首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Plasma lipoproteins from 5-week old male chickens were separated over the density range 1.006-1.172 g/ml into 22 subfractions by isopycnic density gradient ultracentrifugation, in order to establish the distribution of these particles and their constituent apolipoproteins as a function of density. Lipoprotein subfractions were characterized by electrophorectic, chemical and morphological analyses, and their protein moieties were defined according to net charge at alkaline pH, molecular weight and isoelectric point. These analyses have permitted us to reevaluate the density limits of the major chicken lipoprotein classes and to determine their main characteristics, which are as follows: (1) very-low-density lipoproteins (VLDL), isolated at d less than 1.016 g/ml, were present at low concentrations (less than 0.1 mg/ml) in fasted birds; their mean diameter determined by gradient gel electrophoresis and by electron microscopy was 20.5 and 31.4 nm respectively; (2) as the the density increased from VLDL to intermediate density lipoproteins (IDL), d 1.016-l.020 g/ml) and low-density lipoproteins (LDL, d 1.020-1.046 g/ml), the lipoprotein particles contained progressively less triacylglycerol and more protein, and their Stokes diameter decreased to 20.0 nm; (3) apolipoprotein B-100 was the major apolipoprotein in lipoproteins of d less than 1.046 g/ml, with an Mr of 350000; small amounts of apolipoprotein B-100 were detectable in HDL subfractions of d less than 1.076 g/ml; urea-soluble apolipoproteins were present in this density range as minor components of Mr 38000-39000, 27000-28000 (corresponding to apolipoprotein A-1) and Mr 11000-12000; (4) high density lipoprotein (HDL, d 1.052-1.130 g/ml) was isolated as a single band, whose protein content increased progressively with increase in density; the chemical composition of HDL resembled that of human HDL2, with apolipoprotein A-1 (M 27000-28000) as the major protein component, and a protein of Mr 11000-12000 as a minor component; (5) heterogeneity was observed in the particle size and apolipoprotein distribution of HDL subfractions: two lipoprotein bands which additional apolipoproteins of Mr 13000 and 15000 were detected. These studies illustrate the inadequacy in the chicken of the density limits applied to fractionate the lipoprotein spectrum, and particularly the inappropriateness of the 1.063 g/ml density limit as the cutoff for LDL and HDL particle populations in the species.  相似文献   

2.
The laying hen represents a physiological model in which the mechanisms of action of estrogens on lipid transport can be evaluated. The plasma lipoproteins in the laying hen were subfractionated into discrete particle species by isopycnic density gradient ultracentrifugation and the physicochemical properties and apolipoprotein contents of individual subfractions evaluated. The qualitative and quantitative aspects of this estrogen-specific profile were then compared to those of the immature chicken. As observed earlier, estrogens induced dramatic elevation in very-low-density lipoproteins (VLDL) (up to 900 mg/dl). Indeed, triglyceride-rich lipoproteins with densities up to 1.035 g/ml, i.e. VLDL and their remnants, behaved as a continuum which displayed little variation in size (20.5-21 nm), electrophoretic mobility (beta-like) and apolipoprotein content; apo B-100 (540 kDa) predominated while apo A-I (27 kDa), apo VLDL-II (19 kDa) and an apo-C-like protein (13 kDa) were present as minor components. The typical high-density lipoproteins (HDL) in the immature chicken were replaced by a lipoprotein population whose physicochemical properties were quite distinct. Thus these particles were distributed as a single, asymmetric peak over the density range 1.030-1.158 g/ml, a wide interval which overlapped that of apo-B-rich particles at its lower limit. The rho 1.030-1.158 g/ml lipoproteins were present at concentrations (approximately equal to 200 mg/dl) some twofold to threefold lower than those of HDL in immature birds. Furthermore, they displayed physical and chemical properties in common with both low-density lipoproteins (LDL) and HDL and were LDL-like in exhibiting beta mobility but HDL-like in size (9-15 nm diameter). Their protein moiety was also HDL-like in its predominant content of apo A-I; small amounts of apo VLDL-II and the apo-C-like protein were also detected. Substantial amounts of lipid were found at rho greater than 1.195 g/ml: such substances are absent in the immature chicken and may reflect the presence of vitellogenins. The hyperestrogenic state in the laying hen is therefore associated with major modifications in lipoprotein and apolipoprotein profile. Such modifications may be of relevance to clinical disorders involving estrogen-induced hyperlipidemia.  相似文献   

