首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary translation product of the PRC II avian sarcoma virus genome is a protein of 105,000 daltons (P105), and we have previously shown that approximately 50% of the P105 molecules are converted to molecules of 110,000 daltons (P110) by posttranslational modification. Fractionation of PRC II-infected cells showed that P105 was contained primarily in a nonionic detergent-soluble compartment, whereas P110 partitioned almost exclusively with a nonionic detergent-insoluble or crude cytoskeletal fraction. The tyrosine-specific protein kinase activity previously observed in immunoprecipitates which presumably contained both P110 and P105 was found predominantly in the P110-containing immunoprecipitates made from the cytoskeletal fraction and was essentially absent from the P105-containing immunoprecipitates prepared from the soluble fraction. Individual analysis of 32P-labeled P110 and P105 prepared by this fractionation technique revealed that P110 contained more phosphotyrosine per mole of protein than did P105. Examination of the tryptic peptide maps of 32P-labeled P110 and P105 suggested that the additional phosphotyrosine in P110 resulted from phosphorylation at discrete sites within the protein. From these experiments, we conclude that PRC II-infected cells contain two discrete forms, P105 and P110, of the transforming protein and that each of these proteins exhibits distinct structural and functional characteristics.  相似文献   

2.
Synthesis of murine mammary tumor viral proteins in vitro   总被引:8,自引:6,他引:2       下载免费PDF全文
The coding potential of murine mammary tumor viral genomic RNA was investigated by in vitro translation of various size classes of RNAs isolated from the virions. The major products of translation of full-size 35S polyadenylylated virion RNA were gag-related polyproteins of 75,000, 105,000, and 180,000 daltons (P75, P105, and P180, respectively). Studies on the kinetics of translation of these three proteins established that they were synthesized independently and that the smaller proteins were not post-translational cleavage products of the larger proteins. Tryptic peptide mapping showed that almost all of the P75 sequences were contained within P105 and almost all of the P105 sequences were contained within P180. The syntheses of all three proteins were inhibited by m7GTP, indicating that they were translated from capped mRNA's. Although a 24S polyadenylylated RNA had been identified as the intracellular mRNA for env precursor polyprotein, no such protein could be translated from the 24S polyadenylylated RNA isolated from the virions. However, translation of a 14S size class of polyadenylylated virion yielded four prominent proteins of about 36,000, 23,000, 21,000, and 20,000 daltons. These proteins were unrelated to murine mammary tumor viral structural proteins, as suggested from tryptic peptide mapping and immunoprecipitation data. They might be the products of an as-yet-unidentified gene located near the 3' terminus of the murine mammary tumor viral genomic RNA.  相似文献   

3.
Six overlapping viral RNAs are synthesized in cells infected with the avian coronavirus infectious bronchitis virus (IBV). These RNAs contain a 3'-coterminal nested sequence set and were assumed to be viral mRNAs. The seven major IBV virion proteins are all produced by processing of three polypeptides of ca. 23, 51, and 115 kilodaltons. These are the core polypeptides of the small membrane proteins, the nucleocapsid protein, and the 155-kilodalton precursor to the large membrane proteins GP90 and GP84, respectively. To determine which mRNAs specify these polypeptides, we isolated RNA from infected cells and translated it in a messenger-dependent rabbit reticulocyte lysate. Proteins of 23, 51, and 110 kilodaltons were produced. Two-dimensional tryptic peptide mapping demonstrated that these proteins were closely related to the major virion proteins. Fractionation of the RNA before cell-free translation permitted the correlation of messenger activities for synthesis of the proteins with the presence of specific mRNAs. We found that the smallest RNA, RNA A, directs the synthesis of P51, the nucleocapsid protein. RNA C, which contains the sequences of RNA A, directs the synthesis of the small membrane protein P23. RNA E directs the synthesis of the large virion glycoproteins. These results supported a model in which only the unique 5'-terminal domain of each IBV mRNA is active in translation and enabled us to localize genes for virion proteins on the IBV genome.  相似文献   

