首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thioredoxin, an antioxidant protein, is a promising molecule for development of functional foods because it protects the gastric mucosa and reduces the allergenicity of allergens. To establish a method for obtaining an ample amount of yeast thioredoxin, we found here that thioredoxin is released from Saccharomyces cerevisiae by treatment with 20% ethanol. We also found that Japanese sake contains a considerable amount of thioredoxin.  相似文献   

2.
Thioredoxin, an antioxidant protein, is a promising molecule for development of functional foods because it protects the gastric mucosa and reduces the allergenicity of allergens. To establish a method for obtaining an ample amount of yeast thioredoxin, we found here that thioredoxin is released from Saccharomyces cerevisiae by treatment with 20% ethanol. We also found that Japanese sake contains a considerable amount of thioredoxin.  相似文献   

3.
Thioredoxins (Trx) are ubiquitous dicysteine proteins capable of modulating enzymes and other cellular targets through specific disulfide-dithiol redox changes. They are unique in that a large number of very diverse metabolic systems are addressed and redox-regulated in bacteria, animal, and plant cells, but the finite number of thioredoxin interaction partners is still unknown. Two-hybrid methodology should provide a rational way to establish thioredoxin functions in a given organism. We report a search for physiological target proteins of thioredoxin1 in the social amoeba Dictyostelium discoideum , which possesses three developmentally regulated thioredoxin genes, all of which lack functional characterisation. A two-hybrid approach identified at least seven bona fide thioredoxin partners, including oxidoreductases, proteins of the ribosomal translation apparatus, and the cytoskeletal protein filopodin. With the exception of ribonucleotide reductase, none of these systems had previously been linked to specific redox modulation. Molecular interactions in two of the new thioredoxin/target protein couples were verified by biochemical studies: (1) thioredoxin1 and the abundant elongation factor 1alpha from D. discoideum form the mixed heterodisulfide characteristic of the thioredoxin mechanism of action; and (2) reduced thioredoxin, but not glutathione, strongly inhibits yeast alcohol dehydrogenase catalysis of ethanol oxidation.  相似文献   

4.
The influence of hypoosmotic shock on the solute content of growing Escherichia coli K-12 cells was investigated at 37°C. Within 20 s after the shock the cells had released most of their osmolytes K+, glutamate and trehalose. This release was specific and not due to rupture of the cell membrane, since under these conditions i) the cells neither lost protein nor ATP, ii)[14C]-labeled sucrose did not enter the cytoplasm from the periplasm, and iii) except for their glutamate and aspartate level, which decreased, the amino acid pool of alanine, lysine and arginine of the cells remained approximately constant. Within a minute after the shock the cells started to reaccumulate parts of their previously released glutamate, aspartate and K+, but not trehalose and resumed growth within 10 min after the shock. Experiments with K+-transport mutants showed that none of the genetically-identified K+ transport systems is involved in the K+-release process. Reaccumulation of K+ took place via the uptake systems TrkG and TrkH. The possibility is discussed that the exit of solutes after hypoosmotic shock occurs via several stretch-activated channels, which each allow the release of a specific osmolyte.Abbreviations OD578 optical density at 578 nm - TEA triethylammonium - TMG 1,-S-methyl--thiogalactopyranoside  相似文献   

5.
Yeast thioredoxin genes   总被引:14,自引:0,他引:14  
Based on the conserved protein sequence of thioredoxins from yeast and other organisms, two primers were synthesized for polymerase chain reaction of yeast genomic DNA. A 34-base pair (bp) sequence around the active site of yeast thioredoxin was obtained from the polymerase chain reaction product. This specific sequence was used as a probe in Southern blot analysis of total yeast genomic DNA digested with various restriction enzymes. Under conditions of high stringency, more than one DNA species hybridized with the probe, suggesting that more than one gene encodes yeast genomic library. Two Sau3A1 fragments, 825 and 2045 bp, respectively, from two different clones were cloned into pUC13. Sequence analysis of these fragments gave two different open reading frames without introns. The 825-bp Sau3A1 fragment encodes a 103-amino acid residue protein named thioredoxin I. The 2045-bp Sau3A1 fragment contains a sequence encoding thioredoxin II which has 102 amino acid residues. This is the first report of the cloning and sequencing of eukaryotic thioredoxin genes from any source. Both yeast thioredoxins contain a dithiol active site sequence, Cys-Gly-Pro-Cys. Thioredoxins I and II show 78% amino acid sequence identity. They display more amino acid sequence similarity with mammalian thioredoxin than with Escherichia coli and plant chloroplast thioredoxins.  相似文献   

