首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.
  • 1 The dynamics of three populations of Taxomyia taxi (Inchbald) (Diptera: Cecidomyiidae) and its chalcid parasitoids have been studied over a 24-year period. Most individuals have a 2-year life cycle but some develop in 1 year. Details of within-generation mortalities in T.taxi are used for life table analyses.
  • 2 Mortality in the period between emergence of adult T.taxi and larval infestation of buds appears to be density-dependent and is the largest component of overall mortality. In 2-year life cycles, this mortality and that caused by Torymus nigritarsus (Walker) contribute equally to variance in overall mortality. In 1-year cycles, mortality caused by Mesopolobus diffinis (Walker) is density-dependent and accounts for most within-gall losses.
  • 3 T. nigritarsus, which attacks only 2-year galls, is absent from all populations for a number of years in the middle of the study period. Its searching efficiency declines as its density and that of its host increase.
  • 4 Densities of M.diffinis are strongly correlated with those of available hosts. Percentage parasitism of 2-year galls is less than that of 1-year galls, suggesting the occurrence of enemy-free space.
  • 5 Although there are some correlations in densities and mortality between trees, the dynamics of populations on each are frequently different.
  • 6 An earlier analysis of 10 years' data failed to demonstrate density-dependent effects. The extension to a 24-year run has revealed such effects, but also demonstrates long-term fluctuations in population densities, with corresponding changes in the balance of advantage between 1- and 2-year life cycles of T.taxi.
  相似文献   

2.
Abstract. 1. The densities of the hymenopteran parasites Torymus nigritarsus and Mesopolobus diffinis are determined mainly by the density of available hosts, Taxomyia taxi.
2. Area of discovery of T.nigritarsus is negatively related both to density of available hosts and to the density of searching parasites. Implications for the foraging strategy of T.nigritarsus are discussed.
3. Mesopolobus diffinis preferentially parasitizes hosts in the small 1-year galls. This and other evidence suggests that not all galls are equally available for parasitism.  相似文献   

3.
Comparative leaf production rates and leaf morphology studiesfor galled and normal shoots of yew trees have been obtainedthroughout the life cycle of the causative agent, the gall midge,Taxomyia taxi. Normal and galled shoot leaf numbers have beenrelated to those of their parent shoots. It was found that whereasthe annual leaf production of normal shoots was positively relatedto that of the parent shoots, galled shoot leaf production remainedconstant regardless of parent shoot vigour showing leaf stimulationby the midge to be a special case. The midge larva appears tobe determining the rate of leaf production in galled shoots.In galls leaf production continues throughout the winter monthswith no dormant period. From morphological evidence, alternationof leaves and cataphylls is continued in galled buds.  相似文献   

4.
Abstract. 1. The causes and incidence of mortality in populations of the yew gall midge Taxomyia taxi at Kingley Vale, West Sussex, are described in relation to the various life cycles of the midge.
2. Life table analysis of populations studied for 10 years indicates that the key factor in mortality is failure to achieve maximum fecundity, although in 1-year life cycles parasitism by Mesopolobus diffinis is equally important. Densities and mortality vary considerably between different life cycles, and no regulation has been firmly established.
3. Interactions between the host populations and their parasites are complex and as yet not fully analysable, but the pattern of parasitism seen may explain some of the complex life history pattern of the host. The existence of long-term cycles of host and parasite densities are predicted.  相似文献   

5.
Control measures aiming at reducing bark beetle populations and preserving their natural enemies require a sound knowledge on their overwintering and emergence behaviour. These behavioural traits were investigated in univoltine and bivoltine populations of the European spruce bark beetle (Ips typographus [L.], Coleoptera: Scolytinae) and its predators and parasitoids over several consecutive years. In univoltine populations, roughly 50% of the bark beetles left their brood trees in fall together with most parasitoids and some significant predatory flies and beetles. In bivoltine populations, <10% of the second bark beetle generation emerged in fall and the remainder overwintered under the bark of their brood trees. Likewise, most predatory beetles and flies spent wintertime with their prey under the bark, while most parasitic wasps emerged in fall. The spring emergence of bivoltine predatory beetles was found to occur up to 3 weeks earlier than that of I. typographus, while that of the predatory flies and the parasitoids was delayed by up to 1 month. In univoltine populations, the bark beetles emerged several weeks prior to most antagonistic taxa. In the heat year 2003, three I. typographus generations were produced at the lower location, 36% of the third generation emerged in fall, while the proportions of overwintering predators remained largely the same as in previous years. Similar to their host, more parasitoids left their brood trees in fall after warm years. The results show that sanitation felling during winter probably kills most bark beetles in bivoltine populations, but also eliminates many natural enemies. In univoltine populations, sanitation felling might be less detrimental to both I. typographus and natural enemies because a fair fraction of their populations will already have left the trees before cutting. Warmer climates may affect the interactions of bark beetles and natural enemies and thus the impact of control measures.  相似文献   

