首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Divergence in mating signals is a primary factor leading to reproductive isolation, and thus, speciation. However, the genetic changes underlying such divergence are poorly understood, especially in vertebrates. We used two species of poeciliid fishes, Poecilia velifera and P. mexicana , to explore the link between genes and mating behaviors that has resulted in pre-mating reproductive isolation between these species. Using backcross hybrids created from the F1 male offspring of reciprocal interspecific crosses between a sailfin molly ( P. velifera ) and a shortfin molly ( P. mexicana ), we examined the effects of Y-linkage and autosomal contributions on the expression of two male mating behaviors: courtship displays and gonopodial thrusts. The F1 hybrid males displayed a strong influence of sire on courtship display rates, with F1 males sired by the sailfin species showing courtship display rates that were up to three times higher than the rates of displays performed by F1 males sired by the shortfin species. These results suggest a Y-linked genetic effect on the expression of courtship display behavior. Comparisons between backcross hybrid males with sailfin Y-chromosomes or shortfin Y-chromosomes suggested that the interaction of autosomal genes also influences the inheritance of courtship display rates. Sailfin autosomal genes significantly increased the probability of performing courtship displays for hybrid males, and increased display rate for males from the sailfin Y-chromosome line. Autosomal genes had less of an impact on gonopodial thrusting behavior, however, thrust rates did significantly decrease with an increasing proportion of sailfin autosomes in males from the shortfin Y-chromosome line. These results suggest that the inheritance of species differences in mating signals between shortfin and sailfin mollies involves both genes found on the Y-chromosome and autosomal gene influences on their expression.  相似文献   

2.
Sailfin molly (Poecilia latipinna) males possess a large dorsal fin (sailfin) and perform an elaborate courtship display. Females prefer to associate and mate with males of greater body and sailfin size. Evidence supports a single origin for the sailfin species complex from a shortfin ancestor. Unlike sailfin species, males of the shortfin species complex are sexually monomorphic in fin size and exhibit little or no courtship behavior. In this study, we tested the pre‐existing bias and lateral projection area (LPA) hypotheses for sexual selection by examining female mating preferences in the shortfin molly, P. mexicana. Specifically, we presented females with pairs of dummy males differing in: (1) dorsal fin and body size together (holding fin:body size ratio constant); (2) body size (holding dorsal fin size constant); (3) dorsal fin size (holding body size constant); and dorsal fin:body size ratio (holding total LPA constant). Females spent more time near dummies of greater body and dorsal fin size. The preference functions based on the first three sets of stimuli showed a similar pattern: the greater the LPA difference between paired dummies, the stronger the preference for the larger of the two. However, in the fourth experiment, neither fin size, body size, nor any particular dorsal fin + body size combination was preferred. These findings support the LPA hypothesis suggesting that increased LPA is more stimulating to sexually receptive females and that females consequently prefer larger males. Moreover, these data are consistent with results obtained in an identical series of experiments conducted on P. latipinna. The preference for increased male dorsal fin size/LPA by both female P. latipinna and P. mexicana supports the pre‐existing bias hypothesis. Thus, a bias for increased male LPA and consequent selection for enlarged dorsal fins may have preceded the appearance of the sailfin trait within the Molliensia lineage.  相似文献   

3.
Synopsis We analyzed variation in allozymes and mating preferences in 12 populations across much of the range of the sailfin molly, Poecilia latipinna. Sailfin mollies can be sympatric with its sexual parasite Amazon mollies, P. formosa. Amazon mollies must co-exist and mate with bisexual males of closely related species (including sailfin mollies) to induce embryogenesis but inheritance is strictly maternal. Where sailfin and Amazon mollies are sympatric there is evidence of reproductive character displacement as males show a significantly stronger mating preference for sailfin molly females over Amazon mollies compared to preferences of males from allopatric populations. From the allozyme data we found a moderate amount of genetic variation across all populations but this variation did not reveal significant partitioning between sympatric and allopatric populations. Additionally, we found no evidence for isolation by distance as genetic distance was not significantly correlated with geographic distance. While allozyme variation also did not significantly correlate with male mating preferences, there was a significant correlation between male mating preferences and geographic distance. This correlation between mating preferences and geographic distance may have arisen from coevolution with Amazon mollies resulting in reproductive character displacement. Taken together, the distribution of genetic and behavioral variation among sympatric and allopatric populations suggests that behavioral evolution has outpaced evolution at the allozyme loci we examined in P. latipinna.  相似文献   

