首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of the (Na+ + K+)-dependent ATPase by inorganic phosphate, Pi, was examined in terms of product inhibition of the various activities catalyzed by an enzyme preparation from rat brain, and considered in terms of the specific transport processes of the membrane Na+,K+-pump that these activities reflect. The K+-dependent phosphatase activity of the enzyme was most sensitive to Pi, and inhibition was competitive toward the substrate, nitrophenyl phosphate, as would be expected if Pi were released from the same enzyme form that bound substrate. However, this enzymatic activity does not seem to represent a transport process, and thus a cyclical discharge of K+ may not be involved. The Na+-dependent exchange activity was unaffected by Pi, in accord with the absence of Pi release in the reaction sequence. For the corresponding Na+/Na+ exchange function of the pump, which reportedly does not involve ATP hydrolysis either, prior release of Pi obviously cannot be required for Na+ discharge. With the Na+-dependent ATPase activity, measured using micromolar concentrations of ATP, Pi inhibited, but far less than with the phosphatase activity, and inhibition was not competitive toward ATP. Moreover, inhibition decreased as the Na+ concentration was raised from 10 to 100 mM. This elevated concentration of Na+ also led to substrate inhibition. For this ATPase activity, and the corresponding transport process, uncoupled Na+ efflux, the findings suggest that Na+ discharge follows Pi release, in contrast to Na+/Na+ exchange. The (Na+ + K+)-dependent ATPase activity, measured with millimolar concentrations of ATP and reflecting the coupled Na+,K+-transport function, was similarly sensitive to Pi, and again inhibition was not competitive toward ATP. However, in this case inhibition did not increase as the Na+ concentration was lowered. For this activity, and the associated transport process, the site of Na+ discharge in the overall reaction sequence remains unresolved.  相似文献   

2.
Renal phosphate (Pi) reabsorption is increased by growth hormone (GH) and decreased by parathyroid hormone (PTH). Na+-stimulated Pi transport across the brush border membrane of the proximal tubule is the initial step in the process of Pi reabsorption. To determine whether changes in Pi reabsorption induced by GH or PTH are accompanied by changes in brush border membrane Na+-gradient-stimulated Pi transport, we examined the effect of in vivo GH and PTH administration and thyroparathyroidectomy on Pi transport by isolated brush border membrane vesicles prepared from canine kidney. In experiments in which the effect of PTH administration was examined, the same animal provided the control kidney (before PTH administration) and the experimental kidney (after PTH administration). The Na+-gradient Pi overshoot in vesicles isolated from normal, GH-treated and thyroparathyroidectomized dogs was increased after in vivo PTH administration. GH administration and thyroparathyroidectomy increased the height of the overshoot compared to normal. PTH administration decreased the apparent V value by 44% in vesicles from normal animals. The apparent V value was increased, compared to normal, by GH (34%) and thyroparathyroidectomy (57%). PTH administration decreased the apparent V in both the latter groups. GH administration to thyroparathyroidectomized dogs further increased the apparent V. Changes in the apparent V paralleled changes in Pi reabsorption in vivo induced by experimental manipulations. We conclude that changes in renal Pi reabsorption induced by GH were like those induced by PTH, accompanied by changes in the Na+-stimulated Pi transport system in the renal brush border membrane, and that the effect of PTH on vesicular Pi transport in GH-treated dogs did not differ from the effect on vesicles from normal animals.  相似文献   

3.
(Na+,K+)-ATPase is able to catalyze a continuous ATP?Pi exchange in the presence of Na+ and in the absence of a transmembrane ionic gradient. At pH 7.6 the Na+ concentration required for half-maximal activity is 85 mM and at pH 5.1 it is 340 mM. In the presence of optimal Na+ concentration, the rate of exchange is maximal at pH 6.0 and varies with ADP and Pi concentration in the assay medium. ATP?Pi exchange is inhibited by K+ and by ouabain.  相似文献   

