首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Micelle-enhanced ultrafiltration (MEUF) separation process was investigated that can potentially be used for large-scale enantioseparations. Copper(II)-amino acid derivatives dissolved in nonionic surfactant micelles were used as chiral selectors for the separation of dilute racemic amino acids solutions. For the alpha-amino acids phenylalanine, phenylglycine, O-methyltyrosine, isoleucine, and leucine good separation was obtained using cholesteryl L-glutamate and Cu(II) ions as chiral selector with an operational enantioselectivity (alpha(op)) up to 14.5 for phenylglycine. From a wide set of substrates, including four beta-amino acids, it was concluded that the performance of this system is determined by two factors: the hydrophobicity of the racemic amino acid, which results in a partitioning of the racemic amino acid over micelle and aqueous solution, and the stability of the diastereomeric complex formed upon binding of the amino acid with the chiral selector. The chiral hydrophobic cholesteryl anchor of the chiral selector also plays an active role in the recognition process, since inversion of the chirality of the glutamate does not yield the reciprocal enantioselectivities. However, if the cholesteryl group is replaced by a nonchiral alkyl chain, reciprocal operational enantioselectivities are found with enantiomeric glutamate selectors.  相似文献   

2.
Copper is next to iron the most important element in the biological transport, storage and in redox reactions of dioxygen. A bioanalogous activation of dioxygen with copper complexes is used for catalytical epoxidation, allylic hydroxylation and oxidative coupling of aromatic substrates, for example. With stereochemical information in form of chiral ligands, enantioselective reactions may be possible. Another aspect of interest on copper catalyzed reactions with dioxygen is that the exact mechanism and biological function of some enzymes (especially catechol oxidase) is yet not fully clear. For studies mimicking the copper-containing catechol oxidase appropriate chiral steroid ligands with defined stereochemistry and conformation have been synthesized. The four diastereomeric 16,17-aminoalcohols of the 3-methoxy-estra-1,3,5(10)-triene series have been condensed with salicylic aldehyde and different beta-ketoenols to the chiral ligand types 1-5. These compounds with different steric and electronic properties and different arrangements of the neighboring hydroxy and nitrogen functions were reacted with copper(II) acetate to copper complexes. The structure of these complexes will be discussed. The bioanalogous oxidation of 3,5-di-tbutyl-catechol (dtbc) to the corresponding quinone was catalyzed by most of the complexes, indicating their ability to activate dioxygen. The trans configurations c and d showed an activity one magnitude higher than the cis configurations a and b. Comparing compounds with the same diastereomeric configuration, the main influence was that of the peripheral R(1-3) substituents at the beta-ketoenaminic group which are useful for the fine-tuning of the properties of the copper atoms like redox potential and Lewis acidity.  相似文献   

3.
The anionic H2TPPS porphyrin and its copper derivative, CuTPPS, form in aqueous solution hetero-aggregates with the cationic H2T4 porphyrin and its copper derivative, CuT4. In the presence of poly-L-glutamate, at pH 4.0, a CD signal appears in the Soret region of the spectrum, indicating that the polypeptide has induced chirality into the structure of the aggregates. These species exhibit remarkable inertness due to the strength and number of the coulombic interactions between the anionic and the cationic porphyrins. This property allows them to preserve the chiral structure, even when the matrix changes or loses its chiral conformation, demonstrating that these aggregates are capable of memorizing the chiral information. The remarkable properties of the title systems may find various applications (chiral amplification, discrimination, and separation) that, on the other hand, require a more strict control of the aggregate dimension. Here, we show that the central copper of these macrocycles is crucial for determining the aggregate dimension.  相似文献   

