首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小麦条锈病是世界范围内小麦上最重要的流行性病害之一,可造成严重的产量损失。陇南地区是我国小麦条锈菌主要越夏易变区和新小种发源地,了解该地区不同海拔高度区域内条锈菌遗传多样性有重要意义。本研究采用TP-M13-SSR荧光标记技术对11个种群330个小麦条锈菌分离株基因组DNA进行了SSR标记分析。不同海拔区域的条锈菌遗传多样性有明显的差异,高山区的遗传多样性比较丰富,半山区次之,川道区相对比较低。不同生态区域内,小麦条锈菌群体遗传分化程度不同,高山区和半山区遗传分化程度大,基因流小,川道区群体遗传分化程度比较小,基因流大。来自不同海拔区域的菌系具有相同的基因型,这一结果从分子水平证明了在陇南地区小麦条锈菌在山区与川地之间存在广泛的菌源交流,可就地完成周年循环。  相似文献   

2.
四川省小麦条锈菌群体遗传多样性的SSR分析   总被引:1,自引:0,他引:1  
利用TP-M13-SSR自动荧光检测技术,对四川省小麦条锈菌群体遗传多样性水平进行了分析。研究结果表明,四川省小麦条锈菌群体遗传多样性比较丰富,地区之间存在明显的差异,川西北和四川盆地的种群遗传多样性相对较高,而四川西南部和四川东南部的种群遗传多样性较低。四川小麦条锈菌群体存在一定的遗传分化,地区间的遗传变异仅占14.92%,群体间的遗传变异占总变异的23.06%,群体内遗传变异占60.02%,遗传变异主要存在于群体内部。基因流和共享基因型从分子水平证实了四川小麦条锈菌在地区间的传播,且川西北和四川盆地之间的菌源交流最为广泛。  相似文献   

3.
Sui X  He Z  Lu Y  Wang Z  Xia X 《Hereditas》2010,147(5):176-182
Cultivated barley (Hordeum vulgare L.) is considered as a non-host or inappropriate host species for wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Most barley cultivars show a broad-spectrum resistance to wheat stripe rust. To determine the genes for resistance to wheat stripe rust in barley, a cross was made between a resistant barley line Y12 and a susceptible line Y16. The two parents, F(1) and 147 BC(1) plants were tested at seedling stage with Chinese prevalent race CYR32 of Puccinia striiformis f. sp. tritici by artificial inoculation in greenhouse. The results indicated that Y12 possessed one dominant resistance gene to wheat stripe rust, designated YrpstY1 provisionally. A total of 388 simple sequence repeat (SSR) markers were used to map the resistance gene in Y12 using bulked segregant analysis. A linkage map, including nine SSR loci on chromosome 7H and YrpstY1, was constructed using the BC(1) population, indicating that the resistance gene YrpstY1 is located on chromosome 7H. It is potential to transfer the resistance gene into common wheat for stripe rust resistance.  相似文献   

4.
Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. Breeding durable disease resistance cultivars rely largely on continually introgressing new resistance genes, especially the genes with different defense mechanisms, into adapted varieties. Here, we describe a new resistance gene obtained by mutagenesis. The mutant, MNR220 (mutagenesis-derived new resistance), enhances resistance to three rusts and powdery mildew, with the characteristics of delayed disease development at the seedling stage and completed resistance at the adult plant stage. Genetic analysis demonstrated that the resistance in MNR220 is conferred by a single semidominant gene mapped on the short arm of chromosome 2B. Gene expression profiling of several pathogenesis-related genes indicated that MNR220 has an elevated and rapid pathogen-induced response. In addition to its potential use in breeding for resistance to multiple diseases, high-resolution mapping and cloning of the disease resistance locus in MNR220 may lead to a better understanding of the regulation of defense responses in wheat.  相似文献   