4.
Dietary phosphate (Pi) restriction increases renal Pi reabsorption and induces resistance to the phosphaturic action of parathyroid hormone. Na+-gradient-stimulated Pi transport in membrane vesicles isolated from the renal brush border of experimental animals has been shown to parallel changes in renal Pi reabsorption induced by dietary Pi restriction and in vivo administration of parathyroid hormone. Dietary Pi restriction has been shown to markedly inhibit the phosphaturic response to parathyroid hormone in rats and dogs. Parathyroid hormone has been reported not to decrease the Na+-gradient-stimulated transport of Pi in brush border membrane vesicles isolated from dietary Pi restricted rats unless the rats were administered an acute Pi load prior to killing, however, thyroparathyroidectomy of rats fed a low Pi diet has been reported to increase Na+-gradient-stimulated Pi transport. Using the dietary Pi restricted dog, we demonstrated no significant decrease in renal reabsorption of Pi in response to parathyroid hormone administration. However, significant decreases in Pi transport in brush border membrane vesicles isolated from the kidneys of dietary Pi restricted dogs were observed in response to in vivo parathyroid hormone administration. These data demonstrate that the resistance to the phosphaturic action of parathyroid hormone observed in vivo does not include resistance to the inhibitory effect of parathyroid hormone on Pi transport in brush border membrane vesicles. Thus, the data suggest that parathyroid hormone continues to alter Pi transport characteristics of the brush border membrane in states of Pi depletion despite the resistance to parathyroid hormone seen in vivo.  相似文献   

5.
In view of the importance of Pi in the control of cell metabolism, it was of interest to study the mechanism and regulation of Pi uptake by ascites tumor cells. For this purpose, the incorporation of 32Pi into Ehrlich Lettré cells was compared when competitive anions and inhibitors which alter cation movements were present. Anions such as sulfanilate (35 mm) and succinate (30 mm) decrease 32Pi uptake by ca. 35%, suggesting that transport is mediated by a protein similar to the 100,000 Mr anion carrier isolated from erythrocyte membranes. Furosemide, a diuretic which bears a structural analogy to sulfanilate inhibitors of anion transport, also decreases 32Pi incorporation at concentrations as low as 2 × 10?5m. This inhibitor blocks cation exchange in ascites tumor cells, and from the present data, it is suggested that a possible function of the furosemidesensitive cation exchange protein is to facilitate anion transport. Ouabain, known to inhibit (Na+ + K+)-ATPase and its dephosphorylation, stimulates the rate of incorporation of 32Pi into cells and also raises the net inorganic phosphate level. The stimulation of 32Pi incorporation is decreased by sulfanilate or succinate. In contrast to the effects of ouabain, addition of 10 mm K+, which is known to stimulate (Na+ + K+)-ATPase and its dephosphorylation, decreases 32Pi incorporation. These observations suggest that anion transport and energy-dependent Na+ and K+ movements may be closely coupled to the intact cell.  相似文献   

6.
1. Liver slices from rats treated with thyroxine show an increased rate of O2 consumption. The extra consumption, but not the basal respiration, can be abolished by ouabain. 2. Dinitrophenol is not effective in increasing the rate of O2 consumption of liver slices from thyroxine-treated animals but its effectiveness can be recovered in the presence of ouabain. 3. (Na++K+)-stimulated adenosine triphosphatase activity of liver was increased by administration of thyroxine in vivo. No changes were found in total Mg2+-stimulated adenosine triphosphatase activity. 4. Mitochondrial α-glycerophosphate dehydrogenase and microsomal NADPH oxidase activity were increased by both thyroxine and chronic ethanol treatment. 5. Liver slices from animals chronically treated with ethanol synthesize urea at an increased rate. 6. Mitochondrial size (section area) is markedly increased in the liver of animals chronically treated with ethanol. 7. Acute administration of ethanol in doses of 4 and 6g/kg significantly increases the uptake of 131I-labelled thyroxine by the liver. 8. Work reported here, along with results from other investigators, indicates marked similarities between the effects produced in the liver by chronic administration of ethanol and by thyroid hormones.  相似文献   