3.
Abstract: Although the critical role of apolipoprotein E (apoE) allelic variation in Alzheimer's disease and in the outcome of CNS injury is now recognized, the functions of apoE in the CNS remain obscure, particularly with regard to lipid metabolism. We used density gradient ultracentrifugation to identify apoE-containing lipoproteins in human CSF. CSF apoE lipoproteins, previously identified only in the 1.063–1.21 g/ml density range, were also demonstrated in the 1.006–1.060 g/ml density range. Plasma lipoproteins in this density range include low-density lipoprotein and high-density lipoprotein (HDL) subfraction 1 (HDL1). The novel CSF apoE lipoproteins are designated HDL1. No immunoreactive apolipoprotein A-I (apo A-I) or B could be identified in the CSF HDL1 fractions. Large lipoproteins 18.3 ± 6.6 nm in diameter (mean ± SD) in the HDL1 density range were demonstrated by electron microscopy. Following fast protein liquid chromatography of CSF at physiologic ionic strength, apoE was demonstrated in particles of average size greater than particles containing apoA-I. The largest lipoproteins separated by this technique contained apoE without apoA-I. Thus, the presence of large apoE-containing lipoproteins was confirmed without ultracentrifugation. Interconversion between the more abundant smaller apoE-HDL subfractions 2 and 3 and the novel larger apoE-HDL1 is postulated to mediate a role in cholesterol redistribution in brain.  相似文献   

4.
1. Plasma lipoproteins from six thoroughbred horses were separated by density gradient ultracentrifugation. For each sample, lipoprotein bands were visualized by means of a prestained plasma control and characterized by electrophoretic, chemical and morphological analysis. 2. Very low density lipoproteins (VLDL) were isolated at d less than 1.018 g/ml. 3. Two clearly resolved bands were detected in the low density lipoprotein fraction (LDL). The density limits were evaluated as follows: LDL1(1.028 less than d less than 1.045 g/ml) and LDL2(1.045 less than d less than 1.070 g/ml). Marked differences were observed in the chemical composition and particle size of LDL1 and LDL2 fractions. 4. High density lipoprotein fraction (HDL) was usually isolated as a single band, distributed over the range 1.075 less than d less than 1.180 g/ml. However, chemical composition and particle size revealed heterogeneity in HDL subfractions. 5. The density limit of LDL and HDL bands varied in each animal, indicating differences in equine lipoprotein distribution.  相似文献   

5.
Lipoprotein distribution in rat plasma determined after sequential ultracentrifugation (requiring 8 days of centrifugation to separate lipoproteins in five density classes), was compared to estimates based upon cumulative density ultracentrifugation (46 hr of ultracentrifugation). In general comparable values were obtained by the two methods with regard to protein, total cholesterol, cholesteryl ester, free cholesterol, and triacylglycerol distribution. However, the HDL3 protein concentration found by sequential ultracentrifugation was only about 50% of that found after the cumulative procedure. Apolipoproteins in lipoproteins isolated by the two methods were well separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Color of the stained bands was extracted and read photometrically. A linear standard curve was obtained with albumin. Absorbance corresponding to 1 microgram/ml was 0.057. Below d = 1.100 g/ml (HDL2b) the two ultracentrifugation methods gave comparable results for all apoproteins. In contrast to this the level of apo A-I, apo E, and apo A-IV in the more dense types of HDL was higher when estimated by cumulative than by sequential ultracentrifugation. In HDL3 isolated by sequential ultracentrifugation the apo A-IV, apo E, and apo A-I concentrations were 51, 31, and 45% respectively, of values found after cumulative ultracentrifugation. The results indicate that cumulative density ultracentrifugation, followed by colorimetric determination of apoproteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is a useful approach when studying lipoprotein distribution in rat plasma.  相似文献   