4.
Mouse mammary tumor virus (MuMTV) was purified from two cell lines (GR and Mm5MT/c1), and the genomic RNA was isolated and translated in vitro in cell-free systems derived from mouse L cells and rabbit reticulocytes. The major translation product in both systems was a protein with the molecular weight 77,000. Several other products were also detected, among them a 110,000-dalton and in minor amounts a 160,000-dalton protein. All three polypeptides were specifically immunoprecipitated by antiserum raised against the major core protein of MuMTV (p27), but they were not precipitated by antiserum against the virion glycoprotein gp52. Analysis of the in vitro products by tryptic peptide mapping established their relationship to the virion non-glycosylated structural proteins. The 77,000-dalton polypeptide was found to be similar, if not identical, to an analogous precursor isolated from MuMTV-producing cells. Peptide mapping of the 110,000-dalton protein shows that it contains all of the methionine-labeled peptides found in the 77,000-dalton protein plus some additional peptides. We conclude that the products synthesized in vitro from the genomic MuMTV RNA are related to the non-glycosylated virion structural proteins. Polyadenylic acid-containing RNA from MuMTV-producing cells also directed the synthesis of the 77,000-dalton polypeptide in the L-cell system. If this RNA preparation was first fractionated by sucrose gradient centrifugation the 77,000-dalton protein appeared to be synthesized from mRNA with a sedimentation coefficient between 25 and 35S.  相似文献   

5.
Coronavirus JHM: Cell-Free Synthesis of Structural Protein p60   总被引:23,自引:20,他引:3       下载免费PDF全文
Sac(-) cells infected with murine coronavirus strain JHM shut off host cell protein synthesis and synthesized polypeptides with molecular weights of 150,000, 60,000, and 23,000. The 60,000- and 23,000-molecular-weight polypeptides comigrated with virion structural proteins p60 and p23, and the 60,000-molecular-weight protein was identified as p60 by tryptic peptide fingerprinting. Polyadenylate-containing RNA [poly(A) RNA] extracted from the cytoplasm of infected cells directed the synthesis of both 60,000- and 23,000-molecular-weight polypeptides in messenger-dependent cell-free systems derived from mouse L-cells and rabbit reticulocytes. The reticulocyte system also synthesized a 120,000-molecular-weight polypeptide that was specifically immunoprecipitated by antiserum raised against JHM virions. The identity of the 60,000- and 23,000-molecular-weight in vitro products was established by comigration with virion proteins, immunoprecipitation, and in the case of p60, tryptic peptide fingerprinting. The cytoplasmic poly(A) RNAs which encoded p60 and p23 sedimented in sucroseformamide gradients at 17S and 19S, respectively, and were clearly separable. These RNAs were among the major poly(A) RNA species synthesized in the cytoplasm of actinomycin D-treated cells late in infection, and the in vitro translation of size-fractionated RNA released from polysomes confirmed that they represent physiological mRNA's. These results suggest that the expression of the coronavirus JHM genome involves more than one subgenomic mRNA.  相似文献   

6.
The protein-coding capacity of the mouse mammary tumor virus genome has been examined by in vitro translation of genome length and polyadenylated subgenomic fragments of viral RNA. Intact genome RNA of about 35S programmed synthesis of the Pr77gag, Pr110gag and Pr160gag/pol precursors seen in infected cells in vivo. Polyadenylated RNA fragments of 18 to 28S encoded products whose tryptic peptide maps resembled those of the nonglycosylated precursor to the envelope glycoproteins, confirming the gene order 5'-gag-pol-env-3'. Translation of polyadenylated RNA fragments smaller than 18S yielded a series of related proteins whose peptide maps bore no resemblance to any of the virion structural proteins. Thus, a region of the mouse mammary tumor virus genome distal to the env gene appears to have an open reading frame sufficient to encode at least 36,000 daltons of protein as of yet unknown function.  相似文献   

7.
A human type-C retrovirus, designated HTLV (human T-cell leukemia virus), was isolated from the HTLV producer cell line MT-2. Agarose gel electrophoresis analysis 32P-labeled HTLVMT-2 virion RNA revealed that HTLVMT-2 virion RNA consists mainly of 24S and small amounts of 35S and 32S RNAs. The 24S HTLVMT-2 virion RNA and unfractionated HTLVMT-2 virion RNA were translated in a rabbit reticulocyte lysate system in vitro. The predominant polypeptide synthesized from 24S RNA had an apparent mol. wt. of 28 000 (28 K); unfractionated HTLVMT-2 virion RNA directed the synthesis of 53 000 (53 K), 33 000 (33 K) and 28 000 (28 K) polypeptides as main components. Most of the polypeptides synthesised in vitro by translation of HTLVMT-2 virion RNAs possess the same sizes as the proteins formerly designated as ATLA (ATL-associated antigen) in SDS-polyacrylamide gel electrophoresis and immunologically precipitated with sera of ATL patients. Therefore, the antigens termed ATLA, found by the serological study of ATL, are HTLVMT-2 encoded polypeptides.  相似文献   