4.
All known vertebrate clones have originated from hybridization events and some have produced distinct evolutionary lineages via hybrid speciation. Amazon mollies (Poecilia formosa) present an excellent study system to investigate how clonal species have adapted to heterogeneous environments because they are the product of a single hybridization event between male sailfin mollies (Poecilia latipinna) and female Atlantic mollies (Poecilia mexicana). Here, we ask whether the hybrid species differs from the combination of its parental species’ genes in its plastic response to different environments. Using a three-way factorial design, we exposed neonates produced by Amazon mollies and reciprocal F1 hybrid crosses to different thermal (24°C and 29°C) and salinity (0/2, 12, and 20 ppt) regimes. We measured various ontogenetic and life history characteristics across the life span of females. Our major results were as follows: (1) Reaction norms of growth and maturation to temperature and salinity are quite similar between the two hybrid crosses; (2) Amazon molly reaction norms were qualitatively different than the P. latipinna male and P. mexicana female (L×M) hybrids for the ontogenetic variables; (3) Amazon molly reaction norms in reproductive traits were also quite different from L×M hybrids; and (4) The reaction norms of net fertility were very different between Amazon mollies and L×M hybrids. We conclude that best locale for Amazon mollies is not the best locale for hybrids, which suggests that Amazon mollies are not just an unmodified mix of parental genes but instead have adapted to the variable environments in which they are found. Hybridization resulting in asexuality may represent an underappreciated mechanism of speciation because the unlikely events required to produce such hybrids rarely occur and is dependent upon the genetic distance between parental species.  相似文献   

5.
The Tamesí molly, Poecilia latipunctata, has a very limited biogeographical range in northeast Mexico. This area is nested within the ranges of the Atlantic molly, Poecilia mexicana, and the unisexual Amazon molly, Poecilia formosa. Based on morphology, especially fin shape, the Tamesí molly has been considered to be a "short-fin" molly. We describe the courtship sequence of P. latipunctata. The courtship clearly places the species into the clade of "long-fin" mollies, a finding that corroborates earlier studies based on nuclear DNA and mitochondrial DNA. All three species live together in certain habitats. This renders P. latipunctata a potential host species for the sperm-dependent, unisexual Amazon molly. Using behavioural tests, we demonstrate that P. latipunctata males actually copulate with Amazon mollies, despite a pronounced preference for conspecific females. In laboratory experiments P. latipunctata males are capable of triggering embryogenesis in P. formosa females. Field observations support the hypothesis that P. latipunctata is a third host species for P. formosa, indicating that the Amazon molly effectively exploits all available host species for its gynogenetic mode of reproduction. Electronic Publication  相似文献   

6.
Sexual selection is a possible mechanism of speciation. This could be true even in systems where female mate choice has not been clearly observed, because pre-existing biases may be expressed if female decision-making results in male trait evolution. In some mollies, males have enlarged dorsal fins and courtship display is the prevailing mating process. In others, male dominance is thought to play a greater role. We tested females of a species in the latter group, Poecilia mexicana, for consistent preference related to dorsal fin morphology. We found that females were biased toward larger dorsal fins. This latent preference could be an important driver in trait evolution.  相似文献   