4.
We describe the use of emulsion liquid membrane technology to perform chiral separations on low molecular weight species. We have reviewed liquid membrane technology in the context of existing process scale chiral separations. We illustrate the potential of this new technique by presenting our results on the selective extraction of phenylalanine enantiomers, using copper (II) N-decyl-(L)-hydroxyproline as a chiral selector in an emulsion liquid membrane configuration. This is compared with an analogous batch solvent extraction system. Initial batch enantiomeric excesses of greater than 40% were observed with the emulsion liquid membrane system compared with around 25% for the solvent extraction system. It was also noted that the system is not limited by the equilibrium capacity constraints of the solvent extraction system. We have shown that kinetic chiral liquid membrane technology offers high productivity and flexibility compared with analogous process scale chiral technologies. Recent transfer of highly specific chiral reversed-phase high-performance liquid chromatographic chemistries have shown that “one-stop” enantiomeric excesses of commercial interest (>95%) are achievable using kinetic chiral liquid membrane systems. Solvent and temperature selection strategies also have been outlined as means of increasing the enantioselectivity of existing liquid membrane extraction chemistries. Chirality 9:261–267, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Rosaria L  D'urso A  Mammana A  Purrello R 《Chirality》2008,20(3-4):411-419
The interaction between the tetra-anionic porphyrin H2TPPS and its copper derivative, CuTPPS, with the tetra-cationic porphyrin H2T4 and its copper derivative, CuT4, leads, in aqueous solution, to the formation of remarkably stable and kinetically inert heteroaggregates. The aggregation process is under hierarchic control and, in the presence of a suitable chiral mold, leads to the formation of chiral porphyrin heteroassemblies as stable and inert as the achiral ones. Because of these properties, the chirality of the porphyrin "imprinted" heteroaggregates not only survives the disruption of the template, but also to its complete removal from the solution. Notably, the template-free chiral porphyrin system is an excellent mold for its own self-replication. The relevant characteristics of these chiral heteroaggregates together with the knowledge of the forces that guide the aggregation processes permitted us to design a new but similar system. This system not only is able to store chiral information, but also is capable to release and restore it reversibly, in a cyclic manner. This has been achieved by modulating the charges carried by one of the two coupled porphyrins through protonation under various pH conditions. The role of the central metal ion and the template-free chiral structure of the CuT4-H2TPPS heteroaggregate, determined through EDXD analysis, are also presented.  相似文献   

6.
Xi X  Jiang L  Sun W  Shen Z 《Chirality》2007,19(7):521-527
Polymerization of N-phenylmaleimide derivatives bearing a chiral oxazoline substituent at ortho-position on the phenyl group (namely, N-[o-(4,5-dihydro-1,3-oxazol-2-yl)phenyl]maleimides, OPMI) was carried out with diethylzinc (Et2Zn) as an initiator. The resulting polymers exhibited a quite high specific rotation and a unique split-type circular dichroism. Furthermore, an induced Cotton effect was observed in the pi-pi* transition region of the chromophores upon complexation of these polymers with copper(II) salt in tetrahydrofuran solution, indicating the formation of chiral supramolecular aggregates. The induced supramolecular chirality was found to be dependent on the absolute configuration of monomer units, that is, the polymers with (R)-configurational oxazolinyl chromophores tended to form chiral aggregates with levorotatory handedness, while polymers obtained from the (S)-monomer offered dextrogyrate one upon the addition of Cu(II) salt.  相似文献   

7.
Bioprospecting of marine natural products has recently produced a substantial number of drug candidates. Ulva fasciata Delile, belonging to the family Ulvaceae, is a green marine macro alga that grows profusely on the coastal seashore of South India. In the present study, we investigated the in vitro cytotoxic potential of a methanolic extract of U.fasciata Delile (MEUF) using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay against human colon carcinoma (HT-29), human hepatocyte carcinoma (Hep-G2), and human breast carcinoma (MCF-7) cell lines. Response surface methodology (RSM) was applied using central-composite experimental design (CCD) to obtain optimum combined effect of concentration and cancer cells with highest cytotoxicity. The effect of concentration, cancer cell lines as independent variables on absorbance (OD), percent cell survival and percent cell inhibition as dependent variables was investigated. Maximum cytotoxic activity of MEUF was established for Hep-G2 with lowest OD or percent cell survival; highest percent cell inhibition with significant difference (p > 0.05) was compared to HT-29 and MCF-7.  相似文献   

8.
(1R,2R)-diaminocyclohexane (1) and (1R,2R)-diaminodiphenylethylenediamine (2) were used as building blocks for the synthesis of chiral tetradentate diquinolyl-diamine and related diquinolyl-dihydroimidazolium salts. A neutral chiral palladium(II) complex was synthesized by reaction of palladium acetate with the tetradentate diquinolyl diamine derived from 2 and used as a homogeneous catalyst for the Heck reaction between styrene and haloarenes. A chiral tridentate aminocarbene was generated in situ by deprotonation of the dihydroimidazolium salt derived from 1 and allowed to react with CuI to give a new chiral quinolyl-carbene copper(I) complex.  相似文献   