6.
The in vivo role of the liver in lipoprotein homeostasis in the preruminant calf, a functional monogastric, has been evaluated. To this end, the hydrodynamic and physicochemical properties, density distribution, apolipoprotein content, and flow rates of the various lipoprotein particle species were determined in the hepatic afferent (portal vein and hepatic artery) and efferent (hepatic vein) vessels in fasting, 3-week-old male preruminant calves. Plasma lipoprotein profiles were established by physicochemical analyses of a series of subfractions isolated by isopycnic density gradient ultracentrifugation. Triglyceride-rich very low density lipoproteins (VLDL) (d less than 1.018 g/ml) were minor plasma constituents (approximately 1% or less of total d less than 1.180 g/ml lipoproteins). The major apolipoproteins of VLDL were apoB-like species, while the complement of minor components included bovine apoA-I and apoC-like peptides. Particles with diameters (193-207 A) typical of low density lipoproteins (LDL) were present over the density interval 1.026-1.076 g/ml; however, only LDL of d 1.026-1.046 g/ml were present as a unique and homogeneous size subspecies, containing the two apoB-like species as major protein components in addition to elevated cholesteryl ester contents. LDL represented approximately 10% of total d less than 1.180 g/ml lipoproteins in fasting plasma from all three hepatic vessels. Overlap in the density distribution of particles with the diameters of LDL and of high density lipoproteins (HDL) occurred in the density range from 1.046 to 1.076 g/ml; these HDL particles were 130-150 A in diameter. HDL were the major plasma particles (approximately 90% of total d less than 1.180 g/ml substances) and presented as two distinct populations which we have termed light (HDLL) and heavy (HDLH) HDL. Light HDL (d 1.060-1.091 g/ml) ranged in size from 120 to 140 A, and were distinguished by their high cholesteryl ester (29-33%) and low triglyceride (1-3%) contents; apoA-I was the principal apolipoprotein. Small amounts of apolipoproteins with Mr less than 60,000, including apoC-like peptides, were also present. Heavy HDL (d 1.091-1.180 g/ml) accounted for almost half (47%) of total calf HDL, and like HDLL, were also enriched in cholesteryl ester and apoA-I; they ranged in size from 93 to 120 A. The protein moiety of HDLH was distinct in its possession of an apoA-IV-like protein (Mr 42,000). Blood flow rates were determined by electromagnetic flowmetry, thereby permitting determination of net lipoprotein balance across the liver. VLDL were efficiently removed during passage through the liver (net uptake 1.06 mg/min per kg body weight).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The fractionation and physicochemical characterization of the complex molecular components composing the plasma lipoprotein spectrum in the goose, a potential model of liver steatosis, are described. Twenty lipoprotein subfractions (d less than 1.222 g/ml) were separated by isopycnic density gradient ultracentrifugation, and characterized according to their chemical composition, particle size and particle heterogeneity, electrophoretic mobility, and apolipoprotein content. Analytical ultracentrifugal analyses showed high density lipoproteins (HDL) to predominate (approximately 450 mg/dl plasma), the peak of its distribution occurring at d approximately 1.090 g/ml (F1.21 approximately 2.5). The HDL class displayed marked density heterogeneity, HDL1-like particles being detected up to a lower density limit of approximately 1.020 g/ml, particle size decreasing progressively from 17-19 nm at d 1.024-1.028 g/ml to 10.5-12 nm (d 1.055-1.065 g/ml), and then remaining constant (approximately 9 nm) at densities greater than 1.065 g/ml. HDL subfractions displayed multiple size species; five subspecies were present over the range d 1.103-1.183 g/ml with diameters of 10.5, 9.9, 9.0, 8.2, and 7.5 nm, four in the range d 1.090-1.103 g/ml (diameters 10.5, 9.9, 9.0, and 8.2 nm) and three over the range d 1.076-1.090 g/ml (diameters 10.5, 9.9, and 9.0 nm). ApoA-I (Mr 25,000-27,000) was the major apolipoprotein in all goose HDL subfractions, while the minor components (apparent Mr 100,000, 91,000, 64,000, 58,000, approximately 42,000, 18,000 and apoC-like proteins) showed marked quantitative and qualitative variation across this density range (i.e., 1.055-1.165 g/ml). The d 1.063 g/ml boundary for separation of goose low density lipoproteins (LDL) from HDL was inappropriate, since HDL-like particles were present in the density interval 1.024-1.063 g/ml, while particles enriched in apoB (Mr approximately 540,000) and resembling LDL in size (approximately 20.5 nm) were detected up to a density of approximately 1.076 g/ml. Goose LDL itself was a major component of the profile (90-172 mg/dl) with a single peak of high flotation rate (Sf approximately 10.5). The physicochemical properties and apolipoprotein content of intermediate density lipoproteins (IDL) and LDL varied but little over the range d 1.013-1.040 g/ml, presenting as two particle species (diameters 20.5 and 21 nm) of essentially constant chemical composition; LDL (d 1.019-1.040 g/ml) were separated from HDL1 by gel filtration chromatography and appeared to contain primarily apoB with lesser amounts of apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
When plasma from rabbits, which several weeks earlier had been infused with [3H]cholesterol, was subjected to equilibrium density gradient ultracentrifugation, the specific radioactivity of cholesterol in the very-high-density lipoprotein (VHDL) fraction (d 1.22-1.32 g/ml) was three to 8-fold greater (mean, 5.5-fold; P less than 0.001) than that in high-density lipoproteins (HDL; d 1.06-1.21 g/ml). On size exclusion chromatography of plasma, no increase in specific radioactivity was seen in particles smaller than HDL. These findings suggest that those apolipoprotein-lipid complexes that dissociate from HDL during ultracentrifugation to form the VHDL fraction contain proportionately more tissue-derived cholesterol than do those that are more tightly bound to HDL.  相似文献   

