首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new gene closely related to the glycophorin A (GPA) and glycophorin B (GPB) genes has been identified in the normal human genome as well as in that of persons with known alterations of GPA and/or GPB expression. This gene, called glycophorin E (GPE), is transcribed into a 0.6-kb message which encodes a 78-amino-acid protein with a putative leader peptide of 19 residues. The first 26 amino acids of the mature protein are identical to those of M-type glycophorin A (GPA), but the C-terminal domain (residues 27-59) differs significantly from those of glycophorins A and B (GPA and GPB). The GPE gene consists of four exons distributed over 30 kb of DNA, and its nucleotide sequence is homologous to those of the GPA and GPB genes in the 5' region, up to exon 3. Because of branch and splice site mutations, the GPE gene contains a large intron sequence partially used as exons in GPA and GPB genes. Compared to its counterpart in the GPB gene, exon 3 of the GPE gene contains several point mutations, an insertion of 24 bp, and a stop codon which shortens the reading frame. Downstream from exon 3, the GPE and the GPB sequences are virtually identical and include the same Alu repeats. Thus, it is likely that the GPE and GPB genes have evolved by a similar mechanism. From the analysis of the GPA, GPB and GPE genes in glycophorin variants [En(a-), S-s-U- and Mk], it is proposed that the three genes are organized in tandem on chromosome 4. Deletion events within this region may remove one or two structural gene(s) and may generate new hybrid structures in which the promoter region of one gene is positioned upstream from the body of another gene of the same family. This model of gene organization provides a basis with which to explain the diversity of the glycophorin gene family.  相似文献   

2.
3.
In an attempt to identify all fast-evolving genes between human and other primates, we found three glycophorins, GPA, GPB, and GPE, to have the highest rate of nonsynonymous substitutions among the 280 genes surveyed. The Ka/Ks ratios are generally greater than 3 for GPA, GPB, and GPE in human, chimpanzee, and gorilla, indicating positive selection. The uniformly high substitution rate across loci can be explained by the frequent sequence exchanges among genes. GPA is the receptor for the binding ligand EBA-175 of the malaria parasite, Plasmodium falciparum. The levels of nonsynonymous divergence and polymorphism of EBA-175 are also the highest in the genome of P. falciparum. We hypothesize that GPA has been evolving rapidly to evade malaria parasites. Both the high rate of nonsynonymous substitutions and the frequent interlocus conversions may be means of evasion. The support for the evasion hypothesis is still indirect, but, unlike other hypotheses, it can be tested specifically and systematically.  相似文献   

4.
In the Miltenberger class V (Mi. V) condition, red cells lack glycophorin A (GPA) and glycophorin B (GPB) but carry instead an unusual glycoprotein thought to be a hybrid molecule produced by the unequal crossing-over between the closely linked genes encoding for GPA and GPB. By Western blot analysis with rabbit anti-GPA antibodies specific for discrete domains of GPA, it was found that the Mi. V glycoprotein (donor F. M.) contains approximately 60 amino acid residues of GPA at its N-terminus. As a preliminary approach to the molecular analysis of this variant the restriction maps of the GPA and GPB genes were established by Southern blot analysis of genomic DNA and from genomic clones isolated from a human leukocyte library constructed in lambda EMBL4. The GPA and GPB genes cover about 30 kb of DNA and are organized into seven exons (A-1-A-7) and five exons (B-1-B-5), respectively. In addition to the normal genes, a third gene (named inv), closely resembling the GPA and GPB genes, was also identified. In the homozygous Mi. V individual the normal GPA and GPB genes were absent, but an unusual form of gene structure was detected by Southern blot analysis. The Mi. V glycoprotein gene was composed of exon B-1 of the GPB gene followed by exons A-2 and A-3 of the GPA gene and the exons B-3, B-4 and B-5 of the GPB gene. Exon B-1 can be distinguished from exon A-1 of GPA since it is located within a different restriction fragment, but both encode the same amino acid sequence (N-terminal region of the signal peptides). Using the polymerase chain reaction, the junction between exon A-3 and exon B-3 was confirmed by amplification of the DNA region where the putative crossing-over has occurred and it was deduced that the Mi. V glycoprotein is a hybrid molecule composed of amino acid residues 1-58 from GPA fused to amino acid residues 27-72 of GPB. In addition, the finding that part of the signal peptide and the 5'-untranslated region are derived from GPB suggests that the genetic background of the Mi. V variant is rather complex and may involve a cascade of recombination or gene conversion events.  相似文献   