9.
The synthesis of Spi(τ‐dec), derived from the selective alkylation of L‐spinacine (4,5,6,7‐tetrahydro‐1H‐imidazo[4,5‐c]pyridine‐6‐carboxylic acid) at the τ‐nitrogen of its heteroaromatic ring, with a linear hydrocarbon chain of 10 carbon atoms, is described here for the first time. Spi(τ‐dec) was successfully employed in the past to prepare home‐made chiral columns for chiral ligand‐exchange high‐performance liquid chromatography. In the present article a new method is described, using Spi(τ‐dec) as a chiral selector in high‐performance thin‐layer chromatography (HPTLC): commercial hydrophobic plates were first coated with Spi(τ‐dec) and then treated with copper sulfate. The performance of this new chiral stationary phase was tested against racemic mixtures of aromatic amino acids, after appropriate optimization of both the conditions of preparation of the plates and the mobile phase composition. The enantioselectivity values obtained for the studied compounds were higher than those reported in the literature for similar systems. The method employed here for the preparation of chiral HPTLC plates proved practical, efficient, and inexpensive. Chirality 26:313–318, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The copper(II) complexes of two new diastereomeric ligands, N2-(R)- and N2-(S)-2′-hydroxypropyl-(S)-phenylalaninamide [(R, S)-1 and (S, S)-1], have been used as additives to the eluent in high-performance liquid chromatography (HPLC) reversed phase for the chiral separation of DNS-amino acids. The aim was that of comparing the separation process obtained by the chiral eluent with that obtained by an analogous bonded stationary phase containing (S)-phenylalaninamide, previously studied [CSP-(S)-Phe-NH2]. The affinity of the ternary complexes for the C18 column was determined by adsorption experiments in HPLC. It was shown that the two systems (chiral eluent, chiral stationary phase) work according to different mechanisms. Ternary complex formation in solution was studied by fluorescence spectroscopy. It was shown that chiral separation with the Cu(II) complexes added to the eluent was determined by the relative affinities of the ternary complexes for the column-stationary phase rather than by their stabilities in solution. With CSP-(S)-Phe-NH2 the separation is accounted for by the relative stabilities of the ternary complexes, which depends mainly on the “allowed” geometry of the complex and on the steric repulsion of the amino acid side chain with the spacer. © 1996 Wiley-Liss, Inc.  相似文献   

11.
A novel one-dimensional chiral copper(II) complex with single end-on (EO) azide bridge and chiral 2,2-bipyridine ligand, [Cu(N3)2(L)]n (1), and a mononuclear chiral copper(II) complex, [Cu(N3)2(L)] (2) (L = (1R)-6,6-dimethyl-5,7-methano-2-(2-pyridinyl)-4,5,6,7-tetrahydroquinoline), have been synthesized and characterized. The crystal structure determination shows that complex 1 is a one-dimensional chiral coordination polymer with non-equivalent Cu-N(azide) bonds, in which the central Cu(II) ion is penta-coordinated in the form of a slightly distorted square-based pyramid. Compound 2 is a four-coordinated mononuclear complex where the Cu(II) ion has a highly distorted tetrahedronal environment. Both complexes 1 and 2 crystallize in the chiral space group: P212121 and P1, respectively. The magnetic studies show that there exists antiferromagnetic interaction between the copper(II) ions in complex 1.  相似文献   