5.
中国小麦条锈菌转主寄主小檗的鉴定   总被引:4,自引:0,他引:4  
用萌发的小麦条锈菌冬孢子接种采自陕西省境内的陕西小檗、少齿小檗和长穗小檗,3种小檗均产生了性孢子器和锈孢子器。用人工接种小麦条锈菌冬孢子在陕西小檗上产生的锈孢子器接种小麦铭贤169产生了典型的条锈菌夏孢子堆症状。特异性PCR和DNA序列分析表明,人工接种产生于小檗上的锈孢子、接种锈孢子于小麦上产生的夏孢子堆与小麦条锈菌DNA的ITS区序列完全一致。更为重要的是,用采自田间受锈菌侵染的小檗叶片产生的锈孢子接种小麦铭贤169,经培养在小麦铭贤169叶片上产生了典型的条锈病症状。从而证实,在自然条件下,在中国,小檗不仅可作为小麦条锈菌的转主寄主,而且小麦条锈菌可在小檗上完成其有性繁殖过程。这一发现对进一步揭示我国小麦条锈菌高度的群体遗传多样性与毒性变异机理、完善小麦条锈病的防治策略具有十分重要的理论和实际意义。  相似文献   

6.
The fungus Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, is an obligate biotrophic basidiomycete. Urediniospores are the most common spore type involved in the epidemiology of this disease. Tip growth of germ tubes of germinated urediniospores is a key step during infection of wheat, but few studies have investigated it so far. Recent research has found that actin is closely associated with hyphal tip growth. In this study, we have cloned and obtained the full-length actin cDNA from P. striiformis f. sp. tritici and characterized its expression. Furthermore, actin filament (F-actin) patterns were visualized microscopically during germ tube formation. The most conspicuous actin-containing structures were actin patches. They were mainly concentrated near the hyphal tip and scattered throughout the cortex. By using cytochalasin B, we observed that depolymerization of F-actin greatly reduced the germination rate of urediniospores and disrupted the transport of vesicles to the germ tube tip, indicating that F-actin played a key role in the tip growth of P. striiformis f. sp. tritici. This work helps us to understand the tip growth mechanism of P. striiformis f. sp. tritici, and may provide a theoretical framework for designing novel pesticides.  相似文献   

7.
Two mutants were isolated in wheat that showed enhanced resistance towards Puccinia striiformis f. sp. tritici, the fungal causal agent of yellow rust. The altered phenotype of I3-48 is due to a minimum of two mutation events, each showing a partial, additive effect, with one mutation segregating with a deletion on the long arm of chromosome 4D. In the case of I3-54, the enhanced resistance is due to a single, dominant mutation. In both mutants, the expression of the enhanced resistance is growth-stage specific. With I3-54, the full resistance phenotype is apparent from the third seedling leaf onwards, while with I3-48, a full resistance phenotype is only seen on the tenth and subsequent leaves. In addition to the enhanced resistance towards yellow rust, I3-48 also shows enhanced resistance towards brown rust, and I3-54 shows enhanced resistance to powdery mildew.  相似文献   

8.
A network of Burkard 7-day spore-recording traps was set up in the Walloon Region in Belgium to monitor the airborne inoculum of wheat pathogens. The relationship between the airborne inoculum of Puccinia striiformis f.sp. tritici, the causal agent of stripe rust, and the disease incidence on plants in untreated plots located near each spore traps was studied during the 2008-2009 season. The presence of airborne inoculum was tested in four locations on tapes collected from the Burkard spore traps from 1 April to 14 June 2009. Total DNA from each fragment of spore trap tape corresponding to 1 day sampling was extracted. P. striiformis f.sp. tritici was quantified by real-time polymerase chain reaction (PCR) assay using specific primers and SYBRGreen. The airborne inoculum of P. striiformis was first detected between 7 and 13 April 2009, depending on the location in the Walloon Region. The first symptoms of stripe rust were observed in the fields between 15 May and 2 June 2009. The onset of the disease symptoms was always preceded by a higher peak of airborne inoculum about 15 days earlier. When P. striiformis f.sp. tritici was detected, the daily quantities of spores, collected from a volume of air of 14.4 m3, fluctuated between 0.23 and 154.66. This study shows that spore traps coupled with real-time PCR could be used to assess the airborne inoculum of P. striiformis in order to understand and predict stripe rust outbreaks.  相似文献   

