首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
North Sea and Baltic Sea populations ofLittorina littorea differ with respect to their vertical distribution. In the North SeaL. littorea is strictly intertidal while in the Baltic Sea maximum population densities occur in the sublittoral. Levels of infestation with larval digenetic trematodes diminish qualitatively (number of species recorded) and quantitatively (number of hosts infested) with decreasing salinity. Both the host and two parasite species —Cryptocotyle lingua andMicrophallus pygmaeus — display brackish-water submergence under conditions of reduced surface salinity.  相似文献   

2.
The salinity tolerances of Baltic and Atlantic populations ofFucus vesiculosus andChorda filum have been measured using net photosynthesis as an index of tissue damage. AtlanticFucus proved to have a broader salinity tolerance than AtlanticChorda, a result which is consistent with others published on the tolerances of intertidal and sublittoral marine species. The optimum salinity for all Atlantic plants was 11 or 34‰, but that of all Baltic plants was 6‰. BalticFucus andChorda were different in breadth of tolerance, in spite of the fact that they inhabit the same sublittoral habitat. This difference is interpreted in relation to their respective life-forms,Fucus being perennial andChorda annual.Fucus is therefore present as a macrothallus at all times of year, including the critical low-salinity period of the spring ice-melt.Chorda evades damage by existing as a resistent microthallus at this time. It is concluded that the distinctive character of Baltic marine algae deserves nomenclatural recognition at some level below that of the species. The rank of subspecies would appear the most appropriate of those listed in the Code, but none of those available is able adequately to express the patterns of variation now being reported. Paper presented at the XIV International Botanical Congress (Berlin, 24 July-1 August, 1987), Symposium 6-15, “Biogeography of marine benthic algae”.  相似文献   

3.
The photosynthetic rates of Enteromorpha intestinalis, Fucus vesiculosus and Laminaria saccharina from the Baltic Sea were measured in different salinity range of Medium A (with NaHCO3) and Medium B (without NaHCO3). Photosynthetic activity in Medium A showed higher values than those in Medium B. The materials pretreated for one day showed a higher O2 output than those untreated at almost every salinity range. In a chloride loss experiment the pretreated thalli of Porphyra umbilicalis, Fucus vesiculosus and Laminaria digitata were placed for a three minute period in distilled water. The excreted chloride ion content showed a higher value in sublittoral species after hypotonic and hypertonic treatment than in intertidal species.  相似文献   

4.
Brown seaweeds of the genus Fucus occupy a wide variety of temperate coastal habitats. The genus is evolutionary dynamic with recent radiations to form morphologically distinct taxa. In the brackish Baltic Sea, fucoids are the only perennial canopy‐forming macroalgae. The most northern populations of Fucus occur permanently submerged in extremely low salinity (3–5 psu). These are currently referred to as Fucus vesiculosus L. but are morphologically distinct with a narrow frond without bladders. We report here that a population of this unique morphotype is reproductively isolated from a truly sympatric population of common F. vesiculosus and conclude that the northern morphotype represents a previously undescribed species. We describe Fucus radicans sp. nov., which is attached and dioecious with broadly elliptic receptacles, characterized by a richly branched narrow flat frond (2–5 mm), short thallus (<26 cm), and a high capacity for vegetative recruitment of attached plants. Analysis of five highly polymorphic microsatellite DNA loci showed genetic differentiation between sympatric populations of F. radicans and F. vesiculosus, whereas allopatric populations of the same species revealed a coherent pattern of genetic variation. Sequences of the RUBISCO region in F. radicans were identical to or differing at only one to two dinucleotide positions from those of F. vesiculosus, indicating a recent common origin of the two species.  相似文献   

5.
Gibel carp Carassius gibelio (Bloch) was first introduced into fish ponds and small lakes of Estonia in 1948–49, and first detected in Estonian brackish waters (Gulf of Riga) in 1985. Since the mid‐1990s, the species has spread along the entire Estonian Baltic coastline. Growth rate in the brackish water population does not differ much from freshwater populations, but the freshwater populations are gynogenetic (or show high dominance of females) in contrast to the Baltic Sea population, which presents a normal sex ratio. The recent explosion of this species in the Baltic Sea could be explained by unusually warm summers during the 1990s and by the low abundance of predatory fish.  相似文献   