7.
Abstract: Our laboratory has recently cloned and expressed a brain- and neuron-specific Na+-dependent inorganic phosphate (Pi) cotransporter that is constitutively expressed in neurons of the rat cerebral cortex, hippocampus, and cerebellum. We have now characterized Na+-dependent 32Pi cotransport in cultured fetal rat cortical neurons, where >90% of saturable Pi uptake is Na+-dependent. Saturable, Na+-dependent 32Pi uptake was first observed in primary cultures of cortical neurons at 7 days in vitro (DIV) and was maximal at 12 DIV. Na+-dependent Pi transport was optimal at physiological temperature (37°C) and pH (7.0–7.5), with apparent Km values for Pi and Na+ of 54 ± 12.7 µM and 35 ± 4.2 mM, respectively. A reduction in extracellular Ca2+ markedly reduced (>60%) Na+-dependent Pi uptake, with a threshold for maximal Pi import of 1–2.5 mM CaCl2. Primary cultures of fetal cortical neurons incubated in medium where equimolar concentrations of choline were substituted for Na+ had lower levels of ATP and ADP and higher levels of AMP than did those incubated in the presence of Na+. Furthermore, a substantial fraction of the 32Pi cotransported with Na+ was concentrated in the adenine nucleotides. Inhibitors of oxidative metabolism, such as rotenone, oligomycin, or dinitrophenol, dramatically decreased Na+-dependent Pi import rates. These data establish the presence of a Na+-dependent Pi cotransport system in neurons of the CNS, demonstrate the Ca2+-dependent nature of 32Pi uptake, and suggest that the neuronal Na+-dependent Pi cotransporter may import Pi required for the production of high-energy compounds vital to neuronal metabolism.  相似文献   

8.
Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the doseand time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of 86Rb+ influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.  相似文献   

9.

Background

Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi.

Methods

32Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na+, H+ and K+ fluxes were also investigated. The transport capacities of different evolutive forms were compared.

Results

Epimastigotes grew significantly more slowly in 2 mM than in 50 mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na+. We found that the parasites express TcPho84, a H+:Pi-symporter, and TcPho89, a Na+:Pi-symporter. Both Pi influx mechanisms showed Michaelis–Menten kinetics, with a one-order of magnitude higher affinity for the Na+-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K+ ionophore) or SCH28028 (inhibitor of (H+ + K+)ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H+ gradient energizes uphill Pi entry and that K+ recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na+-ATPase, decreased only the Na+-dependent Pi uptake, indicating that this Na+ pump generates the Na+ gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently.

Conclusions

Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na+ or H+/K+ fluxes.

General significance

This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.  相似文献   

10.
Transepithelial transport mechanisms play a key role in regulating the absorption and secretion of calcium (Ca2 +) and inorganic phosphate (Pi) in the gastrointestinal tract. Although intestinal disorders with imbalances in macromineral homeostasis are frequently observed in horses, available data on intestinal Ca2 + and Pi transport are limited. The aim of the present study was to characterize the intestinal Ca2 + and Pi transport functionally by using the in vitro radioisotope tracer technique with Ussing chambers and to identify components involved in Ca2 + transport at both mRNA and protein level. Among the different intestinal segments, the duodenum showed significant and highest active Ca2 + absorption. The findings from RT-PCR and Western blot analysis suggest that the epithelial Ca2 + channel TRPV6, the cytosolic calcium binding protein calbindin-D9K and the plasma membrane calcium ATPase PMCA may be involved in active transcellular Ca2 + transport. Regarding the Pi transport, the results indicate significant active Pi secretion in the jejunum, but the contributing mechanisms remain unclear. A significant inhibiting effect of ouabain as an antagonist of the basolateral Na+/K+-ATPase on the serosal-to-mucosal Pi transport suggests a pivotal role of Na+ in jejunal Pi transport in the horse.  相似文献   

11.
Neuronal-enriched cultures were prepared from 8-day-old chick embryo cerebral hemispheres and exposed to ethanol (50 mM) from day 4 to 8 in culture. At day 8, both control and ethanol-treated cultures were processed for [3H]choline uptake in situ. Uptake was performed on cultures containing either Na+-plus or Na+-free (Li+) HEPES buffer. Total choline uptake as well as Na+-dependent and Na+-independent choline uptake were calculated. The Km and Vmax were calculated using the Lineweaver-Burke analysis. Our analysis of the data revealed that ethanol-treated cultures exhibited two values for Vmax, one similar to that found in control cultures and one significantly lower than controls. No differences were observed in Km values between control and ethanol-treated cultures. We interpret the low Vmax to represent a population of cholinergic neurons which have been arrested at an immature stage as a result of ethanol insult.  相似文献   