6.
N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H2O2, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H2O2 or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H2O2. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains.  相似文献   

7.
The recently cloned cDNA for pea chloroplast thioredoxin f was used to produce, by PCR, a fragment coding for a protein lacking the transit peptide. This cDNA fragment was subcloned into a pET expression vector and used to transform E. coli cells. After induction with IPTG the transformed cells produce the protein, mainly in the soluble fraction of the broken cells. The recombinant thioredoxin f has been purified and used to raise antibodies and analysed for activity. The antibodies appear to be specific towards thioredoxin f and do not recognize other types of thioredoxin. The recombinant protein could activate two chloroplastic enzymes, namely NADP-dependent malate dehydrogenase (NADP-MDH) and fructose 1,6-bisphosphatase (FBPase), both using dithiothreitol as a chemical reductant and in a light-reconstituted/thylakoid assay. Recombinant pea thioredoxin f turned out to be an excellent catalyst for NADP-MDH activation, being the more efficient than a recombinant m-type thioredoxin of Chlamydomonas reinhardtii and the thioredoxin of E. coli. At the concentrations of thioredoxin used in the target enzyme activation assays only the recombinant thioredoxin f activated the FBPase.  相似文献   

8.
The genes encoding thioredoxin and thioredoxin reductase of Clostridium litorale were cloned and sequenced. The thioredoxin reductase gene (trxB) encoded a protein of 33.9 kDa, and the deduced amino acid sequence showed 44% identity to the corresponding protein from Escherichia coli. The gene encoding thioredoxin (trxA) was located immediately downstream of trxB. TrxA and TrxB were each encoded by two gene copies, both copies presumably located on the chromosome. Like other thioredoxins from anaerobic, amino-acid-degrading bacteria investigated to date by N-terminal amino acid sequencing, thioredoxin from C. litorale exhibited characteristic deviations from the consensus sequence, e.g., GCVPC instead of WCGPC at the redox-active center. Using heterologous enzyme assays, neither thioredoxin nor thioredoxin reductase were interchangeable with the corresponding proteins of the thioredoxin system from E. coli. To elucidate the molecular basis of that incompatibility, Gly-31 in C. litorale thioredoxin was substituted with Trp (the W in the consensus sequence) by site-directed mutagenesis. The mutant protein was expressed in E. coli and was purified to homogeneity. Enzyme assays using the G31W thioredoxin revealed that Gly-31 was not responsible for the observed incompatibility with the E. coli thioredoxin reductase, but it was essential for activity of the thioredoxin system in C. litorale. Received: 19 September 1996 / Accepted: 21 May 1997  相似文献   

9.
A method based on the survival of yeast cells subjected to an ethanol or heat shock was utilized to compare the stress resistance of free and carrageenan-immobilized yeast cells. Results demonstrated a significant increase of yeast survival against ethanol for immobilized cells as compared to free cells, while no marked difference in heat resistance was observed. When entrapped cells were released by mechanical disruption of the gel beads and submitted to the same ethanol stress, they exhibited a lower survival rate than entrapped cells, but a similar or slightly higher survival rate than free cells. The incidence of ethanol- or heat-induced respiratory-deficient mutants of entrapped cells was equivalent to that of control or non-stressed cells (1.3 ± 0.5%) whereas ethanol- and heat-shocked free and released cells exhibited between 4.4% and 10.9% average incidence of respiration-deficient mutants. It was concluded that the carrageenan gel matrix provided a protection against ethanol, and that entrapped cells returned to normal physiological behaviour as soon as they were released. The cell growth rate was a significant factor in the resistance of yeast to high ethanol concentrations. The optimum conditions to obtain reliable and reproducible results involved the use of slow-growing cells after exhaustion of the sugar substrate.  相似文献   

10.
Rabbit antisera against homogeneous rat liver thioredoxin and thioredoxin reductase (NADPH-oxidized thioredoxin oxidoreductase, E.C. 1.6.4.5) were prepared and used for immunohistochemical analysis in adult rats. Immunoreactive thioredoxin and thioredoxin reductase were widely distributed in tissues and organs, but varied a lot between cell types. Generally, epithelial cells, neuronal cells and secretory cells, both exocrine and endocrine, showed high immunoreactivity whereas mesenchymal cells with exceptions showed low activity. Surface lining epithelial and keratinizing cells showed high activity. The immunofluorescence was localized in the cytoplasm of cells with enrichments at secretory granules, at the plasma membrane or in the subplasma membrane zone. Variations in secretory cells were seen related to feeding and starvation and to metabolic activity. The distribution of thioredoxin and thioredoxin reductase is compatible with function in thiol-disulfide interchange reaction related to protein synthesis, intracellular transport and different forms of secretion.  相似文献   