6.
A decrease in salinity and temperature over the past 3000 years has presented the marine algae of the Baltic Sea with very considerable problems in adaptation. The effects of salinity upon a number of Baltic algae have been measured. The results showed cell mortality to be severe in 0, 68 and 102‰, and minimal in 6 and 11‰: there was most variation in tolerance to 34 and 51‰. The salt tolerances of Baltic marine algae have proved more hyposaline than those of British intertidal algae. Water uptake and loss in tissues of Chorda filum and Fucus vesiculosus from Baltic and British populations have been measured in response to salinity changes. The results revealed significant population differences in both live and killed tissues. Receptacle development and oogonial maturation have been observed in Baltic and British F. vesiculosus, and found to differ in seasonality. Some observations were associated with local sea temperatures but differences in the timing of receptacle initiation and in oogonial size were not. Th depauperate thallus, commonly ascribed to the effects of low salinity, was found to be a complicated phenomenon, comprising numerous attributes which are combined differently in different taxa. The morphological differences between Baltic and British marine algae were usually striking.

The marine algae of the Baltic Sea have therefore diverged in a number of ways from their N. Atlantic counterparts. The naturally high variability of these taxa has enabled them to survive the period of increasingly strong selection pressure which followed the Littorina Sea episode. Divergence seems not to have advanced to the point where speciation may be said to have occurred. The Baltic may therefore be contrasted with the much older Mediterranean Sea, which contains a large number of endemic species. Nevertheless, the Baltic is a site of very considerable evolutionary importance.  相似文献   

7.
Drivers of population genetic structure are still poorly understood in marine micro‐organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500‐km‐long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low‐salinity Baltic Sea population and a high‐salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone.  相似文献   

8.
Recent studies showing consequences of species’ genetic diversity on ecosystem performance raise the concern of how key ecosystem species are genetically structured. The bladder wrack Fucus vesiculosus L. is a dominant species of macroalga in the northern Atlantic, and it is particularly important as a habitat‐forming species in the Baltic Sea. We examined the genetic structure of populations of F. vesiculosus with a hierarchical approach from a within‐shore scale (10 m) to a between‐seas scale (Baltic Sea–Skagerrak, 800 km). Analysis of five microsatellite loci showed that population differentiation was generally strong (average FST = 12%), being significant at all spatial scales investigated (101, 103, 104–5, 106 m). Genetic differentiation between seas (Baltic Sea and Skagerrak) was substantial. Nevertheless, the effects of isolation by distance were stronger within seas than between seas. Notably, Baltic summer‐reproducing populations showed a strong within‐sea, between‐area (70 km) genetic structure, while Baltic autumn‐reproducing populations and Skagerrak summer‐reproducing populations revealed most genetic diversity between samples within areas (<1 km). Despite such differences in overall structure, Baltic populations of summer‐ and autumn‐reproducing morphs did not separate in a cluster analysis, indicating minor, if any, barriers to gene flow between them. Our results have important implications for management and conservation of F. vesiculosus, and we raise a number of concerns about how genetic variability should be preserved within this species.  相似文献   

9.
Host shifts followed by specialization can result in sympatric genetic differentiation, and may have fuelled the diversification of phytophagous insects. This study examines a recent colonization of a non‐native host by Prodoxus quinquepunctellus (Lepidoptera: Prodoxidae). Allozyme differentiation was detected among different host feeding populations, yet was nearly absent among similar host feeding populations in sympatry. Geographical patterns of allozyme variation showed a much higher level of population structure among populations feeding on the derived host. Conversely, mtDNA haplotype frequencies were nearly homogeneous in the derived populations compared to the ancestral populations, suggesting a bottleneck and/or rapid fixation of haplotypes following host colonization. Moth emergence coincided with host plant flowering, and phenological differences between host species translated into allochronic isolation between populations feeding on different hosts. Derived moth populations also differed significantly in three ovipositor characters from ancestral populations. These findings suggest rapid host‐specific genetic differentiation, and specialization of moth emergence time and ovipositor morphology following host colonization.  相似文献   