12.
Male rats were administered an ethanol-containing diet for 31 days during which time they demonstrated fatty liver. Mitochondria and submitochondrial particles were prepared from their livers (ethanol mitochondria, ethanol submitochondrial particles) and from their pair-fed partners (control mitochondria, control submitochondrial particles). The H+/coupling site ratio was not significantly different in ethanol and control mitochondria with succinate as electron donor. A 13% decrease in the H+/coupling site ratio was observed in ethanol mitochondria, however, when β-hydroxybutyrate was used as substrate. The rate of ATP-Pi exchange was decreased significantly in both ethanol mitochondria and submitochondrial particles as compared to control preparations. These observations demonstrate ethanol-elicited decreases in energy conservation in the site I region of the electron transport chain and in the activity of the ATP synthetase complex.  相似文献   

13.
The effects of extracellular Pi and Na+ on cellular Pi concentration and transport were studied. Steady-state Pi exchange flux was measured by 32P uptake in the presence and absence of Na+. Model experiments were also conducted to assess the possibility that hydrolysis of organic phosphate esters contributes to the chemically measured intracellular Pi concentration of Ehrlich ascites tumor cells. The results of these experiments indicate that hydroloysis of labile organic phosphate esters does not contribute to the measured intracellular pool of Pi. The Pi transport system exhibits an apparent Ks of 0.115 mM Pi and a maximal flux of 1.73 mmole min?1 (kg dry wt)?1. When incubated in a phosphate-buffered choline chloride medium (5 mM Pi) the intracellular Pi and the Pi influx fall by 65 and 88%, respectively. At 5 mM extracellular Pi, the Na+-dependent component of Pi transport fits Michaelis-Menten kinetics with the maximal flux equal to 2.46 mmole min?1 (kg dry wt)?1 and an apparent Ks of 35.4 mM Na+. In addition, a Na+-independent component of Pi transport, comprising about 12% of the total Pi flux, was identified. The data support the hypothesis that a Pi transport system, dependent on Na+, plays a principal role in the maintenance of intracellular Pi concentration.  相似文献   

14.
The mechanisms of activation of renal (Na+ + K+)-ATPase by administration of the synthetic glucocorticoid hormone, dexamethasone, have been investigated in adrenalectomized rats. Chronic treatment with dexamethasone (1–5 mg/100 g body wt. daily for 5 days) stimulated (Na+ + K+)-ATPase specific activity in crude homogenated and microsomal fractions of renal cortex (by approx. 100–150%) and renal medulla (by approx. 100%). Acute treatment with dexamethasone (0.5–10 mg/100 g body wt.) also stimulated enzyme activity in crude homogenates and microsomal fractions of renal cortex and medulla (by approx. 40–50%). Stimulation was dose dependent and occurred within 2h after hormone treatment. In vitro addition of dexamethasone (10?4–10?8 M) to microsomal fractions did not modify the specific activity of (Na+ + K+)-ATPase. Stimulation of (Na+ + K+)-ATPase activity by acute and chronic administration of the hormone was demonstrated whether specific activities were expressed as a function of cellular protein or cellular DNA. Dexamethasone treatment increased the ratios protein:DNA and, to a lesser extent, the ratios RNA:DNA. However, these effects were mainly due to a reduction in the renal contents of DNA, which suggests that the observed enzyme activation is not due to an action of the hormone on renal hypertrophy. Dexamethasone also reduced cellular DNA contents in the liver. The characteristics of the activation process were essentially similar after treatment with single or multiple doses of the hormone. There were increases in the value for Na+ (approx. 100%), K+ (approx. 40%) and ATP (approx. 160%). The Km values for Na+ (approx. 17 mM) and K+ (approx. 1.8 mM) were unchanged and there was a small increase in the Km value for ATP (0.7 mM as against 1.7 mM). There was no difference in the Hill coefficients for the three substrates. The levels of the high-energy Pi intermediate of the (Na+ + K+)-ATPase reaction were augmented by dexamethasone treatment and the increased levels were quantitatively correlated with the observed stimulation of (Na+ + K+)-ATPase specific activity. The apparent turnover numbers of the reaction remained unchanged. The specific activity of the ouabain-sensitive p-nitrophenylphosphatase increased proportionally to the increase in (Na+ + K+)-ATPase specific activity. Enzyme activation by acute dexamethasone treatment occurred in the absence of changes in glomerular filtration rate and tubular Na+ excretion.These results indicate that (Na+ + K+)-ATPase activation by acute and chronic dexamethasone treatment represents an increase in the number of enzyme units with little or no change in the kinetic properties (affinity, cooperativity) of the enzyme. In addition, the information presented suggests a direct regulatory effect of glucocorticoid hormones on the activity of renal (Na+ + K+)-ATPase and is inconsistent with the concept that changes in Na+ loads mediate the effects of these hormones on enzyme activity. Instead, the results suggests a primary role for glucocorticoid hormones in the renal regulation of Na+ homeostasis.  相似文献   