11.
12.
Peroxiredoxins are ubiquitously expressed proteins that reduce hydroperoxides using disulfur-reducing compounds as electron donors. Peroxiredoxins (Prxs) have been classified in two groups dependent on the presence of either one (1-Cys Prx) or two (2-Cys Prx) conserved cysteine residues. Moreover, 2-Cys Prxs, also named thioredoxin peroxidases, have peroxide reductase activity with the use of thioredoxin as biological electron donor. However, the biological reducing agent for the 1-Cys Prx has not yet been identified. We report here the characterization of a 1-Cys Prx from yeast Saccharomyces cerevisiae that we have named Prx1p. Prx1p is located in mitochondria, and it is overexpressed when cells use the respiratory pathway, as well as in response to oxidative stress conditions. We show also that Prx1p has peroxide reductase activity in vitro using the yeast mitochondrial thioredoxin system as electron donor. In addition, a mutated form of Prx1p containing the absolutely conserved cysteine as the only cysteine residue also shows thioredoxin-dependent peroxide reductase activity. This is the first example of 1-Cys Prx that has thioredoxin peroxidase activity. Finally, exposure of null Prx1p mutant cells to oxidant conditions reveals an important role of the mitochondrial 1-Cys Prx in protection against oxidative stress.  相似文献   

13.
When over-expressed in the cytoplasm of Escherichia coli, carboxylesterase Est55 of Geobacillus stearothermophilus was found to be released from cells upon osmotic shock. Comparing two osmotic shock protocols showed that release of Est55 was abolished in the absence of mechanosensitive channel MscL by one method but not the other. The discrepancy extended to several previously reported cytoplasmic proteins released by osmotic shock, including: EF-Tu, thioredoxin, and DnaK in E. coli. Stepwise analyses of parameters between these two protocols revealed that the use of mechanical pipetting instead of gentle dilution of cells prior to exposure to hypotonic solution abolished the effect of MscL. Furthermore, while this phenomenon of release of certain cytoplasmic proteins was sustained in all three wild type strains of E. coli, presence of gadolinium was able to serve as an MscL channel blocker and prevented release of Est55 and EF-Tu in the process. An optimized protocol of osmotic shock was developed from this study to provide a more reliable assessment of location of proteins in E. coli. This method allowed release of authentic periplasmic MalE and beta-lactamase proteins comparable to that by EDTA-lysozyme treatment.  相似文献   

14.
15.
The thioredoxin system comprising thioredoxin (Trx), thioredoxin reductase (TR) and NADPH operates via redox-active disulphides and provides electrons for a wide variety of different metabolic processes in prokaryotic and eukaryotic cells. Thioredoxin is also a general protein disulphide reductase involved in redox regulation. In bacteria, the Trx and TR proteins previously identified were encoded by separate genes (trxA and trxB). In this study, we report a novel genomic organization of TR and Trx in mycobacteria and show that at least three modes of organization of TR and Trx genes can exist within a single bacterial genus: (i) in the majority of mycobacterial strains the genes coding for TR and Trx are located on separate sites of the genome; (ii) interestingly, in all pathogenic Mycobacterium tuberculosis complex mycobacteria both genes are found on the same locus, overlapping in one nucleotide; (iii) in the pathogen Mycobacterium leprae, TR and Trx are encoded by a single gene. Sequence analysis of the M. leprae gene demonstrated that the N-terminal part of the protein corresponds to TR and the C-terminal part to Trx. A corresponding single protein product of approximately 49 kDa was detected in cell extracts of M. leprae. These findings demonstrate the very unusual phenomenon of a single gene coding for both the substrate (thioredoxin) and the enzyme (thioredoxin reductase), which seems to be unique to M. leprae.  相似文献   

16.
Bioethanol is mainly produced from food crops such as sugar cane and maize, and this has been held partly responsible for the rise of food commodity prices. Tobacco, integrated in biorefinery facilities for the extraction of different compounds, could become an alternative feedstock for biofuel production. When grown for energy production, using high plant densities and several mowings during the growing season, tobacco can produce large amounts of inexpensive green biomass. We have bred two commercial tobacco cultivars (Virginia Gold and Havana 503B) to increase the carbohydrate content by the overexpression of thioredoxin f in the chloroplast. Marker-free transplastomic plants were recovered and their agronomic performance under field conditions was evaluated. These plants were phenotypically equivalent to their wild types yet showed increased starch (up to 280 %) and soluble sugar (up to 74 %) contents in leaves relative to their control plants. Fermentable sugars released from the stalk were also higher (up to 24 %) for transplastomic plants. After heat pretreatment, enzymatic hydrolysis and yeast fermentation of leaf and stalk hydrolysates, an average of 20–40 % more ethanol was obtained from transplastomic plants than their wild-type controls. We propose an integral exploitation of the entire tobacco plant managed as a forage crop (harvesting sugar and starch-rich leaves and lignocellulosic stalks) that could considerably cheapen the entire production process.  相似文献   