6.
Little is known about the stability of trophic relationships in complex natural communities over evolutionary timescales. Here, we use sequence data from 18 nuclear loci to reconstruct and compare the intraspecific histories of major Pleistocene refugial populations in the Middle East, the Balkans and Iberia in a guild of four Chalcid parasitoids (Cecidostiba fungosa, Cecidostiba semifascia, Hobbya stenonota and Mesopolobus amaenus) all attacking Cynipid oak galls. We develop a likelihood method to numerically estimate models of divergence between three populations from multilocus data. We investigate the power of this framework on simulated data, and—using triplet alignments of intronic loci—quantify the support for all possible divergence relationships between refugial populations in the four parasitoids. Although an East to West order of population divergence has highest support in all but one species, we cannot rule out alternative population tree topologies. Comparing the estimated times of population splits between species, we find that one species, M. amaenus, has a significantly older history than the rest of the guild and must have arrived in central Europe at least one glacial cycle prior to other guild members. This suggests that although all four species may share a common origin in the East, they expanded westwards into Europe at different times.  相似文献   

7.
1. The effect of spatial scale on the interactions between three hymenopteran parasitoids and their weevil hosts was investigated. The parasitoid Mesopolobus incultus (Walker) parasitised Gymnetron pascuorum Gyll.; the parasitoids Entodon sparetus (Walker) and Bracon sp. parasitised Mecinus pyraster Herbst. Both of these weevils develop inside the seedhead of Plantago lanceolata L. but occupy different niches. Seedheads were sampled annually from 162 plants at each of two experimental sites consisting of a series of habitat patches of two distinct sizes. Data were analysed from three site‐years. 2. Parasitoid densities at each site‐year were closely related to the abundance of their respective weevil hosts. The overall proportion of hosts parasitised was more variable for M. incultus than for E. sparetus and Bracon sp. 3. Changes in spatial scale affected the variability of parasitoid densities. For M. incultus, there was generally a greater degree of additional heterogeneity for all increases of scale; for E. sparetus, this was true only at the largest scales; for Bracon sp., all components of variance were negative. 4. The rate of parasitism was related to host density in different ways at different spatial scales. Mesopolobus incultus exhibited inverse density dependence at the finest (seedhead) scale, direct density dependence at the intermediate (plant) scale, and density independence at the large (habitat area 729 m2) scale. Entodon sparetus showed no response to variation in host density at any spatial scale. Bracon sp. showed direct density dependence only at the intermediate and largest scales. 5. Parasitoids E. sparetus and Bracon sp. seemed able to detect more than one M. pyraster individual in seedheads with multiple host occupancy; a greater incidence of conspecific parasitoids than expected emerged from such seedheads.  相似文献   

8.
Abstract.
  • 1 Life tables were constructed for solitary and coexisting populations of univoltine Fiorinia externa Ferris and bivoltine Tsugaspidiotus tsugae (Marlatt) (Homoptera: Diaspididae), two exotic scale pests of eastern hemlock, Tsuga canadensis Carriere, in the northeastern United States.
  • 2 Solitary and coexisting populations of F. externa had similar survivorship and population growth rates resulting in an annual increase in density of 7–16%. Survivorship of solitary and coexisting populations of T. tsugae also was similar, but growth rates differed substantially. While solitary populations increased their density by 68% annually, populations coexisting with F. extema were reduced 74% each year.
  • 3 The annual reduction in T. tsugae density where it coexists with F. externa was due in part to interspecific competition which resulted in higher mortality to nymphs from dispersal and starvation and in lower fecundity of adult females relative to solitary populations. A host shift by the parasitoid, Aspidiotiphagus citrinus (Crawford) (Hymenoptera: Aphenlinidae) from F. externa to T. tsugae in autumn also accounted for 71% of the annual decrease in T. tsugae numbers. Therefore, F. externa adversely affects the growth of T. tsugae populations not only because of its superior competitive ability but also because adult para-sitoids which emerge from it subsequently attack nymphs of T. tsugae in autumn.
  • 4 Parasitism and starvation of nymphs resulting from competition were the key mortality factors in the population dynamics of these exotic hemlock scales.
  相似文献   