7.
Unisexual species like the gynogenetic Amazon molly, Poecilia formosa, enjoy a twofold advantage over sexual species, because they do not produce males. Therefore, unisexuals should be able to outcompete and consequently, replace sexual species. For sperm-dependent (gynogenetic) unisexuals this creates a paradox: they cannot replace their sexual hosts without eradicating themselves. Thus, mechanisms must be in place to stabilize such mating systems. We assessed juvenile survivorship between asexual P. formosa and sexual Poecilia latipinna as a possible factor allowing for persistence and coexistence between the two sympatric species. Offspring of gynogenetic Amazon mollies did not differ significantly in survivorship compared to their sexual host, the Sailfin molly, P. latipinna. The presence of an adult female significantly reduced survival in both species, suggesting that filial cannibalisms operates in this system, but does not appear to play a role in stabilizing mixed sexual/asexual populations. Clark Hubbs, who spent 59 years at the University of Texas and was widely regarded as one of the state’s foremost researchers in the field of ichthyology, the study of fish, passed away February 3rd of 2008 after a long battle with colorectal cancer. He was 86.  相似文献   

8.
Considering its immediate costs of producing dispensable males, the maintenance of sexual reproduction is a major paradox in evolutionary biology. Asexual lineages that do not face such costs theoretically should replace sexuals over time. Nonetheless, several systems are known in which closely related sexual and asexual lineages stably coexist. In the present study, we studied a sexual/asexual mating complex of a sperm-dependent parthenogenetic fish (amazon molly, Poecilia formosa) and its sexual congeners, the sailfin molly P. latipinna and the Atlantic molly P. mexicana. We asked whether differences in feeding behavior could contribute to their stable coexistence. We conducted a laboratory experiment to compare feeding efficiencies and also measured the competitive abilities between the two reproductive forms. Additionally, we measured gut fullness of fishes caught in natural habitats. Contrary to our predictions, we could not find P. formosa to be less efficient in feeding. We argue that food competition in mollies plays a minor role in mediating coexistence between closely related asexual and sexual mollies.  相似文献   

9.
Variation among individuals in the expression of behaviors and associations of behaviors in different contexts can lead to the maintenance of behavioral polymorphisms. Individual variation in morphology is often associated with behavioral polymorphism, yet the degree to which morphology predicts behavioral phenotype is not well understood. We measured individual variation in size and behaviors in the sailfin molly, Poecilia latipinna, by comparing the behavior of individual males of different sizes across four different contexts (mating, exploratory tendency, sociability, and predator inspection). We also investigated the degree to which male size, a fixed genetic trait, influenced the expression of each behavior and associations between behaviors. We found that male mollies show strong associations between certain behaviors and only some of these are predicted by male size. For example, size has a strong influence on the courtship‐boldness axis with larger males showing higher rates of courtship displays and being bolder in predator inspection. A positive association was found between exploratory tendency, sociability, and gonopodial thrusting rates, yet the expression of these behaviors was independent of male size. Thus, sailfin mollies, like many fish species, show associations of behaviors that contribute to differences among males in personality type. The fixed genetic effect of male size at maturity influences courtship and boldness, but individual variation in exploratory tendency, sociability, and sneak copulation attempts through gonopodial thrusts is independent of male size. Such variation among males in behavioral associations within and between different contexts may slow the rate at which populations of Platipinna can diverge in individual behaviors.  相似文献   

10.
Female Amazon mollies, Poecilia formosa, are a unisexual species that reproduce by gynogenesis. They must coexist and mate with males of other species (usually the mollies Poecilia latipinna or Poecilia mexicana) to induce embryogenesis, but inheritance is strictly maternal. We examined the mating preference of the male sailfin molly, P. latipinna, for female sailfin mollies versus Amazon mollies, P. formosa. We compared the mating preferences of sympatric and allopatric populations collected throughout the Gulf Coast of North America. Male P. latipinna from six populations sympatric with Amazon mollies showed a significantly greater strength of preference for conspecific sailfin females than males from five populations that were allopatric with Amazon mollies. These results provide strong evidence for reproductive character displacement of male mate choice in sympatry. Furthermore, the large geographical range of populations that we tested revealed variation among populations within sympatry and allopatry, indicating that it is important to evaluate a large number of populations when examining reproductive character displacement.  相似文献   