9.
The lipoproteins of density less than 1.063 g/ml of cholesterol-fed rabbits were subjected to analytical ultracentrifugation. In many rabbits two peaks were found in the very low density (Sf greater than 20) portion of the lipoprotein spectrum. They were isolated by preparative ultracentrifugation and analysed. The smaller particles (remnant chylomicrons) had a peak Sf of 37, mean diameter of 36 nm, mean density of 1.00 g/ml, and their chemical composition agreed closely with previous reports. The larger particles had a peak Sf of 270, mean diameter of 80 nm, mean density of 0.97 g/ml and a high (80%) cholesterol ester and low (4%) triglyceride content. The fatty acid composition of the cholesterol esters, phospholipids and triglycerides was similar in both fractions. It is proposed that these large lipoprotein particles are also remnant chylomicrons. Possible reasons are presented to explain the presence of this second peak in the very low density lipoprotein spectrum.  相似文献   

10.
1. Low-density (d 1.006-1.063g/ml) lipoproteins from normal human plasma were separated by differential preparative ultracentrifugation into six subfractions. Each low-density (LD) lipoprotein subfraction contained lipoprotein B as the major and lipoproteins A and C as the minor lipoprotein families. 2. Three lipoprotein B subfractions (LP-B), LP-B-III (d 1.019-1.030g/ml), LP-B-IV (d 1.030-1.040g/ml) and LP-B-V (d 1.040-1.053g/ml) were prepared from the corresponding LD lipoprotein subfractions by immunoprecipitating small amounts of lipoproteins A and C. 3. Determination of hydrodynamic properties indicated that LD lipoproteins consisted of three molecular segments characterized by a stepwise change in the molecular weight: LDL-I and LDL-II subfractions (d 1.006-1.019g/ml) with an average mol.wt. of 4.75x10(6), LDL-III (d 1.019-1.030g/ml) with a mol.wt. of 3.99x10(6), and LDL-IV, LDL-V and LDL-VI (d 1.030-1.063g/ml) with a mol.wt. of 2.85x10(6). 4. All three lipoprotein B subfractions had an average mol.wt. of 3.16x10(6). 5. The LDL-I and LDL-II subfractions consisted of lipoprotein B and lipoprotein C families which were present in the form of an association complex. This was isolated from serum by immunoprecipitation with antibodies to lipoprotein B. The complex had a mol.wt. of 4.35x10(6). 6. The results indicate a fundamental difference between the LD lipoprotein subfractions with d 1.006-1.019g/ml and those subfractions with d 1.030-1.063g/ml. In the former, lipoprotein B occurs as a part of an association complex, whereas in the latter it occurs as a separate entity.  相似文献   