9.
Over 100 genes of resistance to rust fungi: Puccinia recondita f. sp. tritici, (47 Lr - leaf rust genes), P. striiformis (18 Yr - yellow rust genes) and P. graminis f. sp. tritici (41 Sr - stripe rust genes) have been identified in wheat (Triticum aestivum L.) and its wild relatives according to recent papers. Sixteen Lr resistance genes have been mapped using restriction fragments length polymorphism (RFLP) markers on wheat chromosomes. More than ten Lr genes can be identified in breeding materials by sequence tagged site (STS) specific markers. Gene Lrk 10, closely linked to gene Lr 10, has been cloned and its function recognized. Available markers are presented in this review. The STS, cleaved amplified polymorphic sequence (CAPS) and sequence characterized amplified regions (SCAR) markers found in the literature should be verified using Triticum spp. with different genetic background. Simple sequence repeats (SSR) markers for Lr resistance genes are now also available.  相似文献   

10.
Following the appearance of stripe rust in South Africa in 1996, efforts have been made to identify new sources of durable resistance. The French cultivar Cappelle-Desprez has long been considered a source of durable, adult plant resistance (APR) to stripe rust. As Cappelle-Desprez contains the seedling resistance genes Yr3a and Yr4a, wheat lines were developed from which Yr3a and Yr4a had been removed, while selecting for Cappelle-Desprez derived APR effective against South African pathotypes of the stripe rust fungus, Puccinia striiformis f. sp. tritici. Line Yr16DH70, adapted to South African wheat growing conditions, was selected and crossed to the stripe rust susceptible cultivar Palmiet to develop a segregating recombinant inbred line mapping population. A major effect QTL, QYr.ufs-2A was identified on the short arm of chromosome 2A derived from Cappelle-Desprez, along with three QTL of smaller effect, QYr.ufs-2D, QYr.ufs-5B and QYr.ufs-6D. QYr.ufs-2D was located within a region on the short arm of chromosome 2D believed to be the location of the stripe rust resistance gene Yr16. An additional minor effect QTL, QYr.ufs-4B, was identified in the cv. Palmiet. An examination of individual RILs carrying single or combinations of each QTL indicated significant resistance effects when QYr.ufs-2A was combined with the three minor QTL from Cappelle-Desprez, and between QYr.ufs-2D and QYr.ufs-5B.  相似文献   

11.
小麦条锈菌条中31号生理小种SCAR检测标记的建立   总被引:11,自引:0,他引:11  
建立小麦条锈菌Pucciniastriiformisf.sp.tritici生理小种的快速分子检测技术对我国小麦条锈病的监测和防治策略的制定具有重要价值,本文首次报道了利用SCAR—PCR技术进行条锈菌生理小种分子检测的方法。通过对我国目前主要优势小种条中31号RAPD片段的规模筛选,在对特异片段回收、克隆、测序的基础上,设计特异PCR引物,成功获得了条中31号生理小种专化的SCAR检测标记。  相似文献   

12.
A resistance (R) gene-rich 2S chromosomal segment from Triticum ventricosum contains a cereal cyst nematode (CCN; Heterodera avenae) R gene locus CreX and a closely linked group of genes (Sr38, Yr17, and Lr37) that confer resistance to stem rust (Puccinia graminis f. sp. tritici), stripe rust (P. striiformis f. sp. tritici), and leaf rust (P. recondita f. sp. tritici) when introgressed into wheat. The 2S chromosomal segment from T. ventricosum is further delineated in translocations onto chromosome 2A of bread wheat, where the rust genes are retained but not the CreX gene. Using these critical genetic stocks, we have isolated family members of R gene analogs that are associated with either the 2S segment from T. ventricosum carrying the CreX locus or the rust genes. Derivatives of the Cre3 candidate R gene sequence and a rice (Oryza sativa) R gene analog that mapped to the 2S homologous chromosome groups in wheat were used to isolate related gene sequences from T. ventricosum that contain a nucleotide binding site-leucine rich repeat domain. The potential of these gene sequences as entry points for isolating candidate genes or gene family members of the CreX or rust genes and their further applications to plant breeding are discussed.  相似文献   