5.
One of the human glycophorin variants, Stones (Sta), has been shown to be the product of a hybrid gene of which the 5'-half derived from the glycophorin B (GPB) gene whereas the 3'-half derived from the glycophorin A (GPA) gene. The present study reveals the crossing-over point of this hybrid gene from the analysis of polymerase chain reaction products. The genomic sequences encompassing the region corresponding to exon 3 to exon 4 of GPA were amplified by polymerase chain reaction with oligonucleotide primers synthesized according to GPA and GPB genomic sequences (Kudo, S., and Fukuda, M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4619-4623). After subcloning the products, the nucleotide sequences derived from GPA, GPB, and putative Sta genes were determined. Comparison of the nucleotide sequences of GPA, GPB, and Sta genes indicate that the crossing-over took place 200 base pairs upstream from the first nucleotide of exon 4. Intriguingly, the nucleotide sequence surrounding the putative crossing-over point is homologous to the crossing-over point proposed for haptoglobin genes (Maeda, N., McEvoy, S.M., Harris, H.F., Huisman, T.H.J., and Smithies, O. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 7395-7399). These results suggest strongly that homologous recombination through unequal crossing-over can be facilitated by specific genomic elements, such as those in common in these two crossing-over events. The present study also revealed that this Sta individual has a variant GPA gene; substitution of adenine for guanine at the nucleotide for codon 39 results in substitution of lysine for arginine at amino acid 39, and loss of an SstI restriction site.  相似文献   

6.
The genomic structure of a human glycophorin variant, Miltenberger class V-like molecule (MiV*), was examined. Southern blot analysis of total genomic DNA revealed that the 5' half of the MiV* gene derived from glycophorin A (GPA) gene whereas the 3' half derived from glycophorin B (GPB) gene. This structure is reciprocal to another glycophorin variant, Sta, which has a GPB-GPA hybrid structure. The genomic sequences around the crossing-over point were amplified by polymerase chain reaction, and the sequences were determined. Comparison of the nucleotide sequences of the GPA, GPB, and MiV* genes indicates that the crossing-over point is located in the region around the 3' end of intron 3 of the GPA gene. This place is different from the crossing-over point for Sta, which was found to be highly homologous to that for haptoglobin-related genes. However, the nucleotide sequences within the presumptive crossing-over point for the MiV* gene were found to be homologous in a reverse orientation to the crossing-over point proposed for haptoglobin-related genes. These results suggest strongly that homologous recombination through unequal crossing over can be facilitated by specific genomic elements such as those in common for formation of MiV*, Sta, and haptoglobin-related genes. The present study also localized the gene of the third glycophorin, GPE, at chromosome 4, q31.1 band, the same locus as for the GPA and GPB genes. The results indicate that GPE was not involved in generating MiV* or Sta hybrid gene despite the fact that it is localized adjacent to the GPA and GPB genes.  相似文献   

7.
Comparison of human and primate erythrocyte membrane sialoglycoproteins showed that common chimpanzee, dwarf chimpanzee, gorilla, orangutan, and gibbon have major periodic acid Schiff-positive proteins resembling human glycophorin A (GPA) monomer and dimer in electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels. Immunoperoxidase staining of Western blots with monoclonal antibodies to human GPA showed that these primate bands express some GPA antigenic determinants. A new sialoglycoprotein analogous to human glycophorin B (GPB) was detected in common chimpanzee. Although human MN blood group phenotype results from an amino acid polymorphism of GPA, Western blots showed that in chimpanzee sialoglycoprotein (GPAch) always expresses the M blood group, whereas chimpanzee sialoglycoprotein (GPBch) expresses either the N blood group or a null phenotype. This result explains the detection of M and MN, but not of N, blood group phenotypes in chimpanzee. GPBch has higher apparent m.w. than human GPB, is present in the erythrocyte membrane in greater quantity than human GPB, and contains trypsin cleavage site(s) and the 10F7 determinant (both found on human GPA but not GPB). Expression of human GPA antigenic determinants was consistent with the phylogeny of the hominoid primates; common and dwarf chimpanzee expressed most of the determinants tested, gorilla and orangutan an intermediate number, and gibbon and siamang the least. Of the GPA antigenic determinants examined, the MN blood group determinants were most consistently expressed during evolution of the hominoid primates. The results suggested that variability in expression of GPA antigenic determinants between species was due to both differences in amino acid sequence and glycosylation.  相似文献   

8.
Analysis of nucleotide sequences of the human glycophorin A (GPA) and glycophorin B (GPB) genes has indicated that the GPA gene most closely resembles the ancestral gene, whereas the GPB gene likely arose from the GPA gene by homologous recombination. To study the evolution of the glycophorin gene family in the hominoid primates, restricted DNA on Southern blots from man, pygmy chimpanzee, common chimpanzee, gorilla, orangutan, and gibbon was probed with cDNA fragments encoding the human GPA and GPB coding and 3-untranslated regions. This showed the presence in all of the hominoid primates of at least one GPA-like gene. In addition, at least one GPB-like gene was detected in man, both chimpanzee species, and gorilla, strongly suggesting that the event that produced the GPB gene occurred in the common ancestor of man-chimpanzee-gorilla. An unexpected finding in this study was the conservation ofEcoRI restriction sites relative to those of the other four enzymes used; the significance of this observation is unclear, but raises the question of nonrandomness ofEcoRI restriction sites in noncoding regions. Further analysis of the evolution of this multigene family, including nucleotide sequence analysis, will be useful in clarification of the evolutionary relationships of the hominoid primates, in correlation with the structure and function of the glycophorin molecules, and in assessment of the role of evolution in the autogenicity of glycophorin determinants.This work was supported in part by National Institutes of Health Grants AM33463 and CA33000.  相似文献   

