首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient receptor potential (TRP) proteins form plasma-membrane cation channels that act as sensors for diverse cellular stimuli. Here, we report a novel activation mechanism mediated by cysteine S-nitrosylation in TRP channels. Recombinant TRPC1, TRPC4, TRPC5, TRPV1, TRPV3 and TRPV4 of the TRPC and TRPV families, which are commonly classified as receptor-activated channels and thermosensor channels, induce entry of Ca(2+) into cells in response to nitric oxide (NO). Labeling and functional assays using cysteine mutants, together with membrane sidedness in activating reactive disulfides, show that cytoplasmically accessible Cys553 and nearby Cys558 are nitrosylation sites mediating NO sensitivity in TRPC5. The responsive TRP proteins have conserved cysteines on the same N-terminal side of the pore region. Notably, nitrosylation of native TRPC5 upon G protein-coupled ATP receptor stimulation elicits entry of Ca(2+) into endothelial cells. These findings reveal the structural motif for the NO-sensitive activation gate in TRP channels and indicate that NO sensors are a new functional category of cellular receptors extending over different TRP families.  相似文献   

2.
Capacitative calcium entry in the nervous system   总被引:6,自引:0,他引:6  
Putney JW 《Cell calcium》2003,34(4-5):339-344
Capacitative calcium entry is a process whereby the depletion of Ca(2+) from intracellular stores (likely endoplasmic or sarcoplasmic reticulum) activates plasma membrane Ca(2+) channels. Current research has focused on identification of capacitative calcium entry channels and the mechanism by which Ca(2+) store depletion activates the channels. Leading candidates for the channels are members of the transient receptor potential (TRP) superfamily, although no single gene or gene product has been definitively proven to mediate capacitative calcium entry. The mechanism for activation of the channels is not known; proposals fall into two general categories, either a diffusible signal released from the Ca(2+) stores when their Ca(2+) levels become depleted, or a more direct protein-protein interaction between constituents of the endoplasmic reticulum and the plasma membrane channels. Capacitative calcium entry is a major mechanism for regulated Ca(2+) influx in non-excitable cells, but recent research has indicated that this pathway plays an important role in the function of neuronal cells, and may be important in a number of neuropathological conditions. This review will summarize some of these more recent findings regarding the role of capacitative calcium entry in normal and pathological processes in the nervous system.  相似文献   

3.
TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry after the stimulation of a G(q)-protein-coupled or tyrosine-kinase receptor. TRPC6 translocates to the plasma membrane upon stimulation and remains there as long as the stimulus is present. However, the mechanism that regulates the trafficking and activation of TRPC6 are unclear. In this study we showed phosphoinositide 3-kinase and its antagonistic phosphatase, PTEN, are involved in the activation of TRPC6. The inhibition of PI3K by PIK-93, LY294002, or wortmannin decreased carbachol-induced translocation of TRPC6 to the plasma membrane and carbachol-induced net Ca(2+) entry into T6.11 cells. Conversely, a reduction of PTEN expression did not affect carbachol-induced externalization of TRPC6 but increased Ca(2+) entry through TRPC6 in T6.11 cells. We also showed that the PI3K/PTEN pathway regulates vasopressin-induced translocation of TRPC6 to the plasma membrane and vasopressin-induced Ca(2+) entry into A7r5 cells, which endogenously express TRPC6. In summary, we provided evidence that the PI3K/PTEN pathway plays an important role in the translocation of TRPC6 to the plasma membrane and may thus have a significant impact on Ca(2+) signaling in cells that endogenously express TRPC6.  相似文献   