9.
Biological control, as a major component of pest management strategies, uses natural biological agents to reduce pest populations. Studying the interaction among Aphis craccivora and its parasitoids including, Lysiphlebus fabarum, Binodoxys acalephae, and Aphidius matricariae in 2016 and 2017 in Tehran Parke-Shahr, showed positive, significant correlations in all cases between the densities of three parasitoid species and that of aphid nymphs and adults. The density of the parasitoids increased by increasing the density of the aphids. The parasitoids showed aggregative behavior in response to different densities of the host. There was a positive density-dependent correlation between the density of A. craccivora and rate of parasitism. Parasitism rates of nymphs and adult aphids by L. fabarum, B. acalephae, and A. matricariae increased or decreased along with decline or increase in the population of the aphid host. In 2016 spring, the highest rates of parasitism on aphid nymphs by L. fabarum, B. acalephae, and A. matricariae were 46.82, 23.09, and 17.16%, respectively. In 2017 spring, the highest rates of parasitism on aphid nymphs by L. fabarum, B. acalephae, and A. matricariae were 48.97, 21.77, and 15.06%, respectively. So, given the accordance between changes in aphid population and that of parasitoids, and parasitoids’ efficacy in Tehran’s polluted air, they can be used as biological agents in the management of A. craccivora population.  相似文献   

10.
In order to assess the role of parasitoids in the regulation of non-outbreaking populations of Epirrita autumnata, a geometrid lepidopteran with outbreaking populations in northern Europe, we examined the temporal and spatial variation of larval parasitism in southwestern Finland during 6 successive years. The study was carried out on two spatial scales, among trees within sites of about 1 ha and among sites separated by distances of 2–10 km, using experimental and observational approaches respectively. The overall percent parasitism was independent of host density on both spatial scales, while temporally it fluctuated only little. Of the two main parasitoids, the commoner one, Protapanteles immunis, showed a variable response to host density on the larger spatial scale and negative density dependence on the smaller scale. Temporally, parasitism caused by this species was independent of host density. Another parasitoid, Phobocampe bicingulata, showed positive density dependence on the smaller spatial scale and had a variable response on the larger scale, but exhibited negative density dependence over time. The results of this study caution against drawing conclusions concerning population regulation on the grounds of spatial density dependence alone. Larval parasitoids apparently do not maintain low densities in the E. autumnata populations studied. However, they may suppress E. autumnata densities to a level low enough for density-dependent mortality factor(s) to become regulating. Among other mortality factors of E. autumnata, pupal predation has been found to be temporally positively density-dependent. Received: 19 October 1999 / Accepted: 10 January 2000  相似文献   

11.
The Hymenopterans Glyptapanteles liparidis, Microplitis sp. and Diadegma sp. were found to be larval parasitoids and koinobionts of Acronicta rumicis (Lepidoptera: Noctuidae). Mesochorus semirufus is believed to be a new unreported hyperparasitoid of G. liparidis, which, along with M. semirufus, is a gregarious parasitoid. In contrast, the parasitoids Microplitis sp. and Diadegma sp. are solitary. All of the hymenopteran parasitoids are multivoltine insects that emerge from A. rumicis more than once. Compcilura concinnata, Euexorista sp. and Exorista sp. of the Diptera were found to be larval–pupal parasitoids, solitary parasitoids and koinobionts. These three species are univoltine, and emerge only once from A. rumicis. Morphological and life cycle data were collected for G. liparidis, and for the parasitoids of that species found in this study. The major and minor axes of an egg of G. liparidis were 0.10 and 0.02 mm, respectively, while the mean clutch size of G. liparidis was 67.71 ± 39.36 individuals. The body length of female and male G. liparidis were 2.25 ± 0.06 and 2.21 ± 0.12 mm, respectively, and the longevity of an adult was 2.93 ± 0.96 days. Among the parasitoids, the mean body length of an adult Microplitis sp. was 3.5 mm and adults lived for an average of 8.13 ± 3.54 days. The adult Diadegma sp. was larger (mean body length 6.5 mm) but lived for a shorter interval (3.33 ± 1.32 days). The body lengths of female and male M. semirufus were 3.16 ± 0.11 and 3.10 ± 0.23 mm, respectively, greater than the body lengths of female and male G. liparidis. The body lengths of adult C. concinnata, Euexorista sp. and Exorista sp. were 9.5, 9.53 and 8.68 mm, respectively. All of their pupae were dark brown.  相似文献   