10.
D. Jones  P. J. Miller 《Hydrobiologia》1966,27(3-4):515-528
Summary Seasonal changes in abundance, and also reproduction, of the gobiid Pomatoschistus microps in intertidal pools on mussel beds at Morecambe, Lancashire, were studied from 1956 to 1961. During winter the shore was largely vacated by this species which returned for breeding purposes in spring. Spawning took place in upper shore pools from April to August. After a planktonic life of between 6–9 weeks, young fishes were recruited to the demersal population usually from June to September. A correlation between seasonal migrations and sea temperature is postulated. Geographical variation in occurrence and extent of migration in P. microps and the related sublittoral P. minutus is considered in relation to minimum winter sea temperatures over the southern Boreal and Baltic sea areas. Offshore winter migration has been found to take place in areas where such temperatures normally fall below 5° C, but not where minimum sea temperature is above 7° C. The effect of the severe winter of 1962–63 on certain populations of P. microps is described.  相似文献   

11.
The paper deals with the spatial and the temporal variability of the population dynamics of five key molluscan species at two rocky intertidal shores on the southern Saurashtra coastline of India. The intertidal belts of the two selected stations, Veraval and Diu, are about 100 km apart and differ in their coast characteristics and level of human interference. The slope and the substrate types of the two stations are not uniform and the exposure of intertidal belt of these predominantly rocky shores during low tides is also not significantly long. The study revealed that a general, species specific pattern of spatial and temporal variations existed in the population abundance and density of the species studied. There was considerable spatial variability in some species examined but most species showed no clear seasonal trends for the population abundance. The Veraval coast, in spite of being affected by heavy human interference, is still a favourable place for Chiton, Turbo cornatus and Turbo intercoastalis than Diu, though the latter is relatively less affected by anthropogenic influences. It appears that the subtratum type, short exposure duration and moderate wave action of the Arabian Sea are most active controlling factors for higher distribution of these species at Veraval.  相似文献   

12.
The fouling green algae Enteromorpha intestinalis is a cosmopolitan benthic species, which causes green tides in many coastal areas and is used as an indicator species for eutrophication in the Baltic Sea area. The life cycle of E. intestinalis alternates between two morphologically identical reproductive stages, a haploid gametophyte phase and a diploid sporophyte phase. However, it also reproduces through asexual propagation. The reproductive cycles of E. intestinalis in the Baltic Sea and elsewhere are largely unknown. Here we report five polymorphic microsatellite markers developed from enriched genomic libraries. The number of alleles per locus ranged from 7 to 25.  相似文献   

13.
We investigated the geographical distribution of genetic variation in 67 individuals of Triglochin maritima from 38 localities across Europe using AFLP markers. Analysis of genetic variation resulted in the recognition of two major genetic groups. Apart from few geographical outliers, these are distributed (1) along the Atlantic coasts of Portugal, Spain and France and (2) in the North Sea area, the Baltic Sea area, at central European inland localities, the northern Adriatic Sea coast and the Mediterranean coast of southwest France. Considering possible range shifts of T. maritima in reaction to Quaternary climatic changes as deduced from the present-day northern temperature limit of the species, Quaternary changes of coastline in the North Sea area and the very recent origin of the Baltic Sea, we conclude that the coastal populations of T. maritima in the North Sea and Baltic Sea areas originated from inland populations.  相似文献   

14.
Since 1985, the nonindigenous polychaete species Marenzelleria neglecta has been found in the Baltic Sea. The species, which was introduced by ship ballast water, spreads rapidly and dominates in many habitats today. Using three gene segments of the mitochondrial DNA (16S rDNA, Cytochrom oxidase I, Cytochrom b), we investigated four populations of the western and northern Baltic Sea in a preliminary survey and compared them with four other populations from the North Sea, the Baltic Sea and from the Arctic. First, we could demonstrate the applicability of the markers to discriminate the species with certainty. Second, with M. viridis and M. arctia, we could detect two more species of the same genus, which have recently been introduced into the Baltic Sea. One of these, M. arctia, was hitherto known as an exclusive arctic member of the genus. The impact of these two recently invaded Marenzelleria species onto the autochthonous fauna needs to be evaluated in the future. The Baltic Sea as a ‘natural aquarium’ now offers the possibility to investigate sibling species simultaneously. However, correct identification and denomination of Marenzelleria species are indispensable prerequisites for all future studies. Molecular markers allow the exact identification of all Marenzelleria species and must be used whenever a classical taxonomic identification is uncertain.  相似文献   

