首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green fluorescent protein (GFP) allows the direct visualization of gene expression and sub cellular localization of fusion proteins in living cells. Many GFP variants have been developed to solve stability and emission problems. In this report the localization of different GFP fusion proteins, targeted to vacuoles, was studied in Nicotiana tabacum cv SR1. Even if a strong emission variant of the plant adapted GFP was used, no fluorescence was detected in differentiated tissues of N. tabacum with few exceptions. This model plant does not appear a good experimental system for the use of GFPs as vacuolar markers compared to Arabidopsis thaliana. In spite of this, our observations have evidenced a peculiar pattern of separated vacuoles in guard cells, providing new elements in the understanding of the vacuolar system organization.  相似文献   

2.
It was not possible to obtain protoplasts or vacuoles from the thallus of the liverwortConocephalum conicum by applying cell-wall-degrading enzymes. Therefore, a surgical method was developed to isolate protoplasts and vacuoles. A thallus was plasmolyzed and cut. The few protoplasts along the cutting edge that were not destroyed emerged from the edge under deplasmolysis and became thus accessible for a patch pipette. Whereas under slightly hypoosmolar conditions the emerging protoplast remained largely intact, more hypoosmolar conditions gave rise to isolated vacuoles. This method to isolate protoplasts and vacuoles could also be applied to other plant tissues like leaves ofArabidopsis thaliana. Patch-clamp measurements were performed with isolated vacuoles and excised tonoplast patches. A slowly activating vacuolar channel inC. conicum displayed the characteristic features of higher-plant slowly activating vacuolar channels.Abbreviations AP action potential - SV channel slowly activating vacuolar channel  相似文献   

3.
Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate‐rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF‐MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density‐gradient ultracentrifugation. The vacuole‐containing fraction was subjected to SDS–PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non‐lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o‐methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin‐tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.  相似文献   

4.
Summary Autolysing plant tissues are known to produce auxin when extracted with ether. It has been shown that autolysing plant, yeast and rat liver tissues produce auxin in vitro; this suggests that relatively unspecific mechanisms are involved. Furthermore, sterile plant and animal tissues which have been killed by freezing and thawing induce nodules of differentiated cells in a previously undifferentiated callus of Phaseolus vulgaris. The callus tissue is known to differentiate in response to applied gradients of auxin. Plant and animal tissues killed by boiling were considerably less effective in inducing differentiation in the tissue. The evidence indicates that auxin is a normal product of autolysing cells. It is suggested that dying cells are an important source of auxin in the plant.  相似文献   

5.
Summary The seasonal occurrence of protein-storage vacuoles in parenchyma cells of the inner bark and leaf tissues of seven softwood species was examined. Previously published results showed that these organelles often fill the phloem parenchyma cells of the inner bark tissues in overwintering hardwoods, whereas they are absent from this tissue during the summer. We hypothesize that the organelles are involved in the storage of reduced nitrogen during wintering, in a manner analogous to protein bodies of seeds. A survey of the phloem and cambial parenchyma tissues in six evergreen softwood species (Pinus strobus, P. sylvestris, Picea abies, P. glauca, Abies balsamea, and Thuja occidentalis) and in one deciduous softwood species (Larix decidua) was conducted. There was a large variation in the degree and timing of protein-storage vacuole formation between the individual genera and species. The organelles were not seen in summer samples of inner bark tissues of any of the genera or species examined. Protein-storage vacuoles were common in the bark tissues of Pinus, Abies and Thuja, occasionally seen in Picea, and rarely found in Larix during the winter. One-year-old leaves were also examined, since in all but Larix they are overwintering structures and can act as potential sites of nitrogen storage. Protein-storage vacuoles were present in Pinus and Thuja leaf tissue in both summer and winter, in Abies during winter only, and were absent from Picea leaf tissue at all times. These results indicate that the formation of protein-storage vacuoles prior to overwintering is not a ubiquitous phenomenon in softwoods.  相似文献   