13.
Stripe rust, caused by Puccinia striiformis f. sp. tritici , is a serious disease of wheat. The spring wheat cultivar Kariega expresses complete adult plant resistance to stripe rust, whereas Avocet S is susceptible. In former studies, quantitative trait loci (QTL) analysis of doubled haploid lines derived from a Kariega × Avocet S cross revealed two major QTL ( QYr.sgi-7D and QYr.sgi-2B.1 ) and two minor QTL ( QYr.sgi-1A and QYr.sgi-4A.1 ) responsible for the adult resistance of Kariega in the field. Avocet S contains none of these QTL. In the present study, stripe rust development was compared, by means of fluorescence and confocal laser scanning microscopy, in flag leaves of Kariega, Avocet S and six doubled haploid (DH) lines, containing all four, none or one QTL. Depending on the QTL present, the infection types of the DH lines ranged from resistant to fully susceptible. No differences in fungal growth were observed during the first 5 days post inoculation (dpi), whereas the mean length of the fungal colonies started to differ at 6 dpi. Interestingly, MP 51 carrying QYr.sgi-7D responded with lignification to the fungal growth without restricting it, whereas MP 35 containing QYr.sgi-2B.1 did not show lignified host tissue, but fungal growth was restricted. RT PCR experiments with sequences of pathogenesis-related (PR) proteins resulted in a slightly stronger induction of PR 1, 2 and 5, known markers for the hypersensitive reaction, and peroxidases in MP 51, whereas a second band for chitinases was detected in MP 35 only.  相似文献   

14.
Zhan G  Chen X  Kang Z  Huang L  Wang M  Wan A  Cheng P  Cao S  Jin S 《Fungal biology》2012,116(6):643-653
Stripe rust (yellow rust) of wheat, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases in both China and the United States. The Chinese and US populations of the stripe rust fungus were compared for their virulence phenotypes on wheat cultivars used to differentiate races of the pathogen in China and the US and molecular genotypes using simple sequence repeat (SSR) markers. From 86 Chinese isolates, 54 races were identified based on reactions on the 17 Chinese differentials and 52 races were identified based on the 20 US differentials. The selected 51 US isolates, representing 50 races based on the US differentials, were identified as 41 races using the Chinese differentials. A total of 132 virulence phenotypes were identified from the 137 isolates based on reactions on both Chinese and US differentials. None of the isolates from the two countries had identical virulence phenotypes on both sets of differentials. From the 137 isolates, SSR markers identified 102 genotypes, of which 71 from China and 31 from the US. The virulence data clustered the 137 isolates into 20 virulence groups (VGs) and the marker data clustered the isolates into seven molecular groups (MGs). Virulence and SSR data had a low (r = 0.34), but significant (P = 0.01) correlation. Principal component analyses using either the virulence data or the SSR data separated the isolates into three groups: group a consisting of only Chinese isolates, group b consisting of both Chinese and US isolates and group c consisting of mostly US isolates. A neighbour-joining tree generated using the molecular data suggested that the P. striiformis f. sp. tritici populations of China and the US in general evolved independently.  相似文献   

