共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Tanaka H. Kimura M. Hayashi Y. Fujiyoshi K. Fukuhara H. Nakamura 《Protein science : a publication of the Protein Society》1994,3(3):419-427
A series of 204 amino acid proteins intended to form TIM (triose phosphate isomerase) barrel structures were designed de novo. Each protein was synthesized by expression of the synthetic gene as a fusion protein with a portion of human growth hormone in an Escherichia coli host. After BrCN treatment, the protein was purified to homogeneity. The refolded proteins are globular and exist as monomers. One of the designed proteins is stable toward guanidine hydrochloride (GuHCl) denaturation, with a midpoint of 2.6 M determined from CD and tryptophan fluorescence measurements. The GuHCl denaturation is well described by a 2-state model. The NMR spectra, the thermal denaturation curves, and the 1-anilino-8-naphthalene sulfonic acid binding imply that the stability of the protein arises mainly from hydrophobic interactions, which are probably of a nonspecific nature. The protein has a similar shape to that of rabbit triosephosphate isomerase, as determined by electron microscopy. 相似文献
2.
In the context of reduced protein models, Monte Carlo simulations of three de novo designed helical proteins (four-member helical bundle) were performed. At low temperatures, for all proteins under consideration, protein-like folds having different topologies were obtained from random starting conformations. These simulations are consistent with experimental evidence indicating that these de novo designed proteins have the features of a molten globule state. The results of Monte Carlo simulations suggest that these molecules adopt four-helix bundle topologies. They also give insight into the possible mechanism of folding and association, which occurs in these simulations by on-site assembly of the helices. The low-temperature conformations of all three sequences have the features of a molten globule state. 相似文献
3.
To understand the key determinants in calcium-binding affinity, a calcium-binding site with pentagonal bipyramid geometry was designed into a non-calcium-binding protein, domain 1 of CD2. This metal-binding protein has five mutations with a net charge in the coordination sphere of -5 and is termed DEEEE. Fluorescence resonance energy transfer was used to determine the metal-binding affinity of DEEEE to the calcium analog terbium. The addition of protein concentration to Tb(III) solution results in a large enhancement of Tb(III) fluorescence due to energy transfer between terbium ions and aromatic residues in CD2-D1. In addition, both calcium and lanthanum compete with terbium for the same desired metal binding pocket. Our designed protein exhibits a stronger affinity for Tb(III), with a K(d) of 21 microM, than natural calcium-binding proteins with a similar Greek key scaffold. 相似文献
4.
Development of artificial collagens to replace the animal-derived collagens presents a challenge in the formation of safer and functional biomaterials. We report here the development of collagen-like gels by means of the self-assembly of chemically synthesized peptides. The peptides are disulfide-linked trimers of collagenous Gly-X-Y triplet repeats with self-complementary shapes. Upon cooling the peptide solutions, hydrogels of peptide supramolecules are formed by spontaneous intermolecular triple helix formation. The thermal gel-sol transition appeared to be reversible, and the transition temperatures were found to be tunable by the design of the peptides. Our systems for the formation of artificial collagen-like gels will offer possibilities for novel types of biomaterials. 相似文献
5.
6.
The binding of glycosaminoglycans to a synthetic peptide (SKAQKAQAKQAKQAQKAQKAQAKQAKQW-CONH(2)), consisting of a hybrid consensus heparin binding sequence, is studied using circular dichroism, fluorescence anisotropy and nuclear magnetic resonance techniques. The results unveil certain novel features, most importantly, the peptide binds preferentially to iduronic acid containing glycosaminoglycans and the dissociation constant for the peptide-heparin complex was found to be 30 nM. Interestingly, higher order intermolecular association(s)/aggregation was not observed, especially at saturating concentrations of the ligand. The helical structure of the peptide backbone, induced upon binding to a particular glycosaminoglycan is directly related to their binding affinity. In our opinion, studies on such unconventional hybrid peptide sequences containing low density basic amino acid residues would lead to the design of sequence specific glycosaminoglycan binding peptides. 相似文献
7.