4.
Extracellular pH has long been known to affect the rate and magnitude of ion transport processes among others via regulation of ion channel activity. The Ca(2+)-selective transient receptor potential vanilloid 5 (TRPV5) channel constitutes the apical entry gate in Ca(2+)-transporting cells, contributing significantly to the overall Ca(2+) balance. Here, we demonstrate that extracellular pH determines the cell surface expression of TRPV5 via a unique mechanism. By a comprehensive approach using total internal reflection fluorescence microscopy, cell surface protein labeling, electrophysiology, (45)Ca(2+) uptake assays, and functional channel recovery after chemobleaching, this study shows that upon extracellular alkalinization, a pool of TRPV5-containing vesicles is rapidly recruited to the cell surface without collapsing into the plasma membrane. These vesicles contain functional TRPV5 channels since extracellular alkalinization is accompanied by increased TRPV5 activity. Conversely, upon subsequent extracellular acidification, vesicles are retrieved from the plasma membrane, simultaneously resulting in decreased TRPV5 activity. Thus, TRPV5 accesses the extracellular compartment via transient openings of vesicles, suggesting that rapid responses of constitutive active TRP channels to physiological stimuli rely on vesicular "kiss and linger" interactions with the plasma membrane.  相似文献   

5.
The regulation and control of plasma membrane Ca(2+) fluxes is critical for the initiation and maintenance of a variety of signal transduction cascades. Recently, the study of transient receptor potential channels (TRPs) has suggested that these proteins have an important role to play in mediating capacitative calcium entry. In this study, we have isolated a cDNA from human brain that encodes a novel transient receptor potential channel termed human TRP7 (hTRP7). hTRP7 is a member of the short TRP channel family and is 98% homologous to mouse TRP7 (mTRP7). At the mRNA level hTRP7 was widely expressed in tissues of the central nervous system, as well as some peripheral tissues such as pituitary gland and kidney. However, in contrast to mTRP7, which is highly expressed in heart and lung, hTRP7 was undetectable in these tissues. For functional analysis, we heterologously expressed hTRP7 cDNA in an human embryonic kidney cell line. In comparison with untransfected cells depletion of intracellular calcium stores in hTRP7-expressing cells, using either carbachol or thapsigargin, produced a marked increase in the subsequent level of Ca(2+) influx. This increased Ca(2+) entry was blocked by inhibitors of capacitative calcium entry such as La(3+) and Gd(3+). Furthermore, transient transfection of an hTRP7 antisense expression construct into cells expressing hTRP7 eliminated the augmented store-operated Ca(2+) entry. Our findings suggest that hTRP7 is a store-operated calcium channel, a finding in stark contrast to the mouse orthologue, mTRP7, which is reported to enhance Ca(2+) influx independently of store depletion, and suggests that human and mouse TRP7 channels may fulfil different physiological roles.  相似文献   

6.
Recent developments in non-excitable cell calcium entry.   总被引:11,自引:0,他引:11  
Influx of calcium into cells following stimulation of cell surface receptors is a key process controlling cellular activity. However, despite intensive research, there is still no consensus on precisely how calcium entry is controlled in electrically no n-excitable cells. In particular, the regulation of depletion-activated or 'capacitative' calcium entry continues to be a focus of debate. Work published in the last 2 years has lent new impetus to the so-called 'conformational coupling' theory, although evidence for the existence of soluble messengers between the ER and the plasma membrane also continues to appear. In addition, there remains disagreement on whether intra-store [Ca(2+)] has to fall below a threshold before Ca(2+)entry is activated. A further major question is the identity of the putative depletion-operated Ca(2+)channel or channels. Here discussion has largely focussed on whether homologue(s) of the Drosophila TRP ('Transient Receptor Potential') protein is/are the elusive channel, or at least a part of it. Finally, it remains possible that Ca(2+)entry mechanisms other than depletion-activated channels may be important in agonist-evoked Ca(2+)influx. This commentary summarizes recent developments in the field, and highlights both current debates and critical unsolved questions.  相似文献   

