首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applications of affinity chromatography in proteomics   总被引:7,自引:0,他引:7  
Affinity chromatography is a powerful protein separation method that is based on the specific interaction between immobilized ligands and target proteins. Peptides can also be separated effectively by affinity chromatography through the use of peptide-specific ligands. Both two-dimensional electrophoresis (2-DE)- and non-2-DE-based proteomic approaches benefit from the application of affinity chromatography. Before protein separation by 2-DE, affinity separation is used primarily for preconcentration and pretreatment of samples. Those applications entail the removal of one protein or a class of proteins that might interfere with 2-DE resolution, the concentration of low-abundance proteins to enable them to be visualized in the gel, and the classification of total protein into two or more groups for further separation by gel electrophoresis. Non-2-DE-based approaches have extensively employed affinity chromatography to reduce the complexity of protein and peptide mixtures. Prior to mass spectrometry (MS), preconcentration and capture of specific proteins or peptides to enhance sensitivity can be accomplished by using affinity adsorption. Affinity purification of protein complexes followed by identification of proteins by MS serves as a powerful tool for generating a map of protein-protein interactions and cellular locations of complexes. Affinity chromatography of peptide mixtures, coupled with mass spectrometry, provides a tool for the study of protein posttranslational modification (PTM) sites and quantitative proteomics. Quantitation of proteomes is possible via the use of isotope-coded affinity tags and isolation of proteolytic peptides by affinity chromatography. An emerging area of proteomics technology development is miniaturization. Affinity chromatography is becoming more widely used for exploring PTM and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. More applications of affinity-based purification can be expected, including increasing the resolution in 2-DE, improving the sensitivity of MS quantification, and incorporating purification as part of multidimensional liquid chromatography experiments.  相似文献   

2.
Although the concept of affinity purification using synthetic ligands had been utilized for many years, there are few articles related to this research area, and they focus only on the affinity purification of specific protein by a defined library of synthetic ligands. This study presents the design and construction of a 700-member library of synthetic ligands in detail. We selected 297 ligand columns from a 700-member library of synthetic ligands to screen leech protein extract. Of the 297, 154 columns had an enrichment effect, 83 columns had a depletion effect, 36 columns had a one-step purification effect, and 58 columns had a one-step purification via flowthrough effect. The experimental results achieved by this large library of affinity ligands provide solid convincing data for the theory that affinity chromatography could be used for the enrichment of proteins that are present in low abundance, the depletion of high abundance proteins, and one-step purification of special proteins.  相似文献   

3.
亲和层析技术在生物科学中的应用及发展   总被引:4,自引:0,他引:4  
近几十年来,亲和层析技术发展十分迅速,广泛应用于生物分子(如结合蛋白、酶、抑制剂、抗原、抗体、激素、激素受体、糖蛋白、核酸及多糖类等)及组织(如细胞、细胞器、病毒等)的分离和纯化,是蛋白质组学研究中重要的技术之一.介绍了亲和层析的基本类型及配体合成的研究进展,概述了亲和层析技术在蛋白质组学以及在其他方面的应用和发展动态.  相似文献   

4.
A new armoury of protein purification tools is required to support rapid advances in high-throughput genomics and proteomics, which are predicted to lead to the discovery, isolation, characterisation and manufacture of a number of new biopharmaceutical proteins. Computer-aided molecular design, combinatorial (bio)chemistry and high-throughput screening techniques are now being exploited to identify highly selective ligands for use in the purification of these proteins by affinity chromatography.  相似文献   

5.
Design and selection of ligands for affinity chromatography   总被引:4,自引:0,他引:4  
Affinity chromatography is potentially the most selective method for protein purification. The technique has the purification power to eliminate steps, increase yields and thereby improve process economics. However, it suffers from problems regarding ligand stability and cost. Some of the most recent advances in this area have explored the power of rational and combinatorial approaches for designing highly selective and stable synthetic affinity ligands. Rational molecular design techniques, which are based on the ability to combine knowledge of protein structures with defined chemical synthesis and advanced computational tools, have made rational ligand design feasible and faster. Combinatorial approaches based on peptide and nucleic acid libraries have permitted the rapid synthesis of new synthetic affinity ligands of potential use in affinity chromatography. The versatility of these approaches suggests that, in the near future, they will become the dominant methods for designing and selection of novel affinity ligands with scale-up potential.  相似文献   