8.
J Ghysdael  R Kettmann    A Burny 《Journal of virology》1979,29(3):1087-1098
Bovine leukemia virus 60 to 70S RNA was heat denatured, the polyadenylic acid-containing species were separated by velocity sedimentation, and several size classes were translated in a micrococcal nuclease-treated cell-free system from rabbit reticulocytes. The major RNA species sedimented at 38S and migrated as a single component of molecular weight 2.95 x 10(6) when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The predominant polypeptides of the in vitro translation of bovine leukemia virus 38S RNA were products with molecular weights of 70,000 and 45,000; minor components with molecular weights of 145,000 and 18,000 were also observed. Two lines of evidence indicate that the 70,000- and 45,000-molecular weight polypeptides represent translation products of the gag gene of the bovine leukemia virus genome (Pr70gag and Pr45gag). First, they are specifically precipitated by a monospecific antiserum to the major internal protein, p24, and second, they are synthesized and correctly processed into virion proteins p24, p15, and p10 in Xenopus laevis oocytes microinjected with bovine leukemia virus 38S RNA. The 145,000-molecular weight polypeptide was immunoprecipitated by the anti-p24 serum and not by an antiserum to the major envelope glycoprotein, gp60. It contained all the tryptic peptides of Pr70gag and additional peptides unique to it, and thus represents in elongation product of Pr70gag in an adjacent gene, presumably the pol gene. The 18,000-molecular weight product was antigenically unrelated to p24 and gp60 and shared no peptides in common with Pr70gag, Pr45gag, or the 145,000-molecular weight polypeptide. It was maximally synthesized on a polyadenylic acid-containing virion 16 to 18S RNA, and we present evidence that this RNA is a 3' end-derived subgenomic fragment of the bovine leukemia virus genome rather than a contaminating cellular RNA.  相似文献   

9.
RNA from the encephalomyocarditis virus directs the cell-free synthesis of several discrete, high molecular weight proteins. The largest of these have molecular weights of approximately 110,000, 82,000, 73,000, 61,000 and 44,000 Daltons. In addition, tryptic digestion of the in vitro products gives rise to a number of peptides corresponding to those derived from the viral capsid. The data suggest that approximately one-third of the information encoded by the EMC genome is translated in vitro as a single polypeptide chain, that this translation proceeds in an appropriate phase, and that portions of the genome corresponding to structural proteins of the virus are translated.  相似文献   

10.
A novel messenger activity has been identified by in vitro translation of the 70S virion RNAs of a variety of avian leukosis and avian sarcoma viruses. When the 70S virion RNA complex was heat dissociated and the polyadenylated RNA was fractionated on neutral sucrose gradients, a polypeptide of 34,000 daltons (34K) was observed in the translation products of 18S polyadenylic acid-containing virion RNA. Aside from the p60(src)-related subgenomic messenger activities, this was the only prominent messenger activity that sedimented at <20S. It was determined that the 34K protein was not virally coded because (i) messenger activity for the 34K protein was not generated by mild alkaline hydrolysis of 35S genomic RNA, (ii) the 34K proteins synthesized in response to different virion RNAs had identical tryptic peptide maps, and (iii) the tryptic peptide map of the 34K protein coded for by virion RNA was identical to that of a major in vitro translation product of 34,000 daltons made from 18S uninfected chick cell polyadenylated RNA. The 18S RNA was shown to be contained within virion particles, rather than part of a cellular structure copurifying with virus preparations, by demonstrating the presence of 34K messenger activity in virion cores made from detergent-disrupted virus. This cellular mRNA, however, was not observed in the virion RNAs of Rous-associated virus types 0 and 2 avian leukosis viruses and therefore is not packaged by all avian retroviruses. Since no other cellular message has been detected by this assay, it seems likely that the 34K mRNA found in 70S virion RNA is the result of selective packaging of an abundant host cell mRNA by certain avian retroviruses.  相似文献   