12.
K. M. Kester  P. Barbosa 《Oecologia》1994,99(1-2):151-157
To test the hypothesis that natural enemy populations differ in their behavioral responses to plants or to plant allelochemicals, we compared two populations of the gregarious larval endoparasitoid, Cotesia congregata (Say) (Hymenoptera: Braconidae) that differed in their historical and present exposure to tobacco. The major hosts for both populations were Manduca sexta L. and M. quinquemaculata (Haworth) (Lepidoptera: Sphingidae), but these hosts were typically encountered on tobacco by parasitoids in one population (Upper Marlboro) and on tomato by parasitoids in another population (Wye). Early in the season, Wye parasitoids preferred to oviposit in M. sexta on tomato rather than on tobacco and Upper Marlboro parasitoids showed no preference; neither population showed any preference later in the season. Neither of the strains originating from the two populations showed a landing preference for tobacco or tomato in flight chamber trials, but Upper Marlboro parasitoids searched longer on tobacco than on tomato, and Wye parasitoids searched longer on tomato. When nicotine solutions were applied to tobacco leaf, searching responses of Upper Marlboro parasitoids were enhanced by 0.001–1.0% nicotine, and searching responses of Wye parasitoids were decreased by 0.01–1.0% nicotine. We speculate that population differences in searching responses to tobacco and nicotine may explain the differential parasitism responses found early in the season.  相似文献   

13.
1. Studies of insect communities rarely support the parasitoid–host regulation hypothesis. Spatio‐temporal variation in parasitoid prevalence due to complex food web interactions or abiotic factors may prevent parasitoids from regulating hosts. 2. We examined the relative contribution of spatial (altitude) and temporal (years) sources to total variation in parasitoid prevalence rates in outbreaks of Epirrita autumnata Borkhausen and Operophtera brumata Linnaeus populations. We tested whether prevalence rates of generalist parasitoids were correlated between sympatric host populations and to what extent any of the parasitoids were host density dependent. 3. Four larval parasitoids (two specialists and two generalists) exhibited significantly structured spatio‐temporal dynamics over years and altitudes. The prevalence rates of one of the generalists were spatio‐temporally correlated between the two host species, while for the other they were not. 4. Three parasitoids showed tendencies for direct or delayed positive density dependence as expected from numerical and functional responses to their hosts. However, the effects were weak and minute compared to the variation attributed to year and altitude. 5. We conclude that unknown aspects of the larval parasitoid ecology that co‐vary with altitude and year in the study system dominate their prevalence dynamics and thus act to hinder density‐dependent responses that could potentially regulate host populations.  相似文献   

14.
The foraging behaviour of the parasitoid wasp Neotypus melanocephalus and factors affecting parasitism at the population level were studied. This specialised parasitoid attacks caterpillars of the butterfly Maculinea nausithous, which sequentially feed on the plant Sanguisorba officinalis and specific red Myrmica ants. Among M. nausithous populations, there is considerable variation in caterpillar densities. At low M. nausithous densities, foraging might be time consuming for N. melanocephalus. High host densities may not always be advantageous to foraging parasitoids due to the caterpillars’ frequent overexploitation of ant resources and subsequent density-dependent mortality. In order to disperse progeny, we hypothesised that N. melanocephalus should search in a non-random way at the level of the micro-habitat, i.e., single flower heads of S. officinalis. Our analysis of 32 natural populations in the Upper Rhine valley in Germany did not show a density-dependent relationship between M. nausithous caterpillars and parasitism. Furthermore, habitat parameters like patch size and density of the host's food plant did not affect the parasitism rate. Foraging N. melanocephalus females preferred to search on large flower heads. They probed host-occupied flower heads only, visiting non-host-exploited flower heads only briefly. Time spent on a flower head was independent of the number of caterpillars per flower head. This study indicates that N. melanocephalus increases its foraging efficiency by preferring large flower heads that were previously shown to contain more host caterpillars than small flower heads. Furthermore, oviposition increases the likelihood of continuing to search on a flower head, which is an adaptive strategy for parasitoids foraging for aggregated hosts. However, many host-occupied flower heads were not probed by N. melanocephalus. We discuss the possibility that temporal host refuges of M. nausithous caterpillars might contribute to heterogeneity of parasitism, and why spreading offspring might constitute a suitable strategy for a parasitoid of an ant-parasitic butterfly.  相似文献   