6.
The ultrastructural investigation of the root cells ofAllium sativum L. exposed to three different concentrations of Cd (100 (AM, 1 μM and 10 mM) for 9 days was carried out. The results showed that Cd induced several significant ultrastructural changes — high vacuolization in cytoplasm, deposition of electron-dense material in vacuoles and nucleoli and increment of disintegrated organelles. Data from electron energy loss spectroscopy (EELS) revealed that Cd was localized in the electron-dense precipitates in the root cells treated with 10 mM Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiating and mature root tissues. The mechanisms of detoxification and tolerance of Cd are briefly explained.  相似文献   

7.
The contents of plant vacuoles vary in different organs and with the health of the plant, but little is known of the cell-to-cell distribution of soluble organic compounds within plant tissues. Soluble fluorescent phenolic compounds can be immobilized in plant tissues using an anhydrous freeze-substitution and resin embedment process. The vacuolar fluorescence can be characterized in fluorescence photomicrographs for variations in color and intensity, or more quantitatively with spectra obtained using a microspectrofluorometer. This is demonstrated here in freeze-substituted roots and leaves of soybean. Excitation and emission spectra of individual vacuoles can be compared with spectra of pure compounds to form profiles of the varied phenolic contents of plant vacuoles. Such analyses will add an important anatomical dimension to the study of plant defense and stress responses.  相似文献   

8.
Two vacuolar green fluorescent proteins (GFP) were stably inserted in Nicotiana tabacum and Nicotiana benthamiana genome, with unexpected difficulties, and compared with A. thaliana cv. Wassilewskaja transgenic plants expressing the same constructs. GFP fluorescence was strong in all tissues of A. thaliana but it was barely visible in Nicotiana. Confocal microscopy analysis revealed a variable distribution of the marker in those cells where GFP fluorescence was visible. The role of light dependent proteases was the variable pointing out more inter-species diversity. GFPs degradation was much higher in Nicotiana spp. than in A. thaliana. The version of GFP used appeared not to be a good vacuolar marker for Nicotiana differentiated tissues, although it can efficiently label vacuoles in protoplasts or calli. Nevertheless the sensitivity of the reporter protein can be used as an indicator of hidden characteristics of the plant vacuoles, revealing differences otherwise invisible. One of the markers in our system, GFP-Chi, evidenced a clear morphological difference in the vacuolar system of guard cells of the three species.  相似文献   

9.
Large vacuoles are characteristic of plant and fungal cells, and their origin has long attracted interest. The cellular slime mould provides a unique opportunity to study the de novo formation of vacuoles because, in its life cycle, a subset of the highly motile animal-like cells (prestalk cells) rapidly develops a single large vacuole and cellulosic cell wall to become plant-like cells (stalk cells). Here we describe the origin and process of vacuole formation using live-imaging of Dictyostelium cells expressing GFP-tagged ammonium transporter A (AmtA-GFP), which was found to reside on the membrane of stalk-cell vacuoles. We show that stalk-cell vacuoles originate from acidic vesicles and autophagosomes, which fuse to form autolysosomes. Their repeated fusion and expansion accompanied by concomitant cell wall formation enable the stalk cells to rapidly develop turgor pressure necessary to make the rigid stalk to hold the spores aloft. Contractile vacuoles, which are rich in H+-ATPase as in plant vacuoles, remained separate from these vacuoles. We further argue that AmtA may play an important role in the control of stalk-cell differentiation by modulating the pH of autolysosomes.  相似文献   