6.
A protocol for the purification of polyclonal antibodies from ovine serum using the synthetic protein A absorbent MAbsorbent A2P is described. Clarified serum is loaded directly onto the affinity column without prior adjustment and albumin and unwanted serum components are washed from the column using a sodium octanoate buffer before elution of bound antibodies. MAbsorbent A2P was shown to bind approximately 27 mg ml(-1) of polyclonal immunoglobulin under overloading conditions, with eluted IgG purities of >90% and minor levels of albumin (approximately 1%). The anticipated time required to complete the purification protocol is 6-7 h. Although the protocol is similar to methods utilized for antibody purification using chromatography with protein A derived from the cell wall of the microorganism Staphylococcus aureus or protein G from Streptococcus as the affinity ligands, affinity absorbents based on synthetic ligands offer a number of advantages to compounds derived from biological sources, in particular robustness, relatively low cost, ease of sanitization and, in principle, lack of biological contamination.  相似文献   

7.
Retinoids are defined as compounds which elicit specific biological effects such as control of cell growth and cell differentiation by binding to a specific receptor. Recently, we demonstrated the presence of a protein (RSBP) which satisfies the criteria for the retinoid receptor. For purification of RSBP, we prepared two types of affinity gels with retinoidal ligands (Gel-Am and Gel-Ch) based on synthetic retinobenzoic acids which possess very potent retinoidal activities. RSBP in the crude fraction extracted from cultured cells could be purified about 300-fold by affinity column chromatography using these affinity gels.  相似文献   

8.
Significant efforts are put into the design of large-scale purification processes of proteins due to great demands regarding cost efficiency and safety. In order to design an effective purification scheme the unit operations need to be reduced to a minimum. In this review we are discussing proteinaceous ligands as well as small synthetic mimics for use in affinity chromatography for large-scale applications. Different advantages as well as drawbacks of the two approaches are outlined.  相似文献   

9.
Metal chelate affinity chromatography using Zn2+-iminodiacetate agarose is shown to provide quantitative recoveries of Zn2+-inhibited protein Tyr(P) phosphatases. To elute adsorbed enzymes from immobilized Zn2+ three methods were compared: (1) removal of Zn2+ with chelators such as EDTA, (2) introduction of ligands to compete with enzyme for Zn2+ and (3) lowering pH to protonate sidechains in the enzyme that serve as ligands to Zn2+. Results show highest yields but poor purification for method 1, high purification but poor yields of active enzyme for method 3. It is concluded that gradients of competing Zn2+ ligands, such as imidazole, provide the best strategy for the purification of enzymes with retention of activity using metal chelate affinity chromatography.  相似文献   

10.
The optimization of chromatography ligands for the purification of biopharmaceuticals is highly demanded to meet the needs of the pharmaceutical industry. In the case of monoclonal antibodies (mAbs), synthetic ligands comprising multiple types of interactions (multimodal) provide process and economic advantages compared to protein‐based affinity ligands. However, optimizing the operation window of these ligands requires the development of effective high‐throughput screening platforms. Here, a novel microfluidics‐based methodology to perform rapid and multiplexed screening of various multimodal ligands relative to their ability to bind different target molecules is demonstrated. The microfluidic structure comprises three individual chambers (≈8 nL each) packed with different types of chromatography beads in series with the feed flow. An artificial mixture composed of immunoglobulin G (IgG) and bovine serum albumin, labeled with different thiol‐reactive neutral fluorescent dyes, is used as a model to quantitatively optimize the performance (yield and purity) of the separation. This approach can potentially be used as a predictive analytical tool in the context of mAb purification, allowing low consumption of molecules and providing results in <3 min. Furthermore, this versatile approach can potentially be extended not only with respect to the number of different resins and target molecules, but also for parallel analysis of multiple conditions.  相似文献   