Chapeaurouge A Johansson JS Ferreira ST 《The Journal of biological chemistry》2002,277(19):16478-16483
The folding of a model native-like dimeric four-helix bundle protein, (alpha(2))(2), was investigated using guanidine hydrochloride, hydrostatic pressure, and low temperature. Unfolding by guanidine hydrochloride followed by circular dichroism and intrinsic fluorescence spectroscopy revealed a highly cooperative transition between the native-like and unfolded states, with free energy of unfolding determined from CD data, DeltaG(unf) = 14.3 +/- 0.8 kcal/mol. However, CD and intrinsic fluorescence data were not superimposable, indicating the presence of an intermediate state during the folding transition. To stabilize the folding intermediate, we used hydrostatic pressure and low temperature. In both cases, dissociation of the dimeric native-like (alpha(2))(2) into folded monomers (alpha(2)) was observed. van't Hoff analysis of the low temperature experiments, assuming a two-state dimer 171-monomer transition, yielded a free energy of dissociation of (alpha(2))(2) of DeltaG(diss) = 11.4 +/- 0.4 kcal/mol, in good agreement with the free energy determined from pressure dissociation experiments (DeltaG(diss) = 10.5 +/- 0.1 kcal/mol). Binding of the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to the pressure- and cold-dissociated states of (alpha(2))(2) indicated the existence of molten-globule monomers. In conclusion, we demonstrate that the folding pathway of (alpha(2))(2) can be described by a three-state transition including a monomeric molten globule-like state. 相似文献
8.
The effects of various mechanisms of metalloporphyrin reduction potential modulation were investigated experimentally using a robust, well-characterized heme protein maquette, synthetic protein scaffold H10A24 [?CH(3)()CONH-CGGGELWKL.HEELLKK.FEELLKL.AEERLKK. L-CONH(2)()?(2)](2). Removal of the iron porphyrin macrocycle from the high dielectric aqueous environment and sequestration within the hydrophobic core of the H10A24 maquette raises the equilibrium reduction midpoint potential by 36-138 mV depending on the hydrophobicity of the metalloporphyrin structure. By incorporating various natural and synthetic metalloporphyrins into a single protein scaffold, we demonstrate a 300-mV range in reduction potential modulation due to the electron-donating/withdrawing character of the peripheral macrocycle substituents. Solution pH is used to modulate the metalloporphyrin reduction potential by 160 mV, regardless of the macrocycle architecture, by controlling the protonation state of the glutamate involved in partial charge compensation of the ferric heme. Attempts to control the reduction potential by inserting charged amino acids into the hydrophobic core at close proximity to the metalloporphyrin lead to varied success, with H10A24-L13E lowering the E(m8.5) by 40 mV, H10A24-E11Q raising it by 50 mV, and H10A24-L13R remaining surprisingly unaltered. Modifying the charge of the adjacent metalloporphyrin, +1 for iron(III) protoporphyrin IX or neutral for zinc(II) protoporphyrin IX resulted in a loss of 70 mV [Fe(III)PPIX](+) - [Fe(III)PPIX](+) interaction observed in maquettes. Using these factors in combination, we illustrate a 435-mV variation of the metalloporphyrin reduction midpoint potential in a simple heme maquette relative to the about 800-mV range observed for natural cytochromes. Comparison between the reduction potentials of the heme maquettes and other de novo designed heme proteins reveals global trends in the E(m) values of synthetic cytochromes. 相似文献
9.
Fezoui Y Hartley DM Walsh DM Selkoe DJ Osterhout JJ Teplow DB 《Nature structural biology》2000,7(12):1095-1099
We report here that a monomeric de novo designed alpha-helix-turn-alpha-helix peptide, alpha t alpha, when incubated at 37 degrees C in an aqueous buffer at neutral pH, forms nonbranching, protease resistant fibrils that are 6-10 nm in diameter. These fibrils are rich in beta-sheet and bind the amyloidophilic dye Congo red. alpha t alpha fibrils thus display the morphologic, structural, and tinctorial properties of authentic amyloid fibrils. Surprisingly, unlike fibrils formed by peptides such as the amyloid beta-protein or the islet amyloid polypeptide, alpha t alpha fibrils were not toxic to cultured rat primary cortical neurons or PC12 cells. These results suggest that the potential to form fibrils under physiologic conditions is not limited to those proteins associated with amyloidoses and that fibril formation alone is not predictive of cytotoxic activity. 相似文献
10.