15.
Studies of Marenzelleria species were often hampered by identification uncertainties when using morphological characters only. A newly developed PCR/RFLP protocol allows a more efficient discrimination of the three species Marenzelleria viridis, Marenzelleria neglecta and Marenzelleria arctia currently known for the Baltic Sea. The protocol is based on PCR amplification of two mitochondrial DNA gene segments (16S, COI) followed by digestion with restriction enzymes. As it is faster and cheaper than PCR/sequencing protocols used so far, the protocol is recommended for large-scale analyses. The markers allow an undoubted determination of species irrespective of life stage or condition of the worms in the samples. The protocol was validated on about 950 specimens sampled at more than 30 sites of the Baltic and the North Sea, and on specimens from populations of the North American east coast. Besides this test we used mitochondrial DNA sequences (16S, COI, Cytb) and starch gel electrophoresis to further investigate the distribution of the three Marenzelleria species in the Baltic Sea. The results show that M. viridis (formerly genetic type I or M. cf. wireni) occurred in the Öresund area, in the south western as well as in the eastern Baltic Sea, where it is found sympatric with M. neglecta. Allozyme electrophoresis indicated an introduction by range expansion from the North Sea. The second species, M. arctia, was only found in the northern Baltic Sea, where it sometimes occurred sympatric with M. neglecta or M. viridis. For Baltic M. arctia, the most probable way of introduction is by ship ballast water from the European Arctic. There is an urgent need for a new genetic analysis of all Marenzelleria populations of the Baltic Sea to unravel the current distribution of the three species.  相似文献   

16.
Two closely related swan species, the mute swan Cygnus olor and the whooper swan Cygnus cygnus, were formerly allopatric throughout their breeding ranges, but during the last decades a sympatric distribution has become characteristic of these species in the Baltic Sea region. The whooper swan has gradually replaced the mute swan in many suitable habitats in Lithuania and Latvia. Marked differences in the genetic population structure of both species may partially explain the dominance of the whooper swan, as genetic population divergence can be a major factor affecting inter-specific competition. A homogenous genetic population structure was defined for mute swans breeding in Lithuania, Latvia, Poland and Belarus. Breeding mute swans in this region are mostly of naturalised origin. A diverse population genetic structure characterizes whooper swans breeding in Lithuania and Latvia.  相似文献   

17.
The variation in eye spectral sensitivities of the closely related mysid species Mysis relicta Lovén, 1862 and Mysis salemaai Audzijonyt? and Väinölä, 2005 was studied in sympatric and allopatric populations from the brackish Baltic Sea and from two lakes representing different light environments. In the Baltic Sea the maximum spectral sensitivity of M. relicta, measured by the electroretinogram (ERG) technique, was shifted by ca 20 nm to longer wavelengths than in M. salemaai (564 and 545 nm, respectively). The spectral sensitivity of M. salemaai was closer to that of marine mysid species, which is consistent with its broader euryhalinity and the presumed longer brackish-water history. The species-specific sensitivities in the Baltic Sea were not affected by regional differences in light environments. In two lake populations of M. relicta, the spectral sensitivity was further shifted by ca 28 nm towards the longer wavelengths compared with the conspecific Baltic Sea populations. The spectral sensitivities in the four M. relicta populations were not correlated to the current light conditions, but rather to the phylogeographic histories and fresh- vs. brackish-water environments. A framework to further explore factors affecting spectral sensitivities in Mysis is suggested.  相似文献   

18.
This study assessed the major histocompatibility complex (MHC) and neutral genetic variation and structure in two percid species, perch Perca fluviatilis and zander Sander lucioperca, in a unique brackish ecosystem, the Baltic Sea. In addition, to assess the importance of MHC diversity to disease susceptibility in these populations, comparisons were made to an introduced, disease susceptible, P. fluviatilis population in Australia. Eighty‐three MHC class II B exon 2 variants were amplified: 71 variants from 92 P. fluviatilis samples, and 12 variants from 82 S. lucioperca samples. Microsatellite and MHC data revealed strong spatial genetic structure in S. lucioperca, but not P. fluviatilis, across the Baltic Sea. Both microsatellite and MHC data showed higher levels of genetic diversity in P. fluviatilis from the Baltic Sea compared to Australia, which may have facilitated the spread of an endemic virus, EHNV in the Australian population. The relatively high levels of genetic variation in the Baltic Sea populations, together with spatial genetic structure, however, suggest that there currently seems to be little risk of disease epidemics in this system. To ensure this remains the case in the face of ongoing environmental changes, fisheries and habitat disturbance, the conservation of local‐scale genetic variation is recommended.  相似文献   