11.
When making mating decisions, individuals may rely on multiple cues from either the same or multiple sensory modalities. Although the use of visual cues in sexual selection is well studied, fewer studies have examined the role of chemical cues in mate choice. In addition, few studies have examined how visual and/or chemical cues affect male mating decisions. Male mate choice is important in systems where males must avoid mating with heterospecific females, as is found in a mating complex of Poecilia. Male sailfin mollies, Poecilia latipinna, are sexually parasitized by gynogenetic Amazon mollies, P. formosa. Little is known about the mechanism by which male sailfin mollies base their mating decisions. Here we tested the hypothesis that male sailfin mollies from an allopatric and a sympatric population with Amazon mollies use multiple cues to distinguish between conspecific and heterospecific females. We found that male sailfin mollies recognized the chemical cues of conspecific females, but we found no support for the hypothesis that chemical cues are by themselves sufficient for species discrimination. Lack of discrimination based on chemical cues alone may be due to the close evolutionary history between P. latipinna and P. formosa. Males from populations sympatric with Amazon mollies did not differentially associate with females of either of the two species when given access to both visual and chemical cues of the females, yet males from the allopatric population did associate more with conspecific females than with heterospecific females in the presence of both chemical and visual cues. The lack of discrimination by males from the sympatric population between conspecific and heterospecific females based on both chemical and visual cues suggests that these males require more complex combinations of cues to distinguish species, possibly due to the close relatedness of these species.  相似文献   

12.
We describe the first microsatellite loci for the gynogenetic Amazon molly, Poecilia formosa, an all‐female species arisen through hybridization of the bisexual species Poecilia mexicana and Poecilia latipinna. The loci showed one to six alleles and an expected heterozygosity between zero and 0.75. As expected with parthenogenetic inheritance, most loci were either constantly homozygous (five loci) or constantly heterozygous (eight loci). For six loci, both heterozygotes and homozygotes occurred. This and the fact that some loci only showed alleles of one of the ancestral species could indicate genome homogenization through mitotic gene conversion. Our new loci conformed to the hybrid origin of Amazon molly and are also applicable to both ancestral bisexual species.  相似文献   

13.
Polymorphism in male morphology is often correlated with the expression of alternate behavioral tactics. This relationship between behavioral and morphological polymorphisms, however, is less well understood. We characterized male mating behaviors and morphological variation within and between Poecilia velifera and P. petenensis to understand mating signal evolution in the sailfin molly lineage. In addition, we examined whether differences between these species in the size range of mature males and the strength of allometry between dorsal fin size and body length could explain the variation observed in their expression of different mating behaviors. We determined each male's mating behavior profile by observing the behavior of a single male in the presence of a receptive female. We found that P. velifera showed evidence of an alternate male mating strategy, with small males generally performing only gonopodial thrusts (forced insemination attempts) towards receptive females, while large males performed courtship displays as well as gonopodial thrusts. Males of P. petenensis performed similar rates of courtship displays and gonopodial thrusts regardless of body length. Little variation existed among populations of P. velifera in mating behaviors, while males from different populations of P. petenensis showed population‐specific average rates of each mating behavior. Population differences in P. petenensis may be driven, in part, by its occurrence in more variable habitats than those occupied by P. velifera. Variation among individuals in the mating repertoire of P. velifera, but not P. petenensis, suggests that the greater range of variation in male size at maturity, as well as considerably stronger allometry between dorsal fin size and body length, may explain why males of P. velifera show the greatest degree of expression of alternate male mating behaviors when compared to other sailfin species. These results also suggest an important role of morphological polymorphisms in predicting the expression of alternate male mating behaviors.  相似文献   

