首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During infection of tomato, the fungus Fusarium oxysporum f. sp. lycopersici secretes several unique proteins, called 'secreted in xylem' (Six) proteins, into the xylem sap. At least some of these proteins promote virulence towards tomato and among them, all predicted avirulence proteins that can trigger disease resistance in tomato have been found. In this study, a large, worldwide collection of F. oxysporum isolates was screened for the presence of seven SIX genes ( SIX1 – SIX7 ). The results convincingly show that identification of F. oxysporum formae speciales and races based on host-specific virulence genes can be very robust. SIX1, SIX2, SIX3 and SIX5 can be used for unambiguous identification of the forma specialis lycopersici . In addition, SIX4 can be used for the identification of race 1 strains, while polymorphisms in SIX3 can be exploited to differentiate race 2 from race 3 strains. For SIX6 and SIX7 , close homologs were found in a few other formae speciales , suggesting that these genes may play a more general role in pathogenicity. Host specificity may be determined by the unique SIX genes, possibly in combination with the absence of genes that trigger resistance in the host.  相似文献   

2.
Secreted-in-xylem (SIX) proteins of the vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici are secreted during infection of tomato and function in virulence or avirulence. F. oxysporum formae speciales have specific host ranges but the roles of SIX proteins in diverse hosts are unknown. We identified homologs of F. oxysporum f. sp. lycopersici SIX1, SIX4, SIX8, and SIX9 in the genome of Arabidopsis infecting isolate Fo5176. A SIX4 homolog (termed Fo5176-SIX4) differed from that of F. oxysporum f. sp. lycopersici (Fol-SIX4) by only two amino acids, and its expression was induced during infection of Arabidopsis. Transgenic Arabidopsis plants constitutively expressing Fo5176-SIX4 had increased disease symptoms with Fo5176. Conversely, Fo5176-SIX4 gene knock-out mutants (Δsix4) had significantly reduced virulence on Arabidopsis, and this was associated with reduced fungal biomass and host jasmonate-mediated gene expression, the latter known to be essential for host symptom development. Full virulence was restored by complementation of Δsix4 mutants with either Fo5176-SIX4 or Fol-SIX4. Thus, Fo5176-SIX4 contributes quantitatively to virulence on Arabidopsis whereas, in tomato, Fol-SIX4 acts in host specificity as both an avirulence protein and a suppressor of other race-specific resistances. The strong sequence conservation for SIX4 in F. oxysporum f. sp. lycopersici and Fo5176 suggests a recent common origin.  相似文献   

3.
Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato vascular wilt, produces an array of pectinolytic enzymes, including at least two exo-alpha1,4-polygalacturonases (exoPGs). A gene encoding an exoPG, pgx4, was isolated with degenerate polymerase chain reaction primers derived from amino acid sequences conserved in two fungal exoPGs. pgx4 encodes a 454 amino acid polypeptide with nine potential N-glycosylation sites and a putative 21 amino acid N-terminal signal peptide. The deduced mature protein has a calculated molecular mass of 47.9 kDa, a pI of 8.0, and 51 and 49% identity with the exoPGs of Cochliobolus carbonum and Aspergillus tubingensis, respectively. The gene is present in a single copy in different formae speciales of F. oxysporum. Expression of pgx4 was detected during in vitro growth on pectin, polygalacturonic acid, and tomato vascular tissue and in roots and stems of tomato plants infected by F. oxysporum f. sp. lycopersici. Two mutants of F. oxysporum f. sp. lycopersici with a copy of pgx4 inactivated by gene replacement were as virulent on tomato plants as the wild-type strain.  相似文献   