Wei Y Liu T Sazinsky SL Moffet DA Pelczer I Hecht MH 《Protein science : a publication of the Protein Society》2003,12(1):92-102
Binary patterning of polar and nonpolar amino acids has been used as the key design feature for constructing large combinatorial libraries of de novo proteins. Each position in a binary patterned sequence is designed explicitly to be either polar or nonpolar; however, the precise identities of these amino acids are varied extensively. The combinatorial underpinnings of the "binary code" strategy preclude explicit design of particular side chains at specified positions. Therefore, packing interactions cannot be specified a priori. To assess whether the binary code strategy can nonetheless produce well-folded de novo proteins, we constructed a second-generation library based upon a new structural scaffold designed to fold into 102-residue four-helix bundles. Characterization of five proteins chosen arbitrarily from this new library revealed that (1) all are alpha-helical and quite stable; (2) four of the five contain an abundance of tertiary interactions indicative of well-ordered structures; and (3) one protein forms a well-folded structure with native-like features. The proteins from this new 102-residue library are substantially more stable and dramatically more native-like than those from an earlier binary patterned library of 74-residue sequences. These findings demonstrate that chain length is a crucial determinant of structural order in libraries of de novo four-helix bundles. Moreover, these results show that the binary code strategy--if applied to an appropriately designed structural scaffold--can generate large collections of stably folded and/or native-like proteins. 相似文献
11.
Walsh ST Sukharev VI Betz SF Vekshin NL DeGrado WF 《Journal of molecular biology》2001,305(2):361-373
De novo protein design provides a tool for testing the principles that stabilize the structures of proteins. Recently, we described the design and structure determination of alpha(3)D, a three-helix bundle protein with a well-packed hydrophobic core. Here, we test the malleability and adaptability of this protein's structure by mutating a small, Ala residue (A60) in its core to larger, hydrophobic side-chains, Leu and Ile. Such changes introduce strain into the structures of natural proteins, and therefore generally destabilize the native state. By contrast, these mutations were slightly stabilizing ( approximately 1.5 kcal mol(-1)) to the tertiary structure of alpha(3)D. The value of DeltaC(p) for unfolding of these mutants was not greatly affected relative to wild-type, indicating that the change in solvent accessibility for unfolding was similar. However, two-dimensional heteronuclear single quantum coherence spectra indicate that the protein adjusts to the introduction of steric bulk in different ways. A60L-alpha(3)D showed serious erosion in the dispersion of both the amide backbone as well as the side-chain methyl chemical shifts. By contrast, A60I-alpha(3)D showed excellent dispersion of the backbone resonances, and selective changes in dispersion of the aliphatic side-chains proximal to the site of mutation. Together, these data suggest that alpha(3)D, although folded into a unique three-dimensional structure, is nevertheless more malleable and flexible than most natural, native proteins. 相似文献
12.
We have designed a series of 15 short, helical de novo peptides consisting of lysine, isoleucine, and alanine. We have termed this the KIA series. These peptides differ only in their hydrophobic interface, and thus their self-association is largely a consequence of hydrophobic interactions. One of these peptides, KIA13, forms insoluble helical fibers at specific NaCl concentrations. We have used CD spectroscopy, turbidity assays, and in situ tapping mode atomic force microscopy to characterize the reversible assembly pathway for this peptide. It is unfolded at low NaCl concentration, and forms helical, soluble fibers resembling a coiled-coil conformation at intermediate NaCl concentrations, and rope-like insoluble fibers at high NaCl concentrations. Reducing the NaCl concentration completely reverses this process. Another peptide from the KIA series specifically inhibits the formation of the insoluble KIA13 fibers, and reverses the process to some extent. This work sheds light onto protein fibrillogenesis and offers intriguing possibilities for the use of these types of peptides in drug delivery and biomaterials applications. 相似文献
13.