7.
Hepatocytes are highly differentiated and spatially polarised cells which conduct a wide range of functions, including intermediary metabolism, protein synthesis and secretion, and the synthesis, transport and secretion of bile acids. Changes in the concentrations of Ca(2+) in the cytoplasmic space, endoplasmic reticulum (ER), mitochondria, and other intracellular organelles make an essential contribution to the regulation of these hepatocyte functions. While not yet fully understood, the spatial and temporal parameters of the cytoplasmic Ca(2+) signals and the entry of Ca(2+) through Ca(2+)-permeable channels in the plasma membrane are critical to the regulation by Ca(2+) of hepatocyte function. Ca(2+) entry across the hepatocyte plasma membrane has been studied in hepatocytes in situ, in isolated hepatocytes and in liver cell lines. The types of Ca(2+)-permeable channels identified are store-operated, ligand-gated, receptor-activated and stretch-activated channels, and these may vary depending on the animal species studied. Rat liver cell store-operated Ca(2+) channels (SOCs) have a high selectivity for Ca(2+) and characteristics similar to those of the Ca(2+) release activated Ca(2+) channels in lymphocytes and mast cells. Liver cell SOCs are activated by a decrease in Ca(2+) in a sub-region of the ER enriched in type1 IP(3) receptors. Activation requires stromal interaction molecule type 1 (STIM1), and G(i2alpha,) F-actin and PLCgamma1 as facilitatory proteins. P(2x) purinergic channels are the only ligand-gated Ca(2+)-permeable channels in the liver cell membrane identified so far. Several types of receptor-activated Ca(2+) channels have been identified, and some partially characterised. It is likely that TRP (transient receptor potential) polypeptides, which can form Ca(2+)- and Na(+)-permeable channels, comprise many hepatocyte receptor-activated Ca(2+)-permeable channels. A number of TRP proteins have been detected in hepatocytes and in liver cell lines. Further experiments are required to characterise the receptor-activated Ca(2+) permeable channels more fully, and to determine the molecular nature, mechanisms of activation, and precise physiological functions of each of the different hepatocyte plasma membrane Ca(2+) permeable channels.  相似文献   

8.
The secretion of neurotransmitters is a rapid Ca(2+)-regulated process that brings about vesicle fusion with the plasma membrane. This rapid process (< 100 microseconds) involves multiple proteins located at the plasma and vesicular membranes. Because of their homology to proteins participating in constitutive secretion and protein trafficking, they have been characterized extensively. The sequential events that lead these proteins to vesicle docking and fusion are still unclear. We will review recent studies that demonstrate the operative role played by voltage-sensitive Ca(2+) channels and discuss the relevance for the process of evoked transmitter release. The regulation of Ca(2+) influx by syntaxin, synaptosome-associated protein of 25 kDa (SNAP-25) and synaptotagmin, and the reciprocity of these proteins in controlling the kinetic properties of the channel will be discussed. Calcium channel and synaptic proteins expressed in Xenopus oocytes demonstrate a strong functional interaction, which could be pertinent to the mechanism of secretion. First, the voltage-sensitive Ca(2+) channels are negatively modulated by syntaxin: this inhibition is reversed by synaptotagmin. Second, the modulation of N-type Ca(2+) channel activation kinetics strongly suggests that the vesicle could be docked at the plasma membrane through direct interaction with synaptotagmin. Finally, these interactions provide evidence for the assembly of the voltage-sensitive Ca(2+) channel with syntaxin 1A, SNAP-25 and synaptotagmin into an excitosome complex: a putative fusion complex with a potential role in the final stages of secretion. Studies suggest that cross-talk between the synaptic proteins and the channel in a tightly organized complex may enable a rapid secretory response to an incoming signal such as membrane depolarization.  相似文献   

9.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry site for active Ca(2+) reabsorption in the kidney. The TRPV5 channel is a member of the TRP family of cation channels, which are composed of four subunits together forming a central pore. Regulation of channel activity is tightly controlled by the intracellular N and C termini. The TRPV5 C terminus regulates channel activity by various mechanisms, but knowledge regarding the role of the N terminus remains scarce. To study the role of the N terminus in TRPV5 regulation, we generated different N-terminal deletion constructs. We found that deletion of the first 32 residues did not affect TRPV5-mediated (45)Ca(2+) uptake, whereas deletion up to residue 34 and 75 abolished channel function. Immunocytochemistry demonstrated that these mutant channels were retained in the endoplasmic reticulum and in contrast to wild-type TRPV5 did not reach the Golgi apparatus, explaining the lack of complex glycosylation of the mutants. A limited amount of mutant channels escaped the endoplasmic reticulum and reached the plasma membrane, as shown by cell surface biotinylation. These channels did not internalize, explaining the reduced but significant amount of these mutant channels at the plasma membrane. Wild-type TRPV5 channels, despite significant plasma membrane internalization, showed higher plasma membrane levels compared with the mutant channels. The assembly into tetramers was not affected by the N-terminal deletions. Thus, the N-terminal residues 34-75 are critical in the formation of a functional TRPV5 channel because the deletion mutants were present at the plasma membrane as tetramers, but lacked channel activity.  相似文献   