12.
The new chiral macrocyclic complexes [1,2-bis(1H-benzimidazol-2-yl)-1-(1,8-dihydro-1,3,5,8,10,12-hexaazacyclotetradecane)-2-hydroxyethanolate] copper(II) and -nickel(II) perchlorate, 3 and 4, respectively, were synthesized by the reaction of 1,2-bis(1H-benzimidazol-2-yl)ethane-1,2-diol (L) and (1,8-dihydro-1,3,5,8,10,12-hexaazacyclotetradecane)copper(II) and -nickel(II) diperchlorate complexes, 1 and 2, respectively. All complexes were characterized by various spectroscopic techniques. Molar-conductance measurements showed that all of the complexes are ionic in nature. In complexes 3 and 4, the metal center is encapsulated by the ligand L in a pentacoordinated environment. The optical-rotation values ([alpha](D)) of 3 and 4 at 25 degrees indicate that the complexes are chiral. Absorption- and fluorescence-spectral studies, cyclic voltammetry, and viscosity measurements have been carried out to assess the comparative binding of complexes 1 and 3 with calf thymus (CT)-DNA. Analysis of the results suggests that the new chiral complex 3 binds to CT-DNA through a partial intercalation mode that is different from the binding mode of parent achiral complex 1. The complexes 1 and 3 bind to CT-DNA with binding constants K(b) of 2.7 x 10(4) and 6.6 x 10(4) M(-1), respectively. Circular-dichroism (CD) studies have been further employed to ascertain the binding mode of complex 3, which is consistent with the other spectral studies.  相似文献   

13.
Wu T  Zhang XP  Li CH  Bouř P  Li YZ  You XZ 《Chirality》2012,24(6):451-458
Novel copper(II) coordination compounds with chiral macrocyclic imine ligands derived from R-/S-camphor were asymmetrically synthesized and characterized with the aid of chiroptical spectroscopies. Crystal structures of both enantiomers were determined by single crystal X-ray diffraction analysis. Circular dichroism (CD) spectra were analyzed using a simplified exciton model as well as quantum chemical computations. The absolute configuration of the copper(II) coordination compounds determined from CD was found consistent with the crystal data. The copper(II) complexes were further investigated by vibrational CD (VCD) measurement combined with density functional theory calculation. The complex formation was evidenced by spectral shifts of the characteristic bands in the CD and VCD spectra.  相似文献   

14.
A reversed-phase high-performance liquid chromatography method, with L-proline and copper as chiral mobile phase, is described for the enantiomeric resolution of various alpha-substituted ornithine and lysine analogs. Although ornithine gives no separation with the chiral eluant used, excellent resolutions are obtained for various alpha-alkyl-, alpha-halogenomethyl-, alpha-vinyl-, and alpha-ethynyl-substituted ornithines. Similar separations are also observed for the dehydroornithine and lysine analogs. Gas chromatography on a chiral stationary phase, Chirasil-Val, allows the resolution of the ornithine and lysine analogs after derivatization into the monofluoroacyl derivatives of their corresponding lactams. No resolution or only a poor resolution is obtained by GC on Chirasil-Val for the dehydroornithine analogs as their di-N-perfluoroacyl alkyl esters. The chiral eluant HPLC procedure is easily scaled up for the semipreparative resolution of several ornithine analogs, i.e., alpha-fluoromethylornithine, alpha-difluoromethylornithine, alpha-chlorofluoromethylornithine, and alpha-fluoromethyldehydroornithine, which are known as potent ornithine decarboxylase inhibitors in vitro and in vivo.  相似文献   

15.
A simple and precise method for chiral separation of tryptophan enantiomers using high performance liquid chromatography with aligand exchange mobile phase was developed. Chiral separation was performed on a conventional C18 column, using a mobile phase that consisted of a water-methanol solution (88∶12, v/v) containing 10 mmol/Ll-leucine and 5 mmol/L copper sulfate as a chiral ligand additive at a flow rate of 1.0 mL/min. This method allowed baseline separation of two enantiomers with a resolution of 1.84 in less than 30 min. The effect of various conditions, including concentration, type of ligand, organic modifier, pH, flow rate, and temperature, on enantioseparation were evaluated and chiral recognition mechanisms were investigated. Thermodynamic data (ΔΔH and ΔΔS) obtained by van't Hoff plots revealed that enantioseparation is an enthalpy-controlled process.  相似文献   