Sebastien Gallien 《Expert review of proteomics》2015,12(5):489-498
The advances in high-resolution mass spectrometry instrumentation, capable of accurate mass measurement and fast acquisition, have enabled new approaches for targeted quantitative proteomics. More specifically, analyses performed on quadrupole-orbitrap mass spectrometers operated in parallel reaction monitoring (PRM) mode leverage the intrinsic high resolving power and trapping capabilities. The PRM technique offers unmatched degrees of selectivity and analytical sensitivity, typically required to analyze peptides in complex samples, such as those encountered in biomedical research or clinical studies. The features of PRM have provoked a paradigm change in targeted experiments, by decoupling acquisition and data processing. It has resulted in a new analytical workflow comprising distinct methods for each step, thus enabling much larger flexibility. The PRM technique was further enhanced by a new data acquisition scheme, allowing dynamic parameter settings. The potential of the technique may radically impact future quantitative proteomics studies. 相似文献
14.
基因芯片技术和蛋白质组技术在神经科学中的应用及其研究进展 总被引:2,自引:0,他引:2
基因芯片技术和蛋白质组技术是最近发展起来的高通量技术,二者的出现使同时分析神经系统的大量基因的表达和基因产物蛋白质及其相互作用网络成为可能。它们在神经科学中的应用为了解脑功能提供了前所未有的机会。一个典型的基因芯片实验包括:芯片的准备或购买、靶DNA和探针的准备或标记、标记探针与靶DNA的杂交、芯片扫描和影象信息的数据分析。蛋白质组技术较为复杂,包括蛋白质分离、鉴定和信息分析三方面的内容。其中,分离技术多种多样。若分离技术以二维电泳为基础,则该实验通常由以下步骤组成:蛋白质样品的准备、电泳分离、染胶、分离蛋白点的切除、蛋白质的酶解(常用胰蛋白酶)、质谱分析(鉴定)和数据的信息处理。本文综述这两项技术的内容和实验步骤,然后着重叙述它们在神经科学中的应用,讨论其优缺点和面临的挑战,展望其发展前景。 相似文献
15.
Jigang Wang Jianbin Zhang Yew-Mun Lee Pin-Lang Koh Shukie Ng Feichao Bao 《Autophagy》2016,12(10):1931-1944
Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQTM). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and provides useful insights to the molecular mechanisms and biological functions of autophagy. 相似文献
16.
17.
Nowadays, the improvement of R&D productivity is the primary commitment in pharmaceutical research, both in big pharma and smaller biotech companies. To reduce costs, to speed up the discovery process and to increase the chance of success, advanced methods of rational drug design are very helpful, as demonstrated by several successful applications. Among these, computational methods able to predict the binding affinity of small molecules to specific biological targets are of special interest because they can accelerate the discovery of new hit compounds. Here we provide an overview of the most widely used methods in the field of binding affinity prediction, as well as of our own work in developing BEAR, an innovative methodology specifically devised to overtake some limitations in existing approaches. The BEAR method was successfully validated against different biological targets, and proved its efficacy in retrieving active compounds from virtual screening campaigns. The results obtained so far indicate that BEAR may become a leading tool in the drug discovery pipeline. We primarily discuss advantages and drawbacks of each technique and show relevant examples and applications in drug discovery. 相似文献
18.