11.
We isolated the virus-specific RNA species from Uukuniemi virus-infected chicken embryo cells and fractionated them by sucrose gradient centrifugation. In addition to three RNA species cosedimenting with the three viral RNA segments L (29S), M (23S), and S (17S), a fourth major RNA species, sedimenting at about 12S (S2), was found early in the infection. Annealing experiments indicated that the cytoplasmic L and M RNA species consisted of both plus and minus strands, with the plus strands in slight excess. Most of the S1 RNA was of negative polarity, whereas S2 was of positive polarity. The S2 RNA specifically annealed to the virion S RNA segment, indicating that it is transcribed from this segment. In vitro translation of the individual RNA species in micrococcal nuclease-treated cell-free reticulocyte extracts showed that an mRNA cosedimenting with the virion M RNA directed the synthesis of a virus-specific 110,000-dalton polypeptide (p110). This polypeptide could be immunoprecipitated with antiserum prepared against purified virions. When translation was carried out in the presence of dog pancreas microsomes, p110 was absent. Instead, an immunoprecipitable polypeptide band, with a molecular weight of about 70,000 and migrating between the virion surface glycoproteins G1 and G2, was observed. It is thus likely that the glycoproteins are synthesized as a precursor (p110), which during translation is cleaved roughly in the middle to yield G1 and G2. The 12S RNA species directed the synthesis of the nucleocapsid protein and a novel polypeptide with an apparent molecular weight of about 30,000. The latter was not precipitated with antivirion serum and was absent from lysates programmed with the corresponding RNA fraction from a mock-infected extract. Since, in addition, it was not found in purified virions and was present in the cytoplasm of infected cells but not in uninfected cells, it probably represents a nonstructural polypeptide.  相似文献   

12.
Extracts from adenovirus-transformed human 293 cells were immunoprecipitated with monoclonal antibodies specific for the early-region 1A (E1A) proteins. In addition to the E1A polypeptides, these antibodies precipitated a series of proteins with relative molecular weights of 28,000, 40,000, 50,000, 60,000, 80,000, 90,000, 110,000, 130,000, and 300,000. The two most abundant of these polypeptides are the 110,000-molecular-weight protein (110K protein) and 300K protein. Three experimental approaches have suggested that the 110K and 300K polypeptides are precipitated because they form stable complexes with the E1A proteins. The 110K and 300K polypeptides do not share epitopes with the E1A proteins, they copurify with a subset of the E1A proteins, and they bind to the E1A proteins following mixing in vitro. The 110K and 300K polypeptides are not adenoviral proteins, but are encoded by cellular DNA. Both the 12S and the 13S E1A proteins bind to the 110K and 300K species, and these complexes are found in adenovirus-transformed and -infected cells.  相似文献   

13.
The virion RNA of Moloney murine leukemia virus (MuLV) has been translated in eukaryotic cell-free systems derived from mouse L- and human HeLa cells. In both systems at least three polypeptides, approximately 60,000, 70,000, and 180,000 in apparent molecular weight, were formed in response to the added 35S MuLV RNA. All three polypeptides were precipitable with antiserum to detergent-disrupted MuLV. Fingerprint analysis of tryptic digests indicated that all three contain anino acid sequences in common with each other and with the major methionine-containing structural proteins of the virion.  相似文献   

14.
The polypeptide products synthesized at different times in a cell-free system from Krebs mouse ascites tumor cells in response to the addition of encephalomyocarditis (EMC) virus ribonucleic acid (RNA) were characterized by electrophoresis on polyacrylamide gels and fingerprint analysis of their tryptic peptides. Translation of the EMC RNA genome with time occurred in a nonrandom fashion in these systems, to yield products containing sequences characteristic of both virion capsid polypeptides and EMC-specific polypeptides present only in the infected cell. The molecular weights of the products fell in a series from 20,000 to 140,000 daltons, although occasionally traces of larger polypeptides were also observed. All of the major polypeptides appeared to arise from partial or complete translation of about 60% of the EMC RNA genome. They were not formed by cleavage of a large precursor molecule. It is suggested that they are artifacts generated by premature "termination" of nascent polypeptide chains at preferred sites.  相似文献   

15.
C Dickson  M Atterwill 《Cell》1979,17(4):1003-1012
The amino acid sequence relationship between the nonglycosylated structural proteins of murine mammary tumor virus and the polyproteins from infected cells immunoprecipitated with an anti-p27 serum were examined using two-dimensional tryptic peptide mapping procedures. The proteins were labeled with 14C-lysine and 14C-arginine so that all but one of the tryptic peptides released from a protein could be detected. Previous studies have shown that immunoprecipitation of mammary tumor cells with anti-p27 serum results in the isolation of seven proteins in the molecular weight range of 34,000–160,000 daltons; and that cell-free translation using viral genomic RNA yields three p27-related proteins of 160,000, 110,000 and 77,000 daltons, similar to the three high molecular weight proteins detected in vivo. The proteins of lower molecular weight were thought to be cleavage intermediates of Pr77gag. As judged from the peptide maps, Pr77gag contained the complete sequences of the four major internal proteins of the virion (p27, pp21, p14 and p10) and possibly a fifth highly basic protein (p8) also found in virions. The putative cleavage intermediates, as expected, lacked some tryptic peptides that could be assigned to one or more of the major virion proteins and thus allow a scheme for the cleavage events to be constructed. p110gag contained all the tryptic peptides found in Pr77gag, plus some additional peptides. A minor virion protein p30 was found to include the peptides of p14 as well as some of the additional peptides present in p110gag, suggesting a precursor-product relationship between the pr110gag and p30. The data obtained from these studies lead us to propose that there are three protein precursors which include, at least in part, the gag gene region of the virion—p160 (potentially a gag/pol precursor), p110gag and Pr77gag—and that the arrangement of the virion proteins within the gag gene (pr77gag) is p10-pp21-p27-p14.  相似文献   