11.
The influences of age and maximal aerobic capacity (VO2max) on serum lipoproteins with special regard to the concentration, composition and distribution of high density lipoprotein (HDL) subfractions were investigated in 51 healthy males of different characteristics: younger than 35 years, untrained (n = 14, mean age 28.2 years, SD 6.0; VO2max, 47.9 ml.kg-1.min-1, SD 5.8) and trained (n = 11, mean age 27.9 years, SD 4.3; VO2max, 61.1 ml.kg-1.min-1, SD 5.1), older than 50 years untrained (n = 14, mean age 58.9 years, SD 5.9, VO2max, 29.3 ml.kg-1.min-1, SD 5.3) and trained (n = 12, mean age 59.3 years, SD 7.2, VO2max, 45.7 ml.kg-1.min-1, SD 7.7). The fasting-state serum concentrations of total cholesterol, tri-acylglycerol and lipoprotein-cholesterol were measured. The HDL-subfractions were separated by density (rho) gradient ultracentrifugation. Concentrations of cholesterol, cholesterylester, tri-acylglycerol, phospholipids, apolipoprotein (apo) A-I and A-II were measured in the subfractions HDL2b: rho = 1.063-1.100 g.ml-1; HDL2al: rho = 1.00-1.110 g.ml-1; HDL2a2: rho = 1.110-1.150 g.ml-1; HDL3: rho = 1.150-1.210 g.ml-1. Elderly untrained subjects showed increased serum concentrations of total-, very low- and low density lipoprotein-cholesterol and elevated tri-acylglycerol levels. The HDL-cholesterol concentration was decreased, due to reduced concentrations of HDL2-subfractions. Significant changes in the composition of HDL2-subfractions were found in elderly untrained subjects. The HDL2-subfractions had more protein, a decreased apoA-I:A-II ratio and less phospholipids in comparison to HDL2-subfractions from younger untrained and trained, and elderly trained subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Intracellular forms of chylomicrons, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) have previously been isolated from the rat intestine. These intracellular particles are likely to be nascent precursors of secreted lipoproteins. To study the distribution of intracellular apolipoprotein among nascent lipoproteins, a method to isolate intracellular lipoproteins was developed and validated. The method consists of suspending isolated enterocytes in hypotonic buffer containing a lipase inhibitor, rupturing cell membranes by nitrogen cavitation, and isolating lipoproteins by sequential ultracentrifugation. ApoB and apoA-I mass are determined by radioimmunoassay and newly synthesized apolipoprotein characterized following [3H]leucine intraduodenal infusion. Intracellular chylomicron, VLDL, low density lipoprotein (LDL), and HDL fractions were isolated and found to contain apoB, and apoA-IV, and apoA-I. In the fasted animal, less than 10% of total intracellular apoB and apoA-I was bound to lipoproteins and 7% of apoB and 35% of apoA-I was contained in the d 1.21 g/ml infranatant. The remainder of intracellular apolipoprotein was in the pellets of centrifugation. Lipid feeding doubled the percentage of intracellular apoA-I bound to lipoproteins and increased the percentage of intracellular apoB bound to lipoproteins by 65%. Following lipid feeding, the most significant increase was in the chylomicron apoB and HDL apoA-I fractions. These data suggest that in the fasting state, 90% of intracellular apoB and apoA-I is not bound to lipoproteins. Lipid feeding shifts intracellular apolipoprotein onto lipoproteins, but most intracellular apolipoprotein remains non-lipoprotein bound. The constant presence of a large non-lipoprotein-bound pool suggests that apolipoprotein synthesis is not the rate limiting step in lipoprotein assembly or secretion.  相似文献   