19.
Summary 1. The emergence times of intertidalClunio-species (Diptera, Chironomidae) are correlated with special tidal conditions in such a way that the immediately following reproduction of the short-lived imagos can take place on the exposed habitat.2. If the habitat of aClunio-species is situated in the middle tidal region and exposed twice a day by the tidal cycle (T = 12.4 h), a tidal rhythm of emergence with an average period of 12.4 hours may result (example:Clunio takahashii).3. If the habitat is located in the lower tidal zone, exposed only at about the time of the spring tides, a semilunar rhythm of emergence is expected (examples:Clunio marinus andClunio mediterraneus). These semilunar rhythms are correlated with certain conditions of low tide which occur at the coastal locations every 15 days at about the same time of day. The semilunar rhythm is therefore exactly characterized by two dates: the lunar emergence time (a few successive days around full and new moon) and the diurnal emergence time.4. According to experimental investigations on the control of the emergence rhythm, the midges are able to determine both dates in advance.5. Coastal populations differ in their lunar and diurnal emergence times. These differences correspond to the time of low tide which exists at each location during the emergence days of the semilunar rhythm.6. Crossbreeding between stocks of different populations showed that the differences in diurnal emergence time are gene-controlled.
Genetische Adaptation der Schlüpfzeiten vonClunio-Populationen an verschiedene Gezeitenbedingungen
Kurzfassung Die Schlüpfzeiten der in der Gezeitenzone lebendenClunio-Arten (Diptera, Chironomidae) sind mit bestimmten Wasserstandsbedingungen synchronisiert, und zwar derart, daß die unmittelbar anschließende Fortpflanzung der kurzlebigen Imagines auf dem trockengefallenen Habitat stattfinden kann. Wenn das Habitat einerClunio-Art in der mittleren Gezeitenzone liegt und parallel zu dem halbtägigen Gezeitenzyklus (T = 12,4 h) zweimal täglich auftaucht, dann kann sich eine 12,4stündige Schlüpfperiodik einstellen (Beispiel:Clunio takahashii). Wenn das Habitat in der unteren Gezeitenzone liegt und nur um die Zeit der Springtiden auftaucht, dann ist eine 15tägige (semilunare) Schlüpfperiodik zu erwarten (Beispiele:Clunio marinus undC. mediterraneus). Diese 15tägige Schlüpfperiodik ist synchronisiert mit bestimmten Niedrigwasserbedingungen, die an einem Küstenort alle 15 Tage jeweils um die gleiche Tageszeit auftreten. Sie wird daher durch zwei Daten eindeutig gekennzeichnet: (1) die lunaren Schlüpftage (wenige aufeinanderfolgende Tage um Voll- und Neumond) und (2) die tägliche Schlüpfzeit. Wie experimentelle Untersuchungen über die Steuerung der Schlüpfperiodik zeigten, können die Tiere beide Daten richtig vorausbestimmen. Die einzelnen Küstenpopulationen unterscheiden sich allerdings in Anpassung an die örtlichen Gezeiten- und Standortbedingungen recht auffällig in ihren lunaren und täglichen Schlüpfzeiten. Kreuzungsversuche zwischen Laboratoriumsstämmen verschiedener Populationen belegen, daß die Unterschiede in der täglichen Schlüpfzeit genkontrolliert sind.
  相似文献   

20.
The range of Arianta arbustorum is spreading eastwards across the Baltic Sea region. Because A. arbustorum is a common pest in agriculture and horticulture, understanding the origin and factors involved in the eastward range expansion of the land snail are important for future planning of species management. In the present study, we compared the genetic diversity of A. arbustorum in the recently established easternmost populations and across Europe using standard phylogeographic analyses on a mitochondrial marker (cytochrome c oxidase I). We also applied bioclimatic envelope modeling to determine the environmental factors responsible for the ongoing range shifts of A. arbustorum. The unique haplotype lineage was found in all Baltic Sea populations in contrast with the highly polymorphic populations from Central Europe and the Alps. The peripheral easternmost populations were fixed for the dominant haplotype of the Baltic lineage. Retrospective niche modeling confirmed previous assumptions of multiple glacial refugia of A. arbustorum in Europe. Our results also show that the emergence of new populations in the easternmost part of the A. arbustorum range and the presumptive loss of rear-edge populations in western Europe are most plausibly caused by ongoing climate change, which will have a remarkable effect on the future distribution of genetic diversity within the range of the copse snail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号