Qian WJ Jacobs JM Liu T Camp DG Smith RD 《Molecular & cellular proteomics : MCP》2006,5(10):1727-1744
Recent advances in proteomics technologies provide tremendous opportunities for biomarker-related clinical applications; however, the distinctive characteristics of human biofluids such as the high dynamic range in protein abundances and extreme complexity of the proteomes present tremendous challenges. In this review we summarize recent advances in LC-MS-based proteomics profiling and its applications in clinical proteomics as well as discuss the major challenges associated with implementing these technologies for more effective candidate biomarker discovery. Developments in immunoaffinity depletion and various fractionation approaches in combination with substantial improvements in LC-MS platforms have enabled the plasma proteome to be profiled with considerably greater dynamic range of coverage, allowing many proteins at low ng/ml levels to be confidently identified. Despite these significant advances and efforts, major challenges associated with the dynamic range of measurements and extent of proteome coverage, confidence of peptide/protein identifications, quantitation accuracy, analysis throughput, and the robustness of present instrumentation must be addressed before a proteomics profiling platform suitable for efficient clinical applications can be routinely implemented. 相似文献
19.
The cyclic beta-sheet structure possessed by the 10-residue antibiotic peptide gramicidin S was taken as the structural framework for the de novo design of biologically active peptides with membrane-active properties. We have shown from previous studies that gramicidin S is a broad-spectrum antibiotic effective against Gram-positive bacteria, Gram-negative bacteria, and fungi, but is toxic to human red blood cells. We tested the effect of ring size on antimicrobial activity and hemolytic activity on peptides varying from 4 to 16 residues. Interestingly, we were able to dissociate hemolytic activity and antimicrobial activity by increasing the ring size of the peptide to 14 residues (peptide GS14). Furthermore, we increased specificity for microbial membranes while decreasing toxicity to red blood cells by substituting enantiomers (D-amino acids for L-amino acids and vice versa) into the GS14 sequence. The enantiomeric substitutions all disrupted beta-sheet structure in benign medium and decreased peptide amphipathicity. The least amphipathic peptide, produced by substituting a D-Lys at position 4 of GS14 (peptide GS14K4), also had the highest therapeutic index, i.e., highest degree of specificity for microbial cells over human cells. Solution structures of GS14 analogs solved by NMR spectroscopy showed that the D-amino acid side chain was located on the nonpolar face of GS14K4. Another analog, a beta-sheet peptide with reduced amphipathicity (peptide GS14 K3L4), also had a lysine (lysine 3) on the nonpolar face as determined by the NMR structure. Both GS14K4 and GS14 K3L4 had reduced amphipathicity relative to GS14 and much higher therapeutic indices. Finally, the alteration of the nonpolar face hydrophobicity of GS14K4 analogs provided a range of activities and specificities, where the peptides with the intermediate hydrophobicities among the series had the highest therapeutic indices. The optimal peptide hydrophobicities varied depending on the microorganism being tested, with higher hydrophobicity requirements against Gram-positive bacteria and yeast compared with Gram-negative microorganisms. The net result of these studies suggests that it is possible to rationally design a cyclic membrane-active antimicrobial peptide with high specificity towards prokaryotic (bacterial and fungal) membranes and minimal toxicity to eukaryotic (e.g., mammalian) membranes. 相似文献
20.
A stepwise procedure for preparing of site-specific binuclear metallopeptides is described. The modification procedure involves the alkylation of a cysteine side chain by reaction with [Ru(bpy)(2)(phen-ClA)](2+), where bpy = 2,2'-bipyridine and phen-ClA = 5-chloroacetamido-1,10-phenanthroline, followed by the coordination of a ruthenium pentammine complex to a histidine residue located elsewhere along the sequence. The apo and metalated versions of the peptides C10H21(30-mer) and H10C21(30-mer) display circular dichroism spectra having minima at 208 and 222 nm, with theta(222)/theta(208) = 1.04 to indicate that these peptides exist as alpha-helical coiled-coils in aqueous solution. When the ruthenium polypyridyl complex is attached to C10H21(30-mer), the Delta-l and Lambda-l diastereomers of the resulting metallopeptide can be readily separated from each other by reversed-phase HPLC. However, in the case of the related H10C21(30-mer) metallopeptide, the two diastereomers cannot be chromatographically resolved. These results indicate how the subtle interplay between peptide conformation/sequence and metal complex geometry may alter some of the physical characteristics of metallopeptides. 相似文献