15.
Abstract: Effects of nigericin were investigated in rat brain synaptosomes, cultured neurons, and C6 glioma cells to characterize the relations among ATP synthesis, [Na+]i., [K+]i, and [Ca2+]i, and pH under conditions when [H+]i is substantially increased and transmembrane electrical potential is decreased. Intracellular acidification and loss of K+ were accompanied by enhanced oxygen consumption and lactate production and a decrease in cellular energy level. Changes in the last three parameters were attenuated by addition of 1 mM ouabain. In synaptosomes treated with nigericin, neither respiration nor glycolysis was affected by 0.3 μM tetrodotoxin, whereas 1 mM amiloride reduced lactate production by 20% but did not influence respiration. In C6 cells, amiloride decreased the nigericin-stimulated rate of lactate generation by about 50%. The enhancement by nigericin of synaptosomal oxygen uptake and glycolytic rate decreased with time. However, there was only a small reduction in respiration and none in glycolysis in C6 cells. Measurements with ion-selective microelectrodes in neurons and C6 cells showed that nigericin also caused a rise in [Ca2+], and [Na+]., The increase in [Na+], in C6 cells was partially reversed by 1 mM amiloride. It is concluded that nigericin-induced loss of K+ and subsequent depolarization lead to an increase in Na+ influx and stimulation of the Na+/K+ pump with a consequent rise in energy utilization; that acidosis inhibits mitochondrial ATP production; that a rise in [H+] does not decrease glycolytic rate when the energy state (a fall in [ATP] and rises in [ADP] and [AMP]) is simultaneously reduced; that a fall in [K+], depresses both oxidative phosphorylation and glycolysis; and that the nigericin-induced alterations in ion levels and activities of energy-producing pathways can explain some of the deleterious effects of ischemia and hypoxia.  相似文献   

16.
  • 1.1. The (Na+ + K+)- and Na+-ATPases, both present in kidney microsomes of Sparus auratus L., have different activities and optimal assay conditions as, in the first of the two stocks of fish used (A), the spec. act. of the former is 51.7 μmol Pi mg prot−1 hr−1 at pH 7.5, 100 mM Na+, 10 mM K+, 17.5 mM Mg2+, 7.5 mM ATP and that of the latter is 6.5 μmol Pi mg prot−1 hr−1 at pH 6.5, 40 mM Na+, 4.0 mM Mg2+, 2.5 mM ATP.
  • 2.2. Ouabain and vanadate specifically inhibit the (Na+ + K+)-ATPase but not the Na+-ATPase that is preferentially inhibited by ethacrynic acid.
  • 3.3. While the (Na+ + K+)-ATPase is strictly specific for ATP and Na+, Na+-ATPase can be activated by various monovalent cations and, apart from ATP, hydrolyses CTP, though less efficiently.
  • 4.4. The second stock B, subjected to higher salinity than A, shows an acidic shifted Na+-ATPase optimal pH, opposed to the stability of that of the (Na+ + K+)-ATPase, a decreased (Na+ + K+)-ATPase and a strikingly depressed Na+-ATPase.
  • 5.5. The results are compared with literature data and discussed on the basis of the presumptive different roles as well as functional prevalence in various salinities of the two ATPases.
  相似文献   

17.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min?1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min?1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min?1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 μM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3?. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