15.
Small populations are prone to genetic drift as a consequence of random sampling effects. We investigated whether we could detect such random sampling effects in the English yew (Taxus baccata), a dioecious conifer species occurring in scattered populations in Switzerland. Seven pairs of small and large populations were analyzed using random amplified polymorphic DNA (RAPD) marker bands from 20 individuals per population. Several genetic parameters (mean marker band frequency deviation, molecular variance, population differentiation) indicated that small populations experienced genetic drift. These genetic differences between small and large populations of yew were paralleled by an increased sex ratio bias towards a higher number of females in the small populations. Our findings support earlier assumptions that the Swiss occurrences of yew may be described as metapopulation dynamics, characterized by local colonization and extinction events leading to the observed genetic drift.  相似文献   

16.
D. T. Briese 《Oecologia》1996,105(4):454-463
The population structure and stage-specific survival of the capitulum weevil, Larinus latus, a potential control agent for weedy Onopordum thistles in Australia, was studied in its native range in Greece. Although fecundity of this univoltine insect was low (35.4 eggs/female), survival was relatively high, with 45% of eggs reaching adulthood when protected from predators and parasitoids, and 23% surviving when exposed to these natural enemies. Other mortality factors of importance for immature stages were a failure to establish, due largely to oviposition by females on inappropriate sites on the thistle capitula, and inter- and intraspecific competition for larval resources. Once emerged, adult losses due to overwintering mortality and net migration were estimated at a further 48%. Despite these losses there was a net doubling of the population at the study site between Onopordum flowering seasons. The data suggest that movement of adults occurs both within and between patches and that variability in population size relative to the resource base is low. Overall, L. latus may be considered a K-strategist which forms relatively stable populations over a fragmented habitat and which maintains its population integrity through a certain degree of annual redistribution. The implications of these data for the potential effectiveness of L. latus as a biological control agent of weedy Onopordum spp. are discussed.  相似文献   

17.
Life historical, behavioral and ecological traits of Macrodiplosis selenis, which induces leaf‐margin fold galls on Quercus serrata, Q. mongolica and Q. dentata (Fagaceae) in Japan and South Korea, were studied. Daily activity and larval development indicate that M. selenis is a diurnal and univoltine gall midge. In April, females lay their eggs both on upper and under surfaces of fresh leaves. The duration of the egg stage varies from 5 to 9 days, depending on daily temperatures. Hatched larvae crawl to the upper surface of the leaf margin, where they start to induce galls. Larvae become full‐grown in October, drop to the ground in November and overwinter in cocoons on the ground, while larvae of congeners mature in May and drop to the ground in June. A relatively long period of the second larval stadium from July to October on the host trees seems to be effective for M. selenis in avoiding summer mortalities caused by predation and aridity on the ground and by ectoparasitoids that attack mature larvae or pupae on the host leaves. The spatial distribution pattern of M. selenis leaf galls is contagious and the mean gall density per leaf is significantly correlated with the mean crowding. This study adds new insights of life history strategy and adult and larval behavioral pattern to the ecological knowledge of gall midges, and these kinds of information are essential for further studies of M. selenis population dynamics and interactions with other Quercus‐associated herbivores.  相似文献   

18.
The interaction betweenTrybliographa rapae andAleochara bilineata, 2 parasitoids of the cabbage root fly, is discussed. Larvae ofA. bilineata could not differentiate between cabbage root fly pupae containingT. rapae in its endoparasitic state and unparasitized pupae but could recognize pupae containingT. rapae once the latter had reached its ectoparasitic state. Attack byA. bilineata whileT. rapae was still in its endoparasitic state usually resulted in the staphylinid killing the eucoilid. IfT. rapae had reached the ectoparasitic state before the host pupa was attacked byA. bilineata larvae the eucoilid survived attack by the beetle larva. Multiparasitism, however, resulted in increased levels of mortality of both parasitoid populations.   相似文献   

19.
We investigated the metapopulation genetic structure of two specialist parasitoids, Cotesia melitaearum and Hyposoter horticola, attacking the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands south-western Finland. The host butterfly persists as a classic metapopulation in a network of 4,000 small habitat patches within an area of 50 by 70 km . The two parasitoids are known to differ greatly in their population dynamics and spatial pattern of occupancy in local host populations. Analysis of genetic population structure using FST and clustering of multilocus genotypes revealed a distinct large-scale spatial structure in C. melitaearum but a very weak pattern in H. horticola. This result is consistent with the known difference in the dispersal range (much longer in H. horticola) and population size (much greater in H. horticola) of the two parasitoids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号