11.
Several lines of evidence have pointed to a role of urokinase-type plasminogen activator receptor (uPAR) as a modulator of certain biochemical processes that are active during tumor invasion and metastasis. Consequently, the structure and function of this receptor have been studied extensively, using recombinantly produced uPAR that has been purified by either affinity chromatography using its cognate ligand, the urokinase-type plasminogen activator (uPA), or a monoclonal anti-uPAR antibody (R2), or by hydroxyapatite. Here, we present a new method for the efficient one-step affinity purification of recombinant uPAR exploiting a high-affinity synthetic peptide antagonist (AE152). The corresponding parent peptide was originally identified in a random phage-display library and subsequently subjected to affinity maturation by combinatorial chemistry. This study compares the affinity purification of a soluble, recombinant uPAR using the monoclonal antibody R2 or the peptide AE152 immobilized on Sepharose. The two affinity ligands perform equally well in purifying uPAR from Drosophila melanogaster Schneider 2 cell culture medium and yield products of comparable purity, activity, and stability as judged by SDS-PAGE, size exclusion chromatography and surface plasmon resonance analysis. The general availability of peptide synthesis renders the present AE152-based affinity purification of uPAR more accessible than the traditional protein-based affinity purification strategies. In this way, large amounts of recombinant uPAR can conveniently be purified for further structural and functional studies.  相似文献   

12.
The review concerns isolation and purification of nucleases by affinity chromatography. Different stationary ligands and the methods for their immobilization on supports are described, along with diverse eluents and various procedures for a nuclease detachment from the affinity sorbents. The data on the affinity chromatography application for measuring the dissociation constants of the enzyme complexes with either immobilized or soluble ligands are compiled.  相似文献   

13.
Plasminogen activators are the proteases which convert plasminogen into plasmin dissolving, in its turn, the major component of blood clots, fibrin. They are extremely useful in heart attack therapy. Modern and most appropriate way of scaled up production of these valuable proteins is gene engineering. In this case, a separation and a purification of target product become the important steps of the whole process. Recently developed affinity chromatography on short monolithic columns seems to be a very attractive method for these purposes. High speed of a process prevents the protein's denaturation due to temperature or/and solvents influence. The better mass transfer mechanism (convection rather than diffusion) allows considering only biospecific complexing as time limiting step. Specificity of several synthetic peptides to plasminogen activators have been studied by affinity chromatography on short monolithic columns. Peptide ligands were synthesized by conventional solid phase peptide synthesis (SPPS). The immobilization procedure was carried out as a one step process at static conditions. The results of quantitative evaluation of such affinity interactions were compared with those established for plasminogen that is the natural affinity counterpart to both proteases. Additionally, some of investigated peptides were synthesized directly on GMA-EDMA disks and their affinity properties were compared with those established for the case of immobilized ligands. The possibility of using of synthetic peptidyl ligands for plasminogen activators isolation from native cell supernatant and model protein mixtures has been demonstrated.  相似文献   

14.
Affinity chromatography is likely to play an increasingly important role in the purification of pharmaceutical proteins. This review describes new approaches to the design and synthesis of affinity ligands based on the ability to combine knowledge of X-ray crystallographic or NMR structures with defined or combinatorial chemical synthesis. The de novo design process is based on peptidal templates, complementarity to surface exposed residues and mimicking natural biological recognition. Examples of ligands designed to bind specifically to kallikrein, elastase, immunoglobulin G, insulin, alpha(1)-antitrypsin, clotting factor VII and glyco-proteins are given. The exceptional selectivity and stability of these synthetic ligands allows their use in harsh manufacturing environments.  相似文献   

15.
Rabies virus glycoprotein and snake venom curaremimetic neurotoxins share a region of high homology (30-45 for neurotoxins and 190-203 for the glycoprotein) in the regions that are believed to be responsible for binding the nicotinic acetylcholine receptor. Monoclonal antibodies raised to the 190-203 synthetic fragment of rabies virus glycoprotein were immobilized on a high performance affinity chromatography column and were able to bind neurotoxins. Toxins were displaced from the affinity column by elution at acidic pH and by affinity competition with acetylcholine at neutral pH. Furthermore, the affinity column proved to be useful for the purification of cholinergic ligands. Overall, these results indicate that the paratope of our monoclonal antibodies could behave as an 'internal image' of the nicotinic cholinergic receptor acetylcholine binding site.  相似文献   

16.
Affinity chromatography is a powerful technique for the purification of many proteins in human plasma. Applications cover the isolation of proteins for research purposes but also, to a large extent, for the production of therapeutic products. In industrial plasma fractionation, affinity chromatography has been found to be particularly advantageous for fine and rapid capture of plasma proteins from industrial plasma fractions pre-purified by ethanol fractionation or by ion-exchange chromatography. To date, affinity chromatography is being used in the production of various licensed therapeutic plasma products, such as the concentrates of Factor VIII, Factor IX, von Willebrand Factor, Protein C, Antithrombin III, and Factor XI. Most commonly used ligands are heparin, gelatin, murine antibodies, and, to a lesser extent, Cu(2+). Possible development of the use of affinity chromatography in industrial plasma fractionation should be associated to the current development of phage display and combinatorial chemistry. Both approaches may lead to the development of tailor-made synthetic ligands that would allow implementation of protein capture technology, providing improved productivity and yield for plasma products.  相似文献   