10.
In the phospholipase C signaling system, Ca(2+) is mobilized from intracellular stores by an action of inositol 1,4,5-trisphosphate. The depletion of intracellular calcium stores activates a calcium entry mechanism at the plasma membrane called capacitative calcium entry. The signal for activating the entry is unknown but likely involves either the generation or release, or both, from the endoplasmic reticulum of some diffusible signal. Recent research has focused on mammalian homologues of the Drosophila TRP protein as potential candidates for capacitative calcium entry channels. This review summarizes current knowledge about the nature of capacitative calcium entry signals, as well as the potential role of mammalian TRP proteins as capacitative calcium entry channel molecules.  相似文献   

11.
In Drosophila photoreceptors the transient receptor potential-like (TRPL), but not the TRP channels undergo light-dependent translocation between the rhabdomere and cell body. Here we studied which of the TRPL channel segments are essential for translocation and why the TRP channels are required for inducing TRPL translocation. We generated transgenic flies expressing chimeric TRP and TRPL proteins that formed functional light-activated channels. Translocation was induced only in chimera containing both the N- and C-terminal segments of TRPL. Using an inactive trp mutation and overexpressing the Na(+)/Ca(2+) exchanger revealed that the essential function of the TRP channels in TRPL translocation is to enhance Ca(2+)-influx. These results indicate that motifs present at both the N and C termini as well as sustained Ca(2+) entry are required for proper channel translocation.  相似文献   

12.
TRP family of proteins are components of unique cation channels that are activated in response to diverse stimuli ranging from growth factor and neurotransmitter stimulation of plasma membrane receptors to a variety of chemical and sensory signals. This review will focus on members of the TRPC sub-family (TRPC1-TRPC7) which currently appear to be the strongest candidates for the enigmatic Ca(2+) influx channels that are activated in response to stimulation of plasma membrane receptors which result in phosphatidyl inositol-(4,5)-bisphosphate (PIP(2)) hydrolysis, generation of IP(3) and DAG, and IP(3)-induced Ca(2+) release from the intracellular Ca(2+) store via inositol trisphosphate receptor (IP(3)R). Homomeric or selective heteromeric interactions between TRPC monomers generate distinct channels that contribute to store-operated as well as store-independent Ca(2+) entry mechanisms. The former is regulated by the emptying/refilling of internal Ca(2+) store(s) while the latter depends on PIP(2) hydrolysis (due to changes in PIP(2) per se or an increase in diacylglycerol, DAG). Although the exact physiological function of TRPC channels and how they are regulated has not yet been conclusively established, it is clear that a variety of cellular functions are controlled by Ca(2+) entry via these channels. Thus, it is critical to understand how cells coordinate the regulation of diverse TRPC channels to elicit specific physiological functions. It is now well established that segregation of TRPC channels mediated by interactions with signaling and scaffolding proteins, determines their localization and regulation in functionally distinct cellular domains. Furthermore, both protein and lipid components of intracellular and plasma membranes contribute to the organization of these microdomains. Such organization serves as a platform for the generation of spatially and temporally dictated [Ca(2+)](i) signals which are critical for precise control of downstream cellular functions.  相似文献   