4.
5.
The fungal species Fusarium oxysporum is a ubiquitous inhabitant of soils worldwide that includes pathogenic as well as non-pathogenic or even beneficial strains. Pathogenic strains are characterized by a high degree of host specificity and strains that infect the same host range are organized in so-called formae speciales. Strains for which no host plant has been identified are believed to be non-pathogenic strains. Therefore, identification below the species level is highly desired. However, the genetic basis of host specificity and virulence in F. oxysporum is so far unknown. In this study, a robust random-amplified polymorphic DNA (RAPD) marker-based assay was developed to specifically detect and identify the economically important cucumber pathogens F. oxysporum f. sp. cucumerinum and F. oxysporum f. sp. radicis-cucumerinum. While the F. oxysporum radicis-cucumerinum strains were found to cluster in a separate clade based on elongation factor-1alpha phylogeny, strains belonging to F. oxysporum f. sp. cucumerinum were found to be genetically more diverse. This is reflected in the observation that specificity testing of the identified markers using a broad collection of F. oxysporum strains with all known vegetative compatibility groups of the target formae speciales, as well as representative strains belonging to other formae speciales, resulted in two cross-reactions for the F. oxysporum f. sp. cucumerimum marker. However, no cross-reactions were observed for the F. oxysporum f. sp. radicis-cucumerimum marker. This F. oxysporum f. sp. radicis-cucumerimum marker shows homology to Folyt1, a transposable element identified in the tomato pathogen F. oxysporum f. sp. lycopersici and may possibly play a role in host-range specificity in the target forma specialis. The markers were implemented in a DNA array that enabled parallel and sensitive detection and identification of the pathogens in complex samples from diverse origins.  相似文献   

6.
7.
Fusarium oxysporum is an asexual, soil inhabiting fungus that comprises many different formae speciales, each pathogenic towards a different host plant. In absence of a suitable host all F. oxysporum isolates appear to have a very similar lifestyle, feeding on plant debris and colonizing the rhizosphere of living plants. Upon infection F. oxysporum switches from a saprophytic to an infectious lifestyle, which probably includes the reprogramming of gene expression. In this work we show that the expression of the known effector gene SIX1 of F. oxysporum f. sp. lycopersici is strongly upregulated during colonization of the host plant. Using GFP (green fluorescent protein) as reporter, we show that induction of SIX1 expression starts immediately upon penetration of the root cortex. Induction requires living plant cells, but is not host specific and does not depend on morphological features of roots, since plant cells in culture can also induce SIX1 expression. Taken together, F. oxysporum seems to be able to distinguish between living and dead plant material, preventing unnecessary switches from a saprophytic to an infectious lifestyle.  相似文献   

8.
9.
I-3-Mediated resistance of tomato against Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici depends on Six1, a protein that is secreted by the fungus during colonization of the xylem. Among natural isolates of F. oxysporum f. sp. lycopersici are several that are virulent on a tomato line carrying only the I-3 resistance gene. However, evasion of I-3-mediated resistance by these isolates is not correlated with mutation of the SIX1 gene. Moreover, the SIX1 gene of an I-3-virulent isolate was shown to be fully functional in that i) the gene product is secreted in xylem sap, ii) deletion leads to a further increase in virulence on the I-3 line as well as reduced virulence on susceptible lines, and iii) the gene confers full avirulence on the I-3 line when transferred to another genetic background. Remarkably, all I-3-virulent isolates were of race 1, suggesting a link between the presence of AVR1 and evasion of I-3-mediated resistance.  相似文献   

10.
The interaction between tomato and Fusarium oxysporum f. sp. lycopersici has become a model system for the study of the molecular basis of disease resistance and susceptibility. Gene-for-gene interactions in this system have provided the basis for the development of tomato cultivars resistant to Fusarium wilt disease. Over the last 6 years, new insights into the molecular basis of these gene-for-gene interactions have been obtained. Highlights are the identification of three avirulence genes in F. oxysporum f. sp. lycopersici and the development of a molecular switch model for I-2, a nucleotide-binding and leucine-rich repeat-type resistance protein which mediates the recognition of the Avr2 protein. We summarize these findings here and present possible scenarios for the ongoing molecular arms race between tomato and F. oxysporum f. sp. lycopersici in both nature and agriculture.  相似文献   

11.
12.
13.
A 12 kDa cysteine-rich protein is secreted by Fusarium oxysporum f. sp. lycopersici during colonization of tomato xylem vessels. Peptide sequences obtained with mass spectrometry allowed identification of the coding sequence. The gene encodes a 32 kDa protein, designated Six1 for secreted in xylem 1. The central part of Six1 corresponds to the 12 kDa protein found in xylem sap of infected plants. A mutant that had gained virulence on a tomato line with the I-3 resistance gene was found to have lost the SIX1 gene along with neighbouring sequences. Transformation of this mutant with SIX1 restored avirulence on the I-3 line. Conversely, deletion of the SIX1 gene in a wild-type strain results in breaking of I-3-mediated resistance. These results suggest that I-3-mediated resistance is based on recognition of Six1 secreted in xylem vessels.  相似文献   