18.
In the present study, we documented the promising role of thyroid hormones status in animals in modulation of Na+–Pi transport activity in intestinal brush border membrane vesicles (BBMV) which was accompanied with alterations in BBM lipid composition and fluidity. Augmentation of net Pi balance in hyperthyroid (Hyper-T) rats was fraternized with accretion of Pi transport across BBMV isolated from intestine of Hyper-T rats as compared to hypothyroid (Hypo-T) and euthyroid (Eu-T) rats while Na+–Pi transport across BBMV was decreased in Hypo-T rats relative to Eu-T rats. Increment in Na+–Pi transport in intestinal BBMV isolated from Hyper-T rats was manifested as an increase in the maximal velocity (Vmax) of Na+–Pi transport system. Furthermore, BBMV lipid composition profile in intestinal BBM from Hyper-T was altered to that of Hypo-T rats and Eu-T rats. The molar ratio of cholesterol/phospholipids was higher in intestinal BBM from Hypo-T rats. Fluorescence anistropy of diphenyl hexatriene (rDPH) and microviscosity were significantly decreased in the intestinal BBM of Hyper-T rats and decreased in Hypo-T rats as compared to Eu-T rats which corroborated with the alteration in membrane fluidity in response to thyroid hormone status of animals. Therefore, thyroid hormone mediated change in membrane fluidity might play an important role in modulating Na+–Pi transport activity of intestinal BBM. (Mol Cell Biochem 278: 195–202, 2005)  相似文献   

19.
In the cardiovascular system, NO is involved in the regulation of a variety of functions. Inhibition of NO synthesis induces sustained hypertension. In several models of hypertension, elevation of intracellular sodium level was documented in cardiac tissue. To assess the molecular basis of disturbances in transmembraneous transport of Na+, we studied the response of cardiac (Na,K)-ATPase to NO-deficient hypertension induced in rats by NO-synthase inhibition with 40 mg/kg/day NG-nitro-L-arginine methyl ester (L-NAME) for 4 four weeks. After 4-week administration of L-NAME, the systolic blood pressure (SBP) increased by 36%. Two weeks after terminating the treatment, the SBP recovered to control value. When activating the (Na,K)-ATPase with its substrate ATP, no changes in Km and Vmax values were observed in NO-deficient rats. During activation with Na+, the Vmax remained unchanged, however the KNa increased by 50%, indicating a profound decrease in the affinity of the Na+-binding site in NO-deficient rats. After recovery from hypertension, the activity of (Na,K)-ATPase increased, due to higher affinity of the ATP-binding site, as revealed from the lowered Km value for ATP. The KNa value for Na+ returned to control value. Inhibition of NO-synthase induced a reversible hypertension accompanied by depressed Na+-extrusion from cardiac cells as a consequence of deteriorated Na+-binding properties of the (Na,K)-ATPase. After recovery of blood pressure to control values, the extrusion of Na+ from cardiac cells was normalized, as revealed by restoration of the (Na,K)-ATPase activity. (Mol Cell Biochem 000: 000-000, 1999)  相似文献   

20.
Properties of a plasmalemma phosphatase of the maize scutellum, tentatively identified as an ATPase in a previous paper, were investigated. Fresh and frozen-thawed scutellum slices, that had been treated with 10 mM HCl to destroy acid phosphatases, were used as a source of enzyme. With the exceptions of the Na+, K+ and dinitrophenol experiments, the two kinds of slices gave similar results. ATP and CTP were the best substrates for the enzyme followed by TTP, UTP, CDP, ADP and GTP. UDP, nucleoside monophosphates, sugar phosphates, inorganic pyrophosphate and p-nitrophenyl phosphate were relatively ineffective as substrates. The Km's for ATP and ADP were 0.65 and 5 mM, respectively, but the two substrates gave the same Vmax (49.8 μmol Pi/hr/g slices). Previously, it was shown that the products of ATP hydrolysis are ADP, AMP and Pi. Using these previous results and from the time courses of ATP disappearance from the bathing solution and the appearance of Pi and ADP, it was concluded that ATP and ADP were hydrolysed by the same enzyme. The ATPase was not inhibited by oligomycin. N-N′-Dicyclohexylcarbodiimide (DCCD) was a poor inhibitor, and a water soluble analog of DCCD, 1-ethyl-3 (3 dimethyl-aminopropyl)-carbodiimide, gave only 33% inhibition. The relative effectiveness of divalent cations for stimulating ATPase activity was Mn2+ > Mg2+ ? Ca2+ > Co2+ · Na+ and K+ gave a small additional stimulation in the presence of Mg2+. However, Na+ and K+ gave a much greater stimulation when no divalent cation was added, and this occurred only when fresh slices were used. Dinitrophenol also increased ATPase activity only when fresh slices were used. Since it is likely that both the uptake of Na+ and K+ and the action of dinitrophenol would lower the electrochemical gradient of protons across the plasmalemma, the different results obtained with fresh slices indicate that the ATPase in these slices was under the constraint of a proton gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号