17.
18.
Mechanosensitive channels sense elevated membrane tension that arises from rapid water influx occurring when cells move from high to low osmolarity environments (hypoosmotic shock). These non-specific channels in the cytoplasmic membrane release osmotically-active solutes and ions. The two major mechanosensitive channels in Escherichia coli are MscL and MscS. Deletion of both proteins severely compromises survival of hypoosmotic shock. However, like many bacteria, E. coli cells possess other MscS-type genes (kefA, ybdG, ybiO, yjeP and ynaI). Two homologs, MscK (kefA) and YbdG, have been characterized as mechanosensitive channels that play minor roles in maintaining cell integrity. Additional channel openings are occasionally observed in patches derived from mutants lacking MscS, MscK and MscL. Due to their rare occurrence, little is known about these extra pressure-induced currents or their genetic origins. Here we complete the identification of the remaining E. coli mechanosensitive channels YnaI, YbiO and YjeP. The latter is the major component of the previously described MscM activity (~300 pS), while YnaI (~100 pS) and YbiO (~1000 pS) were previously unknown. Expression of native YbiO is NaCl-specific and RpoS-dependent. A Δ7 strain was created with all seven E. coli mechanosensitive channel genes deleted. High level expression of YnaI, YbiO or YjeP proteins from a multicopy plasmid in the Δ7 strain (MJFGH) leads to substantial protection against hypoosmotic shock. Purified homologs exhibit high molecular masses that are consistent with heptameric assemblies. This work reveals novel mechanosensitive channels and discusses the regulation of their expression in the context of possible additional functions.  相似文献   

19.
The thioredoxin (Trx) system, comprising Trx, the selenoprotein thioredoxin reductase (TrxR), and NADPH, functions as an antioxidant system. Trx has various biological activities including growth control and anti‐apoptotic properties, and the Trx system offers a target for the development of drugs to treat and/or prevent cancer. We evaluated the role of TrxR inhibition in the release of arachidonic acid (AA), cell toxicity, and intracellular signaling pathways in L929 mouse fibrosarcoma cells. Treatment with 1‐chloro‐2,4‐dinitrobenzene (DNCB, an inhibitor of TrxR) under conditions involving limited inhibition of TrxR activity in cells, released AA before causing cytotoxicity. Treatment with an inhibitor of p38 kinase, a downstream enzyme of the apoptosis signal‐regulating kinase 1 pathway, and pyrrophenone (an inhibitor of α‐type cytosolic phospholipase A2, cPLA2α) partially but significantly decreased the DNCB‐induced release of AA and cell death. The responses were much weaker in cPLA2α knockdown L929 cells. Exogenously added AA showed cytotoxicity. DNCB increased intracellular reactive oxygen species (ROS) levels, and butylated hydroxyanisole (an antioxidant) reduced DNCB‐induced ROS formation and cell toxicity but not the phosphorylation of p38 kinase and release of AA. Auranofin, another inhibitor of TrxR having a different formula, released AA resulting in toxicity in L929 cells. DNCB caused the release of AA and cytotoxicity in A549 human lung carcinoma cells, and caused p38 kinase‐dependent toxicity in PC12 rat pheochromocytoma cells. Our data suggest that a dysfunctional Trx system triggers multiple signaling pathways, and that the AA released by cPLA2α‐dependent and ‐independent pathways is important to cytotoxicity. J. Cell. Physiol. 219: 606–616, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Upon osmotic downshock, a few cytoplasmic proteins, including thioredoxin, elongation factor Tu (EF-Tu), and DnaK, are released from Tris-EDTA-treated Escherichia coli cells by an unknown mechanism. We have shown previously that deletion of mscL, the gene coding for the mechanosensitive channel of the plasma membrane with the highest conductance, prevents the release of thioredoxin. We confirm and extend the implication of MscL in this process by showing that the release of EF-Tu and DnaK is severely impaired in MscL-deficient strains. Release of these proteins is not observed in the absence of a Tris-EDTA treatment which disrupts the outer membrane, indicating that, in intact cells, they are transferred to the periplasm upon shock, presumably through the MscL channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号