17.
The thermostable Thermus aquaticus DNA polymerase (Taq Pol) has been the key factor in transforming the initial PCR method into one with huge impact in molecular biology and biotechnology. Therefore, the development of effective affinity adsorbents for the purification of Taq Pol, as well as other DNA polymerases, attracts the attention of the enzyme manufacturers and the research laboratories. In this report we describe a simple protocol for the purification of Taq Pol from E. coli lysates, leading to enzymes of high specific activity and purity. The protocol is based on a single affinity chromatography step, featuring an immobilized ligand selected from a structure-biased combinatorial library of dNTP-mimetic synthetic ligands. The ligand library was screened for its ability to bind and purify Taq Pol from E. coli lysates. One immobilized ligand (mABSGu) of the general formula X-Trz-Y, bearing 9-aminoethylguanine (AEGu) and aniline-2-sulfonic acid (mABS) linked on the triazine scaffold (Trz), displayed the highest purifying ability. Adsorption equilibrium studies with this affinity ligand and Taq Pol determined a dissociation constant (KD) of 0.12 mM for the respective complex, whereas ATP prevented the formation of the mABSGu-Taq Pol complex. The mABSGu affinity adsorbent was exploited in the development of a facile Taq Pol purification protocol, affording homogeneous enzyme (>99% purity, approximately 61 500 U/mg) in a single chromatography step. Quality control tests showed that Taq Pol purified on the mABSGu affinity adsorbent is free of nucleic acids and contaminating nuclease activities.  相似文献   

18.
Aptamers are synthetic nucleic acid‐based high affinity ligands that are able to capture their corresponding target via molecular recognition. Here, aptamer‐based affinity purification for His‐tagged proteins was developed. Two different aptamers directed against the His‐tag were immobilized on magnetic beads covalently. The resulting aptamer‐modified magnetic beads were characterized and successfully applied for purification of different His‐tagged proteins from complex E. coli cell lysates. Purification effects comparable to conventional immobilized metal affinity chromatography were achieved in one single purification step. Moreover, we have investigated the possibility to regenerate and reuse the aptamer‐modified magnetic beads and have shown their long‐term stability over a period of 6 months. Biotechnol. Bioeng. 2011;108: 2371–2379. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
The meaning of the word affinity in the context of protein separation has undergone evolutionary changes over the years. The exploitation of molecular recognition phenomenon is no longer limited to affinity chromatography modes. Affinity based separations today include precipitation, membrane based purification and two-phase/three-phase extractions. Apart from the affinity ligands, which have biological relationship (in vivo) with the target protein, a variety of other ligands are now used in the affinity based separations. These include dyes, chelated metal ions, peptides obtained by phage display technology, combinatorial synthesis, ribosome display methods and by systematic evolution of ligands by exponential enrichment (SELEX). Molecular modeling techniques have also facilitated the designing of biomimetic ligands. Fusion proteins obtained by recombinatorial methods have emerged as a powerful approach in bioseparation. Overexpression in E. coli often result in inactive and insoluble inclusion bodies. A number of interesting approaches are used for simultaneous refolding and purification in such cases. Proteomics also needs affinity chromatography to reduce the complexity of the system before analysis by electrophoresis and mass spectrometry are made. At industrial level, validation, biosafety and process hygiene are also important aspects. This overview looks at these evolving paradigms and various strategies which utilize affinity phenomenon for protein separations.  相似文献   

20.
Dyes-based biomimetic affinity chromatography has been used to purify therapeutically useful proteins. In order to design novel biomimetic affinity ligands for purification of tissue-type plasminogen activator (t-PA), small molecular fragments were achieved to fit in S3/4 binding site of t-PA by structure-based ligand design method (InsightII/Ludi). Three biomimetic affinity ligands A, B, and C were then designed, synthesized, and proved to bind the target protein (t-PA), exceeding the binding capacity of the commercial p-amino benzamidine affinity matrix. The designed affinity matrix A showed high efficiency to purify sc-tpa from the crude samples with 18-fold of purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号