance their efficacy for cardiac disease. In the last decade, cardiac tissue engineering has made considerable progress. Among different kinds of approaches in the cardiac tissue engineering, the approach of injectable cardiac tissue engineering is more minimally invasive than that of in vitro engineered tissue or epicardial patch implantation. It is therefore clinically appealing. In this review, we strive to describe the major progress in the flied of injectable cardiac tissue engineering, including seeding cell sources, biomaterials and novel findings in preclinical studies and clinical applications. The remaining problems will also be discussed.  相似文献   

10.
Mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs) emerge as promising tools for tissue engineering, cell therapy, and drug screening. Their potential use in clinical applications requires the efficient production of differentiated cells at large scale. Glucose, amino acid, and oxygen metabolism play a key role in MSC and PSC expansion and differentiation. This review summarizes recent advances in the understanding of stem cell metabolism for reprogramming, self-renewal, and lineage commitment. From the reported data, efficient expansion of stem cells has been found to rely on glycolysis, while during differentiation stem cells shift their metabolic pathway to oxidative phosphorylation. During reprogramming, the reverse metabolic shift from oxidative phosphorylation to glycolysis has been observed. As a consequence, the demands for glucose and oxygen vary upon different phases of stem cell production. Accurate understanding of stem cell metabolism is critical for the rational design of culture parameters such as oxygen tension and feeding regime in bioreactors towards efficient integrated reprogramming, expansion, and differentiation processes at large scale.  相似文献   

11.
Engineering/reprogramming differentiated adult somatic cells to gain the ability to differentiate into any type of cell lineage are called as induced pluripotent stem cells (iPSCs). Offering unlimited self-renewal and differentiation potential, these iPSC are aspired to meet the growing demands in the field of regenerative medicine, tissue engineering, disease modeling, nanotechnology, and drug discovery. Biomaterial fabrication with the rapid evolution of technology increased their versatility and utility in regenerative medicine and tissue engineering, revolutionizing the stem cell biology research with the property to guide the process of proliferation, differentiation, and morphogenesis. Combining traditional culture platforms of iPSC with biomaterials aids to overcome the limitations associated with derivation, proliferation, and maturation, thereby could improve the clinical translation of iPSC. The present review discusses in brief about the reprogramming techniques for the derivation iPSC and details on several biomaterial guided differentiation of iPSC to different cell types with specific relevance to tissue engineering/regenerative medicine.  相似文献   

12.
Tissue engineering is a clinically driven field and has emerged as a potential alternative to organ transplantation. The cornerstone of successful tissue engineering rests upon two essential elements: cells and scaffolds. Recently, it was found that stem cells have unique capabilities of self-renewal and multilineage differentiation to serve as a versatile cell source, while nanomaterials have lately emerged as promising candidates in producing scaffolds able to better mimic the nanostructure in natural extracellular matrix and to efficiently replace defective tissues. This article, therefore, reviews the key developments in tissue engineering, where the combination of stem cells and nanomaterial scaffolds has been utilized over the past several years. We consider the high potential, as well as the main issues related to the application of stem cells and nanomaterial scaffolds for a range of tissues including bone, cartilage, nerve, liver, eye etc. Promising in vitro results such as efficient attachment, proliferation and differentiation of stem cells have been compiled in a series of examples involving different nanomaterials. Furthermore, the merits of the marriage of stem cells and nanomaterial scaffolds are also demonstrated in vivo, providing early successes to support subsequent clinical investigations. This progress simultaneously drives mechanistic research into the mechanotransduction process responsible for the observations in order to optimize the process further. Current understanding is chiefly reported to involve the interaction of stem cells and the anchoring nanomaterial scaffolds by activating various signaling pathways. Substrate surface characteristics and scaffold bulk properties are also reported to influence not only short term stem cell adhesion, spreading and proliferation, but also longer term lineage differentiation, functionalization and viability. It is expected that the combination of stem cells and nanomaterials will develop into an important tool in tissue engineering for the innovative treatment of many diseases.  相似文献   