16.
Virus-like particles containing the L (P1)-species of double-stranded RNA (dsRNA) were isolated from Saccharomyces cerevisiae, and the translational activity of the virus-like particle-derived dsRNA was analyzed in the wheat germ cell-free system. Denaturation of the dsRNA immediately prior to in vitro translation resulted in the synthesis of one major and at least three minor polypeptides, whereas undenatured dsRNA, as expected, did not stimulate [35S]methionine incorporation into polypeptides, but actually slightly inhibited endogenous activity. The major in vitro translation product of the denatured L-dsRNA was shown to be identical with the major L-dsRNA containing virus-like particle capsid polypeptide on the basis of three criteria: co-electrophoresis on sodium dodecyl sulfate polyacrylamide gels, immunoprecipitation, and tryptic peptide analysis. We have therefore established that the L-dsRNA genome encodes the major virus-like particle capsid polypeptide. This result adds considerable support to the hypothesis that the L-dsRNA genome acts as a helper genome to the smaller (1.6 x 10(6) dalton) M-dsRNA genome in killer strains of yeast by providing the M-dsRNA containing virus-like particles with their major coat protein.  相似文献   

17.
Poly(A)+ RNA was purified from cystozoites of Sarcocystis gigantea and Sarcocystis tenella and used to in vitro translate polypeptides in a wheat germ and a rabbit reticulocyte translation system. The in vitro translated polypeptides were compared by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The S. tenella mRNA translated at least two polypeptides (mol. wt about 80,000 and 21,500) in both translation systems that were not translated by the S. gigantea mRNA. To study co-translational and initial post-translational processing in Sarcocystis, the poly(A)+ RNA preparations were in vitro translated in the rabbit reticulocyte translation system in the presence or absence of canine microsomal membranes. Based on electrophoresis, there appeared to be modification of at least some Sarcocystis polypeptides in the mol. wt range 17,000-30,000. In addition, the translation products were immunoprecipitated with a homologous and a heterologous antiserum. The immunoprecipitated polypeptides were compared by electrophoresis and the S. tenella translation products contained at least one unique antigenic polypeptide with a mol. wt of about 34,700 that was not processed by the microsomal membranes. These results suggest that there is at least one polypeptide that is a candidate for use as an antigen for the differentiation of S. gigantea and S. tenella infections in sheep.  相似文献   

18.
The early and late gene products of human adenovirus type 12 (Ad12), as well as the viral proteins synthesized in an Ad12-transformed cell line, were identified by translation of viral mRNA in an in vitro protein-synthesizing system. Cytoplasmic RNA was isolated from permissive KB or nonpermissive BHK cells infected with Ad12 and from Ad12-transformed HA12/7 cells. Virus-specific RNA was selected by hybridization to Ad12 DNA covalently bound to cellulose. Viral RNA was then translated in a fractionated rabbit reticulocyte cell-free system or in wheat germ S-30 extracts. The proteins synthesized were characterized by immunoprecipitation and subsequent electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. RNA prepared from KB cells late after infection with Ad12 elicited the synthesis of most of the structural polypeptides of the virion and at least two presumably nonstructural Ad12 proteins. When viral RNA isolated early after infection of KB cells with Ad12 was translated in vitro, 10 polypeptides were observed: E-68K, E-50K, E-42K, E-39K, E-34K, E-21K, E-19K, E-13K, E-12K, and E-10K. Ad12-specific RNA was also isolated from the Ad12-transformed hamster cell line HA12/7, which contains several copies of the Ad12 genome integrated in the host genome. The RNA codes for at least seven polypeptides with molecular weights very similar to those of the early viral proteins.  相似文献   

19.
20.
Cell-Free Translation of Paramyxovirus Messenger RNA   总被引:10,自引:6,他引:4       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号