14.
Male sailfin mollies (Poecilia latipinna) can be sexually parasitized by closely related, unisexual, gynogenetic Amazon mollies (Poecilia formosa). This study examined possible cues used by male P. latipinna to distinguish between conspecific females and sympatric, heterospecific P. formosa. Digital photos were used to create models to test male P. latipinna preference for model female P. latipinna and P. formosa with a full suite of traits and altered models of P. latipinna and P. formosa. Male P. latipinna significantly preferred models of either species over no stimulus, demonstrating that models elicit a male response. Males also significantly preferred female P. latipinna models over P. formosa models. We also examined species recognition by female sailfin mollies using the same models, and found that female sailfin mollies significantly preferred to associate with female P. latipinna over P. formosa. These results taken together suggest that the use of fish models yield results similar to those studies using live stimuli. Male preference was then tested for unaltered vs. altered models in the following combinations: (i) P. formosa vs. P. formosa with a female P. latipinna fin; (ii) P. formosa vs. P. formosa with a female P. latipinna lateral spot pattern; (iii) P. formosa vs. P. latipinna with a P. formosa fin and their spotless lateral pattern. Males did not significantly prefer models with any isolated traits over the unaltered P. formosa models. Thus, males may be using traits other than the ones isolated for species recognition or males may be using a suite of multiple traits to recognize conspecific females.  相似文献   

15.
We examined the effect of predation risk on female association patterns in the live-bearing sailfin molly (Poecilia latipinna). We tested two classes of females, with and without the risk of predation by a green sunfish (Lepomis cyanellus): (1) postpartum females (maintained with males until visibly gravid, then isolated and tested within 24–48 h of dropping a brood); and (2) non-postpartum females (different females, isolated from males for >50 days). When there was no apparent risk of predation, postpartum females showed a significant preference for large over small males, whereas non-postpartum females showed no size preference at all. When there was an apparent risk of predation, postpartum females maintained their preference for larger males and non-postpartum females continued to show no preference for large or small males. These results suggest that reproductive status (receptivity) plays a greater role in mate preference than predation risk. For postpartum females, the cost of not choosing a preferred mate may outweigh the potential cost of predation. Non-postpartum females either do not benefit from mating or are being indecisive about mating and thus are less likely to be choosy whether or not a predator is present.Communicated by I. Schlupp  相似文献   

16.
In asexual all-female species, such as the Amazon molly, Poecilia formosa, that depend on sperm from “host males” only to trigger embryogenesis, mate choice does not provide any indirect, genetic benefits to the choosing female, although direct benefits are possible. Asexual species are thought to have a low evolutionary potential or evolvability due to the absence of meiotic recombination. Hence, theory predicts that mating preferences in P. formosa for male ornaments—if existent—should resemble those of females of the two parental species (Poecilia latipinna and Poecilia mexicana) involved in the natural hybridization that gave rise to the asexual P. formosa. When examining the female preference for dummy males with or without black vertical bars in the two parental species and in two lineages of P. formosa, a preference was detected in P. latipinna, but not in P. mexicana females. Interestingly, P. formosa living syntopic with P. latipinna also preferred striped males, while others living syntopic with P. mexicana preferred non-striped males. The evolutionary significance of this phenomenon remains largely unexplained, but it might indicate the evolution of mating preferences in a species with low evolutionary potential. Possible mechanisms include introgression and mitotic gene conversion. Females might use male coloration as indicator mechanisms for male traits that matter in terms of direct benefits.  相似文献   