13.
Plasma lipoproteins were isolated at d less than 1.225 g/ml from nonhuman primates of three species, cynomolgus, rhesus, and African green (vervet) monkeys. Individual lipoprotein classes were separated by high performance gelfiltration chromatography and low density lipoprotein (LDL) molecular weight was determined. A comparison was made using column configurations including TSK 3000 SW, 4000 SW, and 5000 PW columns. Due to its relative simplicity, stability, and economy, a single 5000 PW column was selected for most of the work. The recovery of lipoprotein cholesterol from the column averaged 91 +/- 2.5%. A comparison of the immunologic, chemical, and electrophoretic properties of high density lipoproteins (HDL) and LDL isolated by this technique with those of HDL and LDL isolated by conventional agarose column chromatography indicated that lipoproteins isolated by high performance gel-filtration chromatography were intact and reasonably free of cross contamination. A standard preparation of 125I-labeled LDL was added to the d less than 1.225 g/ml lipoprotein fraction just prior to separation and a relative size index, r1, was determined. When r1 values for a large number of samples were compared with the log of the LDL molecular weight (determined by agarose column chromatography) a linear relationship was found with a correlation coefficient, r = 0.85. The regression equation for this relationship could be used to calculate LDL molecular weights from the r1 value. These values agreed with LDL molecular weight determined by flotation equilibrium analysis in the analytical ultracentrifuge. We conclude that high performance gel-filtration chromatography using the TSK 5000 PW column provides an analytical and preparative technique for simultaneous separation of individual lipoproteins and determination of LDL molecular weight.  相似文献   

14.
Low density lipoprotein and high density lipoprotein were isolated from rat serum by sequential ultracentrifugation in the density intervals 1.025-1.050 g/ml and 1.125-1.21 g/ml, respectively. The isolated lipoproteins were radioiodinated using ICl. Low density lipoprotein was further purified by concanavalin A affinity chromatography and concentrated by ultracentrifugation. 95% of the purified low density lipoprotein radioactivity was precipitable by tetramethylurea, while only 4% was associated with lipids. The radioiodinated high density lipoprotein was incubated for 1 h at 4 degrees C with unlabelled very low density lipoprotein, followed by reisolation by sequential ultracentrifugation. Only 3% of the radioactivity was associated with lipids and 90% was present on apolipoprotein A-I. The serum decay curves of labelled and subsequently purified rat low and high density lipoprotein, measured over a period of 28 h, clearly exhibited more than one component, in contrast to the monoexponential decay curves of iodinated human low density lipoprotein. The decay curves were not affected by the methods used to purify the LDL and HDL preparations. The catabolic sites of the labelled rat lipoproteins were analyzed in vivo using leupeptin-treated rats. In vivo treatment of rats with leupeptin did not affect the rate of disappearance from serum of intravenously injected labelled rat low density lipoprotein and high density lipoprotein. Leupeptin-dependent accumulation of radioiodine occurred almost exclusively in the liver after intravenous injection of iodinated low density lipoprotein, while both the liver and the kidneys showed leupeptin-dependent accumulation of radioactivity after injection of iodinated high density lipoprotein.  相似文献   

15.
The concentration of cholesterol, apolipoproteins A-I, B, and E has been determined in lymphedema fluid from nine patients with chronic primary lymphedema. The concentrations were: 38.14 +/- 21.06 mg/dl for cholesterol, 15.6 +/- 6.17 mg/dl for apolipoprotein A-I, 7.5 +/- 2.8 mg/dl for apolipoprotein B, and 1.87 +/- 0.50 mg/dl for apolipoprotein E. These values represent 23%, 12%, 6%, and 38% of plasma concentrations, respectively. The ratio of esterified to unesterified cholesterol in lymphedema fluid was 1.46 +/- 0.45. Lipoproteins of lymphedema fluid were fractionated according to particle size by gradient gel electrophoresis and by exclusion chromatography. Gradient gel electrophoresis showed that a majority of high density lipoproteins (HDL) of lymphedema fluid were larger than ferritin (mol wt 440,000) and smaller than low density lipoproteins (LDL); several discrete subpopulations could be seen with the large HDL region. Fractionation by exclusion chromatography showed that more than 25% of apolipoprotein A-I and all of apolipoprotein E in lymphedema fluid was associated with particles larger than plasma HDL2. Apolipoprotein A-I also eluted in fractions that contained particles the size of or smaller than albumin. Isolation of lipoproteins by sequential ultracentrifugation showed that less than 25% of lymphedema fluid cholesterol was associated with apolipoprotein B. The majority of apolipoprotein A-containing lipoproteins of lymphedema fluid were less dense than those in plasma. Ultracentrifugally separated fractions of lipoproteins were examined by electron microscopy. The fraction d less than 1.019 g/ml contained little material, while fraction d 1.019-1.063 g/ml contained two types of particles: round particles 17-26 nm in diameter and square-packing particles 13-17 nm on a side. Fractions d 1.063-1.085 g/ml had extensive arrays of square-packing particles 13-14 nm in size. Fractions d 1.085-1.11 g/ml and fractions d 1.11-1.21 g/ml contained round HDL, 12-13 nm diameter and 10 nm diameter, respectively. Discoidal particles were observed infrequently.  相似文献   