13.
Putney JW 《Cell calcium》2007,42(2):103-110
Activation of phospholipase C by G-protein-coupled receptors results in release of intracellular Ca(2+) and activation of Ca(2+) channels in the plasma membrane. The intracellular release of Ca(2+) is signaled by the second messenger, inositol 1,4,5-trisphosphate. Ca(2+) entry involves signaling from depleted intracellular stores to plasma membrane Ca(2+) channels, a process referred to as capacitative calcium entry or store-operated calcium entry. The electrophysiological current associated with capacitative calcium entry is the calcium-release-activated calcium current, or I(crac). In the 20 years since the inception of the concept of capacitative calcium entry, a variety of activation mechanisms have been proposed, and there has been considerable interest in the possibility of transient receptor potential channels functioning as store-operated channels. However, in the past 2 years, two major players in both the signaling and permeation mechanisms for store-operated channels have been discovered: Stim1 (and possibly Stim2) and the Orai proteins. Activation of store-operated channels involves an endoplasmic reticulum Ca(2+) sensor called Stim1. Stim1 acts by redistributing within a small component of the endoplasmic reticulum, approaching the plasma membrane, but does not appear to translocate into the plasma membrane. Stim1, either directly or indirectly, signals to plasma membrane Orai proteins which constitute pore-forming subunits of store-operated channels.  相似文献   

14.
Ca(2+) release-activated Ca(2+) (CRAC) channels, located in the plasma membrane, are opened upon release of Ca(2+) from intracellular stores, permitting Ca(2+) entry and sustained [Ca(2+)](i) signaling that replenishes the store in numerous cell types. This mechanism is particularly important in T lymphocytes of the immune system, providing the missing link in the signal transduction cascade that is initiated by T cell receptor engagement and leads to altered expression of genes that results ultimately in the production of cytokines and cell proliferation. In the past three years, RNA interference screens together with over-expression and site-directed mutagenesis have identified the triggering molecule (Stim) that links store depletion to CRAC channel-mediated Ca(2+) influx and the pore subunit (Orai) of the CRAC channel that allows highly selective entry of Ca(2+) ions into cells.  相似文献   

15.
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. SOC-mediated Ca(2+) entry is complex and may reflect more than one type of channel and coupling mechanism. To assess such possible divergence the function and coupling of SOCs was compared with two other distinct yet related Ca(2+) entry mechanisms. SOC coupling in DDT(1)MF-2 smooth muscle cells was prevented by the permeant inositol 1,4,5-trisphosphate (InsP(3)) receptor blockers, 2-aminoethoxydiphenyl borate (2-APB) and xestospongin C. In contrast, Ca(2+) entry induced by S-nitrosylation and potentiated by store depletion (Ma, H-T., Favre, C. J., Patterson, R. L., Stone, M. R., and Gill, D. L. (1999) J. Biol. Chem. 274, 35318-35324) was unaffected by 2-APB, suggesting that this entry mechanism is independent of InsP(3) receptors. The cycloalkyl lactamimide, MDL-12, 330A (MDL), prevented SOC activation (IC(50) 10 micrometer) and similarly completely blocked S-nitrosylation-mediated Ca(2+) entry. Ca(2+) entry mediated by the TRP3 channel stably expressed in HEK293 cells was activated by phospholipase C-coupled receptors but independent of Ca(2+) store depletion (Ma, H.-T., Patterson, R. L., van Rossum, D. B., Birnbaumer, L., Mikoshiba, K., and Gill, D. L. (2000) Science 287, 1647-1651). Receptor-induced TRP3 activation was 2-APB-sensitive and fully blocked by MDL. Direct stimulation of TRP3 channels by the permeant diacylglycerol derivative, 1-oleoyl-2-acetyl-sn-glycerol, was not blocked by 2-APB, but was again prevented by MDL. The results indicate that although the activation and coupling processes for each of the three entry mechanisms are distinct, sensitivity to MDL is a feature shared by all three mechanisms, suggesting there may be a common structural feature in the channels themselves or an associated regulatory component.  相似文献   