17.
Gynogenetic species rely on sperm from heterospecifics for reproduction but do not receive genetic benefits from mating because none of the paternal genome is incorporated into offspring. The gynogenetic Amazon molly (Poecilia formosa) is a species of hybrid origins that are sympatric with one of the two parent species that provide sperm for reproduction, P. latipinna or P. mexicana. Amazons should not prefer to mate with one species over the other because sperm from both species will trigger embryogenesis, but mating preferences may be present in Amazons through other mechanisms. Amazons may prefer the more familiar species (males found in sympatry), or Amazons may prefer males with the greatest lateral projection area (LPA), a preference that is present in the parent species and may be retained within the Amazon hybrid genome. We tested association preferences of two populations of Amazons sympatric with either P. mexicana or P. latipinna. We first performed live trials to test whether Amazons preferred one host species over the other and found that neither population of Amazons showed a preference. We then tested whether Amazons preferred sympatric male (familiar) host or the male with the greatest lateral projection area (LPA) using four animated male models that varied in host species and manipulation of LPA. We found Amazons from a population sympatric with P. latipinna showed no variation in their association preference across the different models. In contrast, Amazons from a population sympatric with P. mexicana (naturally small LPA) spent more time associating with the male models that had smaller LPA, which is more familiar to this population of Amazons. We suggest that Amazons may have population differences in mating preferences, where Amazons sympatric with P. latipinna may not show mating preference for host species, but Amazons sympatric with P. mexicana may show preferences for more familiar‐shaped males.  相似文献   

18.
Male sailfin mollies Poecilia latipinna were tested in five different treatments that varied in the relative frequency of heterospecific gynogens (Amazon molly Poecilia formosa) to conspecific females to determine whether social interactions among males within a population causes some males to mate with heterospecific females. Male P. latipinna inseminated a significantly higher proportion of conspecific females and fertilized a significantly higher number of conspecific eggs regardless of the treatment. Nonetheless, preference for conspecific females was not exclusive as a range of 20 to 50% of heterospecific females were fertilized. Social interactions among males may best explain the results and may therefore play an important role in the maintenance of unisexual--bisexual mating complexes.  相似文献   

19.
Female mate-copying has been shown to occur between heterospecifics:female sailfin mollies Poecilia latipinna copy the choice oftheir gynogenetic associates, Amazon mollies P. formosa. Femalemate-copying thus contributes to the maintenance of this asexual-sexualspecies complex by providing an advantage to male sailfin molliesthat mate with Amazon females; because of mate-copying thesemales increase their attractiveness to conspecific females.Here we show that male mate-copying, an unreported phenomenon,also occurs and that it can reverse male preferences for conspecificfemales. Male mate-copying should also contribute to the maintenanceof gynogens and might be advantageous in allowing males a meansto rapidly assess female receptivity although sometimes resultingin heterospedfic matings.  相似文献   

20.
《Animal behaviour》1986,34(2):497-509
Sailfin mollies, Poecilia latipinna, exhibit remarkable levels of intraspecific variation in reproductive behaviour. Larger males exhibit higher rates of courtship and lowered rates of gonoporal nibbling and gonopodial thrusting (forced copulation attempts). Larger males have relatively longer and higher dorsal fins than smaller males. The dorsal fin is a prominent component of the courtship display. Variation in fin measurements, behaviour patterns, and body size of mature males is continuous, and fin shape and behaviour patterns are allometrically related to body size. The allometric pattern is displayed by individual traits as well as by the morphological or behavioural traits in ensemble. Eight populations of mollies from markedly distinct habitats exhibited similar consistent levels of intrademic variation in the size of mature males. Detailed studies on three populations showed that dorsal fin shape could be described by the same regression relationship in all populations, and indicted that a male's shape was determined by his absolute body size. By contrast, there was some variation among populations in the relation of behaviour patterns to male body size. The pattern of this interdemic variation indicated that a male's behaviour patterns were influenced by his relative size in a population. Successful inseminations following forced copulations were rare. The average size of successful males was smaller than the average size of unsuccessful males in all three populations. These results indicated that successful insemination through forced copulation was, like behaviour patterns generally, more a function of the relative size of the male, than his absolute size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号