16.
Copper(II) complexes of N2-octyl-(S)-phenylalaninamide (Noc-Phe-NH2), N2-dodecyl-(S)-phenylalaninamide (Ndo-Phe-NH2), and N2-octyl-(S)-norleucinamide (Noc-NLeu-NH2), dynamically adsorbed on a reversed-phase C18 column, were able to perform the direct enantiomeric separation of unmodified amino acids, amino acid amides and esters, hydroxy acids, and dipeptides by elution with aqueous or mixed aqueous-organic solutions containing copper(II) sulphate or acetate. The role played by several parameters in the separation procedure was examined with the copper(II) complex of Noc-Phe-NH2 [concentration of the copper(II) ion in the eluent, pH and eluent polarity, amount of adsorbed selector]. The separation was shown to occur entirely on the stationary phase. The mechanism of chiral discrimination is discussed in terms of the chromatographic parameters and of the structure of the copper(II) complexes in solution and in the solid state. The chiral stationary phase maintained its separation ability for about 3 months. However, the column could be easily restored by recovering the selector with methanol and repeating the loading procedure. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Shi M  Jiang JK 《Chirality》2003,15(7):605-608
Novel chiral copper(I) and silver(I) metal complexes were synthesized from the reaction of chiral 1,3-thiazolidine-2-thione ligand with CuCl and AgOAc in dichloromethane in the presence of Et(3)N and DMAP at room temperature. Their unique crystal structures were determined by X-ray analysis. Four Cu(I) atoms and four 1,3-thiazolidine-2-thione ligands form a butterfly-type metal cluster. Six Ag(I) atoms and six 1,3-thiazolidine-2-thione ligands form another butterfly-type cluster.  相似文献   

18.
《Chirality》2017,29(8):422-429
A ligand‐exchange micellar electrokinetic capillary electrophoresis system with copper(II)‐L‐isoleucine complexes as the chiral selector incorporated in micelles of sodium dodecyl sulfate (SDS) was developed for the enantioseparation of ofloxacin and its four related substances (impurities A, C, E, and F). The effects of important parameters affecting separation such as buffer pH, SDS concentration, chiral selector concentration, and organic additive were investigated in detail. Under optimum experimental conditions, enantioseparation of ofloxacin, impurities A, C, E, and F enantiomers was accomplished with resolutions of 4.28, 2.83, 3.40, 3.58, and 2.46, respectively. Further, simultaneous separation of impurities A, C, E, and F enantiomers was achieved using 10 mmol/L NH4OAc as the running buffer containing 4 mmol/L copper sulfate,20 mmol/L L‐isoleucine, 20 mmol/L SDS, and 5% methanol at pH 8.5. To the best of our knowledge, the simultaneous enantioseparation of four impurities of ofloxacin has not been reported previously.  相似文献   

19.
The thermodynamics underlying enantioselective complexation and partitioning behaviour are poorly understood. This paper presents a model that decouples the effects of enantioselective complexation and subsequent diastereomer partitioning. Regular solution theory is applied in a semi‐empirical manner to describe the diastereomer partitioning process, which is reported to be governed by hydrophobic interactions. The model was shown to give a good fit to experimental partitioning for the enantioselective extraction of phenylalanine isomers by two chiral extractants; a modified amino acid [copper (II) N‐decyl‐(L)‐hydroxyproline] and a chiral crown ether [(S)‐bis(phenylnaphtho)‐20‐crown‐6]. A variety of aliphatic and aromatic solvents were tested. The predicted and observed experimental enantioselectivities were found to vary exponentially with the difference in the solubility parameters of the aqueous and organic phases and with those of the two diastereomeric complexes formed. This model provides the basis for a better understanding of enantioselective partitioning effects. Chirality 11:241–248, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
From achiral imidazolinium salts, chiral transition metal complexes containing an N-heterocyclic carbene (NHC) ligand were prepared (metal = palladium, copper, silver, gold, rhodium). Axial chirality in these complexes results from the formation of the metal-carbene bond leading to the restriction of rotation of dissymmetric N-aryl substituents about the C–N bond. When these complexes exhibited a sufficient configurational stability, a resolution by chiral high-performance liquid chromatography (HPLC) on preparative scale enabled isolation of enantiomers with excellent enantiopurities (>99% ee) and good yields. A study of the enantiomerization barriers revealed the effect of the backbone nature as well as the type of transition metal on its values. Nevertheless, the evaluation of palladium-based complexes in asymmetric intramolecular α-arylation of amides demonstrated that the ability to induce an enantioselectivity cannot be correlated to the configurational stability of the precatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号