13.
For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.  相似文献   

14.
Stem cells, including mesenchymal stem cells and pluripotent stem cells, are becoming an indispensable tool for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Bioprocess engineering, targeting large scale production, provides a platform to generate a controlled microenvironment that could potentially recreate the stem cell niche to promote stem cell proliferation or lineage-specific differentiation. This survey aims at defining the characteristics of stem cell populations currently in use and the present-day limits in their applications for therapeutic purposes. Furthermore, a bioprocess engineering strategy based on bioreactors and 3-D cultures is discussed in order to achieve the improved stem cell yield, function, and safety required for production under current good manufacturing practices.  相似文献   

15.
The fields of tissue engineering (TE) and regenerative medicine (RegMed) are yet to bring about the anticipated therapeutic revolution. After two decades of extremely high expectations and often disappointing returns both in the medical as well as in the financial arena, this scientific field reflects the sense of a new era and suggests the feeling of making a fresh start although many scientists are probably seeking reorientation. Much of research was industry driven, so that especially in the aftermath of the recent financial meltdown in the last 2 years we have witnessed a biotech asset yard sale. Despite any monetary shortcomings, from a technological point of view there have been great leaps that are yet to find their way to the patient. RegMed is definitely bound to play a major role in our life because it embodies one of the primordial dreams of mankind, such as: everlasting youth, flying, remote communication and setting foot on the moon. The Journal of Cellular and Molecular Medicine has been at the frontier of these developments in TE and RegMed from its beginning and reflects recent scientific advances in both fields. Therefore this review tries to look at RegMed through the keyhole of history which might just be like looking ‘back to the future’.  相似文献   

16.
17.
Human mesenchymal stem cells (hMSCs) have great potential for therapeutic applications. A bioreactor system that supports long-term hMSCs growth and three-dimensional (3-D) tissue formation is an important technology for hMSC tissue engineering. A 3-D perfusion bioreactor system was designed using non-woven poly (ethylene terepthalate) (PET) fibrous matrices as scaffolds. The main features of the perfusion bioreactor system are its modular design and integrated seeding operation. Modular design of the bioreactor system allows the growth of multiple engineered tissue constructs and provides flexibility in harvesting the constructs at different time points. In this study, four chambers with three matrices in each were utilized for hMSC construct development. The dynamic depth filtration seeding operation is incorporated in the system by perfusing cell suspensions perpendicularly through the PET matrices, achieving a maximum seeding efficiency of 68%, and the operation effectively reduced the complexity of operation and the risk of contamination. Statistical analyses suggest that the cells are uniformly distributed in the matrices. After seeding, long-term construct cultivation was conducted by perfusing the media around the constructs from both sides of the matrices. Compared to the static cultures, a significantly higher cell density of 4.22 x 10(7) cell/mL was reached over a 40-day culture period. Cellular constructs at different positions in the flow chamber have statistically identical cell densities over the culture period. After expansion, the cells in the construct maintained the potential to differentiate into osteoblastic and adipogenic lineages at high cell density. The perfusion bioreactor system is amenable to multiple tissue engineered construct production, uniform tissue development, and yet is simple to operate and can be scaled up for potential clinical use. The results also demonstrate that the multi-lineage differentiation potential of hMSCs are preserved even after extensive expansion, thus indicating the potential of hMSCs for functional tissue construct development. The system has important applications in stem cell tissue engineering.  相似文献   

18.
19.
The regeneration of periodontal tissue poses a significant challenge to biomaterial scientists, tissue engineers and periodontal clinicians. Recent advances in this field have shifted the focus from the attempt to recreate tissue replacements/constructs ex vivo to the development of biofunctionalized biomaterials that incorporate and release regulatory signals in a precise and near-physiological fashion to achieve in situ regeneration. The molecular and physical information coded within the biomaterials define a local biochemical and mechanical niche with complex and dynamic regulation that establishes key interactions with host endogenous cells and, hence, may help to unlock latent regenerative pathways in the body by instructing cell homing and regulating cell proliferation/differentiation. In the future, these innovative principles and biomaterial devices promise to have a profound impact on periodontal reconstructive therapy and are also likely to reconcile the clinical and commercial pressures on other tissue engineering endeavors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号