10.
Salinity is a major environmental stress that affects agricultural productivity worldwide. One approach to improving salt tolerance in crops is through high expression of the Arabidopsis gene AtNHX1, which encodes a vacuolar sodium/proton antiporter that sequesters excess sodium ion into the large intracellular vacuole. Sequestering cytosolic sodium into the vacuoles of plant cells leads to a low level of sodium in cytosol, which minimizes the sodium toxicity and injury to important enzymes in cytosol. In the meantime, the accumulation of sodium in vacuoles restores the correct osmolarity to the intracellular milieu, which favors water uptake by plant root cells and improves water retention in tissues under soils that are high in salt. To improve the yield and quality of peanut under high salt conditions, AtNHX1 was introduced into peanut plants through Agrobacterium-mediated transformation. The AtNHX1-expressing peanut plants displayed increased tolerance of salt at levels up to 150 mM NaCl. When compared to wild-type plants, AtNHX1-expressing peanut plants suffered less damage, produced more biomass, contained more chlorophyll, and maintained higher photosynthetic rates under salt conditions. These data indicate that AtNHX1 can be used to enhance salt tolerance in peanut.  相似文献   

11.
Sorting of proteins to vacuoles in plant cells   总被引:11,自引:0,他引:11  
An individual plant cell may contain at least two functionally and structurally distinct types of vacuoles: protein storage vacuoles and lytic vacuoles. Presumably a cell that stores proteins in vacuoles must maintain these separate compartments to prevent exposure of the storage proteins to an acidified environment with active hydrolytic enzymes where they would be degraded. Thus, the organization of the secretory pathway in plant cells, which includes the vacuoles, has a fascinating complexity not anticipated from the extensive genetic and biochemical studies of the secretory pathway in yeast. Plant cells must generate the membranes to form two separate types of tonoplast, maintain them as separate organelles, and direct soluble proteins from the secretory flow specifically to one or the other via separate vesicular pathways. Individual soluble and membrane proteins must be recognized and sorted into one or the other pathway by distinct, specific mechanisms. Here we review the emerging picture of how separate plant vacuoles are organized structurally and how proteins are recognized and sorted to each type.  相似文献   

12.
The review focuses on the mechanisms employed by plant vacuoles for maintaining the redox homeostasis under generation of reactive oxygen species (ROS) promoted by various abiotic stressors. These mechanisms are based on functioning of diverse enzymes and transport systems of the tonoplast as well as on vacuole-specific redox reactions involving vacuolar antioxidants of enzymatic and non-enzymatic nature. The established antioxidant role of plant vacuoles provides a clear example of closely integrated activities of this organelle with the metabolism of other cell parts.  相似文献   

13.
The electrical properties of the tonoplast from a large variety of plant materials such as mesophyll cells, storage cells, tumor cells, suspension cultured cells, guard cells, coleoptile cells, and liverwort cells have been investigated using the patch-clamp technique. Whole-vacuole recordings were employed to study the dynamics of an ATP-dependent proton pump by directly measuring the electrogenic currents. The addition of Mg-ATP induced an inwardly directed current which depolarized the tonoplast (the vacuole becoming positive inside). Furthermore, voltage-dependent passive ion fluxes were analyzed using whole vacuoles and isolated membrane patches. Whole-vacuolar currents and single-channel currents were induced at hyperpolarizing potentials, whereas currents decreased at positive trans-tonoplast potentials. The electrical properties of the tonoplast of vacuoles from various plant tissues were similar and it was concluded that ion fluxes across the tonoplast follow the same general mechanisms.  相似文献   

14.
Ma JF  Ueno D  Zhao FJ  McGrath SP 《Planta》2005,220(5):731-736
Thlaspi caerulescens (Ganges ecotype) is able to accumulate large concentrations of cadmium (Cd) and zinc (Zn) in the leaves without showing any toxicity, suggesting a strong internal detoxification. The distribution of Cd and Zn in the leaves was investigated in the present study. Although the Cd and Zn concentrations in the epidermal tissues were 2-fold higher than those of mesophyll tissues, 65–70% of total leaf Cd and Zn were distributed in the mesophyll tissues, suggesting that mesophyll is a major storage site of the two metals in the leaves. To examine the subcellular localisation of Cd and Zn in mesophyll tissues, protoplasts and vacuoles were isolated from plants exposed to 50 M Cd and Zn hydroponically. Pure protoplasts and vacuoles were obtained based on light-microscopic observation and the activities of marker enzymes of cytosol and vacuoles. Of the total Cd and Zn in the mesophyll tissues, 91% and 77%, respectively, were present in the protoplast, and all Cd and 91% Zn in the protoplast were localised in the vacuoles. Furthermore, about 70% and 86% of total Cd and Zn, respectively, in the leaves were extracted in the cell sap, suggesting that most Cd and Zn in the leaves is present in soluble form. These results indicate that internal detoxification of Cd and Zn in Thlaspi caerulescens leaves is achieved by vacuolar compartmentalisation.  相似文献   