15.
Stripe rust resistance in the German winter wheat cv. Alcedo has been described as durable, the resistance having remained effective when grown extensively in Germany and Eastern Europe between 1975 and 1989. Genetic characterisation of field resistance in a cross between Alcedo and the stripe rust susceptible UK winter wheat cv. Brigadier identified two major QTL in Alcedo located on the long arms of chromosomes 2D (QPst.jic-2D) and 4B (QPst.jic-4B). Stripe rust resistance was evaluated by measuring the extent of fungal growth, percentage infection (Pi) and the necrotic/chlorotic response of the plant to infection, infection type (IT). Both QPst.jic-2D and QPst.jic-4B contributed significantly to the reduction in stripe rust infection (Pi), with QPst.jic-2D explaining up to 36.20% and QPst.jic-4B 28.90% of the phenotypic variation measured for Pi. Both QTL were identified by the IT phenotypic scores, with QPst.jic-2D in particular being associated with a strong necrotic phenotype (low IT), QPst.jic-2D explaining up to 53.10% of IT phenotypic variation and QPst.jic-4B 22.30%. In addition, two small effect QTL for field stripe rust resistance were identified in Brigadier, QPst.jic-1B on the long arm of chromosome 1B and QPst.jic-5A on the short arm of chromosome 5A. The influence of QPst.jic-1B was primarily seen with the Pi phenotype, contributing up to 13.10% of the explained phenotypic variation. QPst.jic-5A was only detected using an approximate multiple-QTL model and selecting markers linked to the major effect QTL, QPst.jic-2D and QPst.jic-4B as co-factors. Seedling stripe rust resistance was also mapped in the cross, which confirmed the location of Yr17 from Brigadier to the short arm of chromosome 2A. A seedling expressed QTL was also located in Alcedo that mapped to the same location as the field stripe rust resistance QPst.jic-2D.  相似文献   

16.
We described twenty polymorphic microsatellite loci derived from the expressed sequence tags of Puccinia striiformis f. sp. tritici, which causes yellow rust disease on wheat. The numbers of alleles range from two to six and eight microsatellite loci show significant similarities to known genes. Observed and expected heterozygosities ranged from 0.12 to 0.78 and from 0.24 to 0.87, respectively.  相似文献   

17.
Stripe (yellow) rust,caused by Puccinia striiformis Westend.f.sp.tritici Eriks (Pst),is one of the most important wheat (Triticum aestivum L.) diseases and causes significant yield losses.A recombinant inbred (RI) population derived from a cross between Yanzhan 1 and Xichang 76-9 cultivars was evaluated for resistance to wheat stripe rust strain CYR32 at both the seedling and adult plant stages.Four resistance quantitative trait loci (QTLs) were detected in this population,in which the major one,designated as Yrq1,was mapped on chromosome 2DS.The strategy of using the Brachypodium distachyon genome,wheat expressed sequence tags and a draft DNA sequences (scaffolds) of the D-genome (Aegilops tauschii Coss.) for the development of simple sequence repeat (SSR) markers was successfully used to identify 147 SSRs in hexaploid wheat.Of the 19 polymorphic SSRs in the RI population,17 SSRs were mapped in the homeologous group 2 chromosomes near Yrq1 region and eight SSRs were genetically mapped in the 2.7 cM region of Yrq1,providing abundant DNA markers for fine-mapping of Yrq1 and marker-assisted selection in wheat breeding program.The effectiveness of Yrq1 was validated in an independent population,indicating that this resistance QTL can be successfully transferred into a susceptible cultivar for improvement of stripe rust resistance.  相似文献   

18.
A model of the effect of foliar-applied fungicides on disease-induced yield loss is described, parameterised and tested. The effects of fungicides on epidemics of Septoria tritici (leaf blotch), Puccinia striiformis (yellow rust), Blumeria graminis f.sp. tritici (powdery mildew) and Puccinia triticina (brown rust) on winter wheat were simulated using dose–response curve parameters. Where two or more active substances were applied together, their joint action was estimated using an additive dose model where the active substances had the same mode of action or a multiplicative survival model where the modes of action differed. By coupling the model with models of wheat canopy growth and foliar disease published previously, it was possible to estimate disease-induced yield loss for a prescribed fungicide programme. The difference in green canopy area and, hence, interception of photosynthetically active radiation between simulated undiseased and diseased (but treated) crop canopies was used to estimate yield loss. The model was tested against data from field experiments across a range of sites, seasons and wheat cultivars and was shown to predict the observed disease-induced yield loss with sufficient accuracy to support fungicide treatment decisions. A simple method of accounting for uncertainty in the predictions of yield loss is described. Fungicide product, dose and spray timing combinations selected using the coupled models responded appropriately to disease pressure and cultivar disease resistance.  相似文献   