16.
Two populations of apolipoprotein (apo) A-I-containing lipoprotein particles are found in high density lipoproteins (HDL): those that also contain apo A-II[Lp(A-I w A-II)] and those that do not [Lp(A-I w/o A-II)]. Lp(A-I w/o A-II) comprised two distinct particle sizes with mean hydrates Stokes diameter of 10.5 nm for Lp(A-I w/o A-II)1 and 8.5 nm for Lp(A-I w/o A-II)2. To study the effect of ultracentrifugation on these particles, Lp(A-I w/o A-II) and Lp(A-I w A-II) were isolated from the plasma and the ultracentrifugal HDL (d 1.063-1.21 g/ml fractions) of five normolipidemic and three hyperlipidemic subjects. The size subpopulations of these particles were studied by gradient polyacrylamide gel electrophoresis. Several consistent differences were detected between plasma Lp(A-I w/o A-II) and HDL Lp(A-I w/o A-II). First, in all subjects, the relative proportion of Lp(A-I w/o A-II)1 to Lp(A-I w/o A-II)2 isolated from HDL was reduced. Second, particles larger than Lp(A-I w/o A-II)1 and smaller than Lp(A-I w/o A-II)2 were considerably reduced in HDL. Third, a distinct population of particles with approximate Stokes diameter of 7.1 nm usually absent in plasma was detected in HDL Lp(A-I w/o A-II). Little difference in subpopulation distribution was detected between Lp(A-I w A-II) isolated from the plasma and HDL of the same subject. When plasma Lp(A-I w/o A-II) and Lp(A-I w A-II) were centrifuged, 14% and 4% of A-I were, respectively, recovered in the D greater than 1.21 g/ml fraction. Only 2% A-II was found in this density fraction. These studies show that the Lp(A-I w/o A-II) particles are less stable than Lp(A-I w A-II) particles upon ultracentrifugation. Among the various Lp(A-I w/o A-II) subpopulations, particles larger than Lp(A-I w/o A-II)1 and smaller than Lp(A-I w/o A-II)2 are most labile.  相似文献   

17.
Human VLDL, LDL and HDL (very-low-, low- and high-density lipoproteins) were isolated from plasma by gel permeation chromatography with one pre-ultracentrifugation step. The column effluent was monitored at 280 nm. The cholesterol content of the fractions correlated well with fractions from sequential ultracentrifugation (VLDL, r = 0.839; LDL, r = 0.924; HDL, r = 0.766) or precipitation (LDL, r = 0.975; HDL, r = 0.972) methods. The average triglyceride, phospholipid and protein compositions of the separated lipoprotein fractions were close to those of the ultracentrifugally isolated fractions reported previously. Apolipoproteins A1 and B were determined from fractions to confirm the right distribution between different lipoproteins.  相似文献   