15.
Vacuolar processing enzymes (VPEs) are cysteine proteinases responsible for maturation of various vacuolar proteins in plants. A larger precursor to VPE synthesized on rough endoplasmic reticulum is converted to an active enzyme in the vacuoles. In this study, a precursor to castor bean VPE was expressed in a pep4 strain of the yeast Saccharomyces cerevisiae to examine the mechanism of activation of VPE. Two VPE proteins of 59 and 46 kDa were detected in the vacuoles of the transformant. They were glycosylated in the yeast cells, although VPE is not glycosylated in plant cells in spite of the presence of two N-linked glycosylation sites. During the growth of the transformant, the level of the 59 kDa VPE increased slightly until a rapid decrease occurred after 9 h. By contrast, the 46 kDa VPE appeared simultaneously with the disappearance of the 59 kDa VPE. Vacuolar processing activity increased with the accumulation of the 46 kDa VPE, but not of the 59 kDa VPE. The specific activity of the 46 kDa VPE was at a similar level to that of VPE in plant cells. The 46 kDa VPE instead of proteinase A mediated the conversion of procarboxypeptidase Y to the mature form. This indicates that proteinase A responsible for maturation of yeast vacuolar proteins can be replaced functionally by plant VPE. These findings suggest that an inactive VPE precursor synthesized on the endoplasmic reticulum is transported to the vacuoles in the yeast cells and then processed to make an active VPE by self-catalytic proteolysis within the vacuoles.  相似文献   

16.
The aluminium tolerance of several tree species was studied in a cloud forest in Northern Venezuela, growing on a very acid soil and rich in soluble Al. The Al-accumulator species (>1000 ppm in leaves) were compared to non-accumulator ones in relation to total Al concentration in xylem sap, pH and Al concentration in vacuoles, and rhizosphere alkalinization capacity. The Al3+ concentration in the soil solution and the xylem sap were also measured. The results show that in the Al-accumulator plant Richeria grandis, xylem sap is relatively rich in Al and about 35% of it is present in ionic form. In the non-accumulator plant studied (Guapira olfersiana) there is no Al detectable in xylem sap. The pH of vacuolar sap of several Al-accumulator species studied was very acidic and ranged between 2.6–4.8, but the presence of Al in vacuoles was not correlated with the acidity of the vacuolar sap. Both Al-accumulator and non accumulator plants had the capacity to reduce acidity of the rhizosphere and increased the pH of the nutrient solution by one unit within the first 24 hours. Trees growing in natural, high acidity-high Al3+ environment show a series of tolerance mechanisms, such as deposition of Al in vacuoles, Al chelation and rhizosphere alkalinization. These partially ameliorate the toxic effects of this element, but they probably impose a high ecological cost in terms of photosynthate allocation and growth rate.  相似文献   