19.
Stripe rust and leaf rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. and P. triticina, respectively, are devastating fungal diseases of common wheat (Triticum aestivum L.). Chinese wheat cultivar Bainong 64 has maintained acceptable adult-plant resistance (APR) to stripe rust, leaf rust and powdery mildew for more than 10?years. The aim of this study was to identify quantitative trait loci/locus (QTL) for resistance to the two rusts in a population of 179 doubled haploid (DH) lines derived from Bainong 64?×?Jingshuang 16. The DH lines were planted in randomized complete blocks with three replicates at four locations. Stripe rust tests were conducted using a mixture of currently prevalent P. striiformis races, and leaf rust tests were performed with P. triticina race THTT. Leaf rust severities were scored two or three times, whereas maximum disease severities (MDS) were recorded for stripe rust. Using bulked segregant analysis (BSA) and simple sequence repeat (SSR) markers, five independent loci for APR to two rusts were detected. The QTL on chromosomes 1BL and 6BS contributed by Bainong 64 conferred resistance to both diseases. The loci identified on chromosomes 7AS and 4DL had minor effects on stripe rust response, whereas another locus, close to the centromere on chromosome 6BS, had a significant effect only on leaf rust response. The loci located on chromosomes 1BL and 4DL also had significant effects on powdery mildew response. These were located at the same positions as the Yr29/Lr46 and Yr46/Lr67 genes, respectively. The multiple disease resistance locus for APR on chromosome 6BS appears to be new. All three genes and their closely linked molecular markers could be used in breeding wheat cultivars with durable resistance to multiple diseases.  相似文献   

20.
Z X Shi  X M Chen  R F Line  H Leung  C R Wellings 《Génome》2001,44(4):509-516
The Yr9 gene, which confers resistance to stripe rust caused by Puccinia striiformis f.sp. tritici (P. s. tritici) and originated from rye, is present in many wheat cultivars. To develop molecular markers for Yr9, a Yr9 near-isogenic line, near-isogenic lines with nine other Yr genes, and the recurrent wheat parent 'Avocet Susceptible' were evaluated for resistance in the seedling stage to North American P s. tritici races under controlled temperature in the greenhouse. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for Yr9. The BC7:F, and BC7:F3 progeny, which were developed by backcrossing the Yr9 donor wheat cultivar Clement with 'Avocet Susceptible', were evaluated for resistance to stripe rust races. Genomic DNA was extracted from 203 BC7:F2 plants and used for cosegregation analysis. Of 16 RGAP markers confirmed by cosegregation analysis, 4 were coincident with Yr9 and 12 were closely linked to Yr9 with a genetic distance ranging from 1 to 18 cM. Analyses of nullitetrasomic 'Chinese Spring' lines with the codominant RGAP marker Xwgp13 confirmed that the markers and Yr9 were located on chromosome 1B. Six wheat cultivars reported to have 1B/1R wheat-rye translocations and, presumably, Yr9, and two rye cultivars were inoculated with four races of P. s. tritici and tested with 9 of the 16 RGAP markers. Results of these tests indicate that 'Clement', 'Aurora', 'Lovrin 10', 'Lovrin 13', and 'Riebesel 47/51' have Yr9 and that 'Weique' does not have Yr9. The genetic information and molecular markers obtained from this study should be useful in cloning Yr9, in identifying germplasm that may have Yr9, and in using marker-assisted selection for combining Yr9 with other stripe rust resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号