14.
The steroidal glycoalkaloid alpha-tomatine which is present in tomato (Lycopersicum sculentum) is assumed to protect the plant against phytopathogenic fungi. We have isolated a gene from the fungal pathogen Fusarium oxysporum f. sp. lycopersici that is induced by this glycoalkaloid. This gene, designated panC, encodes a predicted protein with a molecular mass of 41 kDa that shows a high degree of sequence similarity to pantothenate synthetases from yeast, plants and bacteria. Recombinant PanC protein from F. oxysporum has been over-expressed in Escherichia coli and purified to homogeneity. It shows pantothenate synthetase activity in the presence of D-pantoate, beta-alanine and ATP. The panC gene from F. oxysporum functionally complements an E. coli panC mutant, demonstrating that the PanC protein functions in vivo as a pantothenate synthetase. Southern analysis of F. oxysporum genomic DNA from other formae speciales indicates that there is a single copy of the pantothenate syntethase gene in this fungus. The presence of a STRE consensus sequence (CCCCT) in the promoter region of the gene suggests that the induction of panC may be part of a cellular stress response triggered by alpha-tomatine.  相似文献   

15.
16.
The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda(?) F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.  相似文献   

17.
Ito S  Eto T  Tanaka S  Yamauchi N  Takahara H  Ikeda T 《FEBS letters》2004,571(1-3):31-34
Many fungal pathogens of tomato produce extracellular enzymes, collectively known as tomatinases, that detoxify the preformed antifungal steroidal glycoalkaloid alpha-tomatine. Tomatinase from the vascular wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici cleaves alpha-tomatine into the aglycon tomatidine (Td) and the tetrasaccharide lycotetraose (Lt). Although modes of action of alpha-tomatine have been extensively studied, those of Td and Lt are poorly understood. Here, we show that both Td and Lt inhibit the oxidative burst and hypersensitive cell death in suspension-cultured tomato cells. A tomatinase-negative F. oxysporum strain inherently non-pathogenic on tomato was able to infect tomato cuttings when either Td or Lt was present. These results suggest that tomatinase from F. oxysporum is required not only for detoxification of alpha-tomatine but also for suppression of induced defense responses of host.  相似文献   

18.
The genetic relatedness of five formae speciales of Fusarium oxysporum causing wilts of cucurbit plants was determined by DNA fingerprinting with the moderately repetitive DNA sequences FOLR1 to FOLR4. The four FOLR clones were chosen from a genomic library made from F. oxysporum f. sp. lagenariae 03-05118. Total DNAs from 50 strains representing five cucurbit-infecting formae speciales, cucumerinum, melonis, lagenariae, niveum, and momordicae, and 6 strains of formae speciales pathogenic to other plants were digested with EcoRV and hybridized with 32P-labeled FOLR probes. The strains were clearly distinguishable at the formae specialis level on the basis of FOLR DNA fingerprints. Fifty-two fingerprint types were detected among the 56 strains by using all FOLR probes. These probes were used to infer phylogenetic relationships among the DNA fingerprint types by the unweighted pair group method using averages and parsimony analysis. The fingerprint types detected in each of the formae speciales cucumerinum, lagenariae, niveum, and momordicae were grouped into a single cluster. However, two different genetic groups occurred in the formae specialis melonis. The two groups also differed in pathogenicity: one group caused wilts of muskmelon and oriental melon, while the second was pathogenic only to muskmelon. The fingerprint types of different formae speciales pathogenic to plants other than cucurbits were distinguishable from one another and from the fingerprints of the cucurbit-infecting strains. These results suggest that the cucurbit-infecting formae speciales are intraspecific variants distinguishable at the DNA level and in their host range.  相似文献   

19.
Watermelon is a species cultivated in the hot climate or in the greenhouse. Since recently it has also started to be grown in the open in the Polish climate. This species is frequently at risk of Fusarium oxysporum infection. Between 1996 and 1997 ten inbred lines and nine hybrids of Polish origin were tested for resistance to this pathogen. The test was conducted with the use of four isolates of F. oxysporum: three from Polish infected plants (formae speciales not determined), while the fourth from U.K. (F. oxysporum f. sp. niveum). In the three series of tests the control plants were Pannonia F(1) and Sugar Baby. No inbred line or hybrid was found to be highly resistant to the pathogen. However, it was possible to identify four lines and five hybrids showing a higher level of resistance as compared with the control. The level of hybrid resistance was determined by comparison with the parental genotypes.  相似文献   

20.
Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号