18.
In this study we have investigated the effects of very low density lipoprotein (VLDL) lipolysis on the removal of radiolabeled apolipoprotein C-II and apolipoprotein C-III-1 from in vitro lipolyzed lipoproteins. Lipolysis was carried out in vitro using lipoprotein lipase purified from bovine milk, and mixtures with or without plasma. Lipoproteins were isolated by ultracentrifugation and by gel filtration. Labeled apo-C-II and apo-C-III-1 distributed among plasma lipoproteins, predominantly VLDL and high density lipoprotein (HDL). Lipolysis induced transfer of apo-C-II and apo-C-III-1 from VLDL to HDL. The transfer was proportional to the extent of triglyceride hydrolysis, and similar for the two apoproteins. The apo-C-II/apo-C-III-1 radioactivity ratio did not change in either VLDL or the fraction of d greater than 1.006 g/ml during the progression of the lipolytic process. Similar observations were recorded while using plasma-devoid lipolytic systems. Gel filtration of incubation mixtures, on 6% agarose, revealed that the removal of labeled apo-C molecules from VLDL is not a consequence of either centrifugation or high salt concentration. These results suggest that there is no preferential removal of apo-C-II or apo-C-III-1 from lipolyzed VLDL particles. They further indicate that the ratio of apo-C-II to apo-C-III-1 does not regulate the extent of lipolysis of different VLDL particles, at least in VLDL isolated from normolipidemic humans.  相似文献   

19.
The purpose of this experiment was to characterize the high density lipoproteins (HDL) as a function of hydrated density. HDL was subfractionated on the basis of hydrated density by CsCl density gradient centrifugation of whole serum or the d 1.063-1.25 g/ml HDL fraction isolated from three men and three women. Apolipoprotein A-I and A-II quantitation by radial immunodiffusion showed that the A-I/A-II ratio varied with the lipoprotein hydrated density. The A-I/A-II molar ratio of HDL lipoproteins banding between d 1.106 and 1.150 g/ml was nearly constant at 2.2 +/- 0.2. In the density range 1.151-1.25 g/ml the A-I/A-II ratio increased as the density increased. On the other hand, in the density range between 1.077 and 1.105 the A-I/A-II ratio increased as the density decreased, ranging from 2.8 +/- 0.5 for the d 1.093-1.105 g/ml fraction to 5.6 +/- 1.3 for the d 1.077-1.082 g/ml fraction. The d 1.063-1.076 g/ml fraction and the d 1.077-1.082 g/ml fractions had comparable A-I/A-II ratios. Serum and the d 1.063-1.25 g/ml HDL fraction exhibited similar trends. The cholesterol/(A-I + A-II) ratio decreased as the density increased in all 12 samples (six serum and six HDL) examined. Gradient gel electrophoresis of the density gradient fractions showed that as the density increased from 1.063 to 1.200 g/ml the apparent molecular weight decreased from 3.9 x 10(5) to 1.1 x 10(5). HDL subfractions with the same hydrated densities had comparable molecular weights and A-I/A-II and cholesterol/(A-I + A-II) ratios when isolated from men or women. HDL contains subpopulations that differ in the A-I/A-II molar ratio.-Cheung, M. C., and J. J. Albers. Distribution of cholesterol and apolipoprotein A-I and A-II in human high density lipoprotein subfractions separated by CsCl equilibrium gradient centrifugation: evidence for HDL subpopulations with differing A-I/A-II molar ratios.  相似文献   

20.
The hemolymph lipoproteins of two European freshwater crayfish, Astacus astacus and Astacus leptodactylus, were isolated and characterized. The former species possesses two sex-independent lipoproteins, which can be related to the formerly described high-density lipoprotein (HDL)/beta-glucan binding protein and very high-density lipoprotein/clotting protein from other crustaceans. The latter species, however, contains an additional third lipoprotein with a unique structure. It is a large discoidal HDL with a diameter of 42 nm, a thickness of 7 nm and a density of 1.1 g/ml. SDS-PAGE revealed two different apolipoproteins with molecular masses of 240 and 85 kDa, respectively, arranged in a 1:1 stoichiometry as judged from cross linking experiments. The lipid content of this lipoprotein was 67%, far higher than in every other crustacean lipoprotein described so far. The native molecular mass of this HDL-type lipoprotein was estimated to be about 930 kDa. The lipid content of the other lipoproteins ranged between 25 and 30% for the HDL/beta-glucan binding protein and 6-8% for the VHDL/clotting protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号