17.
Plant vacuoles are multi-functional, developmentally varied and can occupy up to 90% of plant cells. The N-terminal propeptide (NTPP) of sweet potato sporamin and the C-terminal propeptide (CTPP) of tobacco chitinase have been developed as models to target some heterologous proteins to vacuoles but so far tested on only a few plant species, vacuole types and payload proteins. Most studies have focused on lytic and protein-storage vacuoles, which may differ substantially from the sugar-storage vacuoles in crops like sugarcane. Our results extend the evidence that NTPP of sporamin can direct heterologous proteins to vacuoles in diverse plant species and indicate that sugarcane sucrose-storage vacuoles (like the lytic vacuoles in other plant species) are hostile to heterologous proteins. A low level of cytosolic NTPP-GFP (green fluorescent protein) was detectable in most cell types in sugarcane and Arabidopsis, but only Arabidopsis mature leaf mesophyll cells accumulated NTPP-GFP to detectable levels in vacuoles. Unexpectedly, efficient developmental mis-trafficking of NTPP-GFP to chloroplasts was found in young leaf mesophyll cells of both species. Vacuolar targeting by tobacco chitinase CTPP was inefficient in sugarcane, leaving substantial cytoplasmic activity of rat lysosomal -glucuronidase (GUS) [ER (endoplasmic reticulum)-RGUS-CTPP]. Sporamin NTPP is a promising targeting signal for studies of vacuolar function and for metabolic engineering. Such applications must take account of the efficient developmental mis-targeting by the signal and the instability of most introduced proteins, even in storage vacuoles.  相似文献   

18.
Protein dynamics and proteolysis in plant vacuoles   总被引:2,自引:0,他引:2  
  相似文献   

19.
There are two H+-pumping enzymes at the tonoplast membrane of plant vacuoles, the V-ATPase and the V-PPase. One attempt to explain the enigma of “two H+ pumps, one membrane” was the suggestion that the V-PPase has special functions in young developing and growing tissues in utilization of pyrophosphate produced in particularly active metabolism and in pumping of K+ for vacuolization. This should lead to reciprocal expression of both enzymes with time during development. Here we used stimulation of Kalanchoë blossfeldiana Poellnitz cv. Tom Thumb plants by short-day treatments to induce crassulacean acid metabolism and flowering and of Ricinus communis L. stem tissue by infection with Agrobacterium tumefaciens strain C58 to induce vigorous growth of tumours, and we compared these stimulated tissues with leaves of non-stimulated long-day controls and non-infected stem tissue, respectively. Activities and protein levels of both enzymes increased (K. blossfeldiana) or remained high (R. communis) in the stimulated tissues and decreased in the non-stimulated tissues with time. Time-dependent patterns of the two enzymes were concordant in all of the four cases and not inverse, i.e. two plants with two different conditions each, leading to very different developmental situations.  相似文献   

20.
Zinc (Zn) is an essential trace element in all living organisms, but is toxic in excess. Several plant species are able to accumulate Zn at extraordinarily high concentrations in the leaf epidermis without showing any toxicity symptoms. However, the molecular mechanisms of this phenomenon are still poorly understood. A state‐of‐the‐art quantitative 2D liquid chromatography/tandem mass spectrometry (2D‐LC‐MS/MS) proteomics approach was used to investigate the abundance of proteins involved in Zn hyperaccumulation in leaf epidermal and mesophyll tissues of Noccaea caerulescens. Furthermore, the Zn speciation in planta was analyzed by a size‐exclusion chromatography/inductively coupled plasma mass spectrometer (SEC‐ICP‐MS) method, in order to identify the Zn‐binding ligands and mechanisms responsible for Zn hyperaccumulation. Epidermal cells have an increased capability to cope with the oxidative stress that results from excess Zn, as indicated by a higher abundance of glutathione S‐transferase proteins. A Zn importer of the ZIP family was more abundant in the epidermal tissue than in the mesophyll tissue, but the vacuolar Zn transporter MTP1 was equally distributed. Almost all of the Zn located in the mesophyll was stored as Zn–nicotianamine complexes. In contrast, a much lower proportion of the Zn was found as Zn–nicotianamine complexes in the epidermis. However, these cells have higher concentrations of malate and citrate, and these organic acids are probably responsible for complexation of most epidermal Zn. Here we provide evidence for a cell type‐specific adaptation to excess Zn conditions and an increased ability to transport Zn into the epidermal vacuoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号