16.
17.
The mammalian homologues of the Drosophila transient receptor potential (TRP) represent a superfamily of ion channels involved in Ca(2+) homeostasis. Several members of this family are activated either by a depletion of the internal stores of Ca(2+) or by stimulation of G protein-coupled receptors. In androgen responsive prostate cancer cell line LNCaP, TRPC1, TRPC4 and/or TRPV6 have been reported to function as store-operated channels (SOCs) while TRPC3 might be involved in the response to agonist stimulation, possibly through the induction of diacylglycerol production by phospholipase C. However, the control of expression of these TRP proteins is largely unknown. In the present study, we have investigated if the expression of the TRP proteins possibly involved in the capacitative influx of calcium is influenced by the contents of Ca(2+) in the endoplasmic reticulum. Using real-time PCR and Western blot techniques, we show that the expression of TRPC1, TRPC3 and TRPV6 proteins increases after a prolonged (24-48 h) depletion of the stores with thapsigargin. The upregulation of TRPC1 and TRPC3 depends on the store contents level and involves the activation of the Ca(2+)/calmodulin/calcineurin/NFAT pathway. Functionally, cells overexpressing TRPC1, TRPC3 and TRPV6 channels after a prolonged depletion of the stores showed an increased [Ca(2+)](i) response to alpha-adrenergic stimulation. However, the store-operated entry of calcium was unchanged. The isolated overexpression of TRPV6 (without overexpression of TRPC1 and TRPC3) did not produce this increased response to agonists, therefore suggesting that TRPC1 and/or TRPC3 proteins are responsible for the response to alpha-adrenergic stimulation but that TRPC1, TPRC3 and TRPV6 proteins, expressed alone or concomitantly, are not sufficient for SOC formation.  相似文献   

18.
The mammalian TRPC cation channels   总被引:14,自引:0,他引:14  
Transient Receptor Potential-Canonical (TRPC) channels are mammalian homologs of Transient Receptor Potential (TRP), a Ca(2+)-permeable channel involved in the phospholipase C-regulated photoreceptor activation mechanism in Drosophila. The seven mammalian TRPCs constitute a family of channels which have been proposed to function as store-operated as well as second messenger-operated channels in a variety of cell types. TRPC channels, together with other more distantly related channel families, make up the larger TRP channel superfamily. This review summarizes recent findings on the structure, regulation and function of the apparently ubiquitous TRPC cation channels.  相似文献   

19.
Agam K  Frechter S  Minke B 《Cell calcium》2004,35(2):87-105
The Transient Receptor Potential (TRP) proteins constitute a large and diverse family of channel proteins, which is conserved through evolution. TRP channel proteins have critical functions in many tissues and cell types, but their gating mechanism is an enigma. In the present study patch-clamp whole-cell recordings was applied to measure the TRP- and TRP-like (TRPL)-dependent currents in isolated Drosophila ommatidia. Also, voltage responses to light and to metabolic stress were recorded from the eye in vivo. We report new insight into the gating of the Drosophila light-sensitive TRP and TRPL channels, by which both Ca2+ and protein dephosphorylation are required for channel activation. ATP depletion or inhibition of protein kinase C activated the TRP channels, while photo-release of caged ATP or application of phorbol ester antagonized channels openings in the dark. Furthermore, Mg(2+)-dependent stable phosphorylation event by ATPgammaS or protein phosphatase inhibition by calyculin A abolished activation of the TRP and TRPL channels. While a high reduction of cellular Ca2+ abolished channel activation, subsequent application of Ca2+ combined with ATP depletion induced a robust dark current that was reminiscent of light responses. The results suggest that the combined action of Ca2+ and protein dephosphorylation activate the TRP and TRPL channels, while protein phosphorylation by PKC antagonized channels openings.  相似文献   

20.
TRPV4 is a widely expressed member of the transient receptor potential (TRP) family that facilitates Ca(2+) entry into nonexcitable cells. TRPV4 is activated by several stimuli, but it is largely unknown how the activity of this channel is terminated. Here, we show that ubiquitination represents an important mechanism to control the presence of TRPV4 at the plasma membrane. Ubiquitination of TRPV4 is dramatically increased by the HECT (homologous to E6-AP carboxyl terminus)-family ubiquitin ligase AIP4 without inducing degradation of this channel. Instead, AIP4 promotes the endocytosis of TRPV4 and decreases its amount at the plasma membrane. Consequently, the basal activity of TRPV4 is reduced despite an overall increase in TRPV4 levels. This mode of regulation is not limited to TRPV4. TRPC4, another member of the TRP channel family, is also strongly ubiquitinated in the presence of AIP4, leading to the increased intracellular localization of TRPC4 and the reduction of its basal activity. However, ubiquitination of several other TRP channels is not affected by AIP4, demonstrating that AIP4-mediated regulation is a unique property of select TRP channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号