9.
Complex events in the evolution of the haptoglobin gene cluster in primates   总被引:5,自引:0,他引:5  
Southern blot analyses of genomic DNA show that new world monkeys have only one haptoglobin gene but that chimpanzees, gorillas, orangutans, and old world monkeys have three. Humans have two: haptoglobin (Hp) and haptoglobin-related (Hpr). These observations suggest that a triplication of the haptoglobin locus occurred after the divergence of the new world monkeys, followed by a deletion of one locus in humans. To investigate these events, we have cloned the haptoglobin gene cluster in chimpanzee. The organization of the Hp and Hpr genes in chimpanzees is the same as in humans, including a retrovirus-like sequence in the first intron of Hpr. The third gene, which we name Hpp for haptoglobin primate, is 16 kilobases downstream of Hpr. A second copy of the retrovirus-like sequence occurs between Hpr and Hpp. The nucleotide sequence of the chimpanzee Hpp gene suggests that it may code for a functional protein, but the chimpanzee Hpr gene has a single base deletion in exon 5 that causes a frameshift. Comparison of the human and chimpanzee sequences suggests that the human Hpr gene was generated by a homologous unequal crossover between ancestral Hpr and Hpp genes. The crossover point lies within a 1.3-kilobase region containing exon 5 and 500 nucleotides 3' to the genes, but the exact point is obscured by a subsequent gene conversion event.  相似文献   

10.
11.
1. Genomic DNA derived from individuals who lack glycophorin A (GPA), glycophorin B (GPB) or both of these proteins was subjected to Southern-blot analysis using GPA and GPB cDNA probes. 2. Bands on the Southern blots were assigned to the GPA gene, GPB gene or to a putative pseudogene. 3. Genomic DNA derived from an individual of the Mk phenotype was shown to have deletions in the GPA and GPB genes. The simplest model for the results obtained is that a single deletion spans the GPA and GPB genes in the individual studied.  相似文献   

12.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts was located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

13.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts is located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

14.
In addition to nine functional genes, the human type I hair keratin gene cluster contains a pseudogene, phihHaA (KRTHAP1), which is thought to have been inactivated by a single base-pair substitution that introduced a premature TGA termination codon into exon 4. Large-scale genotyping of human, chimpanzee, and gorilla DNAs revealed the homozygous presence of the phihHaA nonsense mutation in humans of different ethnic backgrounds, but its absence in the functional orthologous chimpanzee (cHaA) and gorilla (gHaA) genes. Expression analyses of the encoded cHaA and gHaA hair keratins served to highlight dramatic differences between the hair keratin phenotypes of contemporary humans and the great apes. The relative numbers of synonymous and non-synonymous substitutions in the phihHaA and cHaA genes, as inferred by using the gHaA gene as an outgroup, suggest that the human hHaA gene was inactivated only recently, viz., less than 240,000 years ago. This implies that the hair keratin phenotype of hominids prior to this date, and after the Pan-Homo divergence some 5.5 million years ago, could have been identical to that of the great apes. In addition, the homozygous presence of the phihHaA exon 4 nonsense mutation in some of the earliest branching lineages among extant human populations lends strong support to the "single African origin" hypothesis of modern humans.  相似文献   

15.
Glycophorin A, B, and E genes were derived from a common ancestral gene and this gene family appeared during primate evolution, probably between orangutan and gorilla divergences. Based on the study of genomic structures of these human glycophorins and the genetic and immunological study of primate glycophorins, we hypothesize that chimpanzee and gorilla glycophorin B could possess a longer extracellular region and carry a stronger N blood group antigenicity compared with that of the human.  相似文献   

16.
The leukocyte receptor complex (LRC) on human chromosome 19 contains related Ig superfamily killer cell Ig-like receptor (KIR) and leukocyte Ig-like receptor (LIR) genes. Previously, we discovered much difference in the KIR genes between humans and chimpanzees, primate species estimated to have approximately 98.8% genomic sequence similarity. Here, the common chimpanzee LIR genes are identified, characterized, and compared with their human counterparts. From screening a chimpanzee splenocyte cDNA library, clones corresponding to nine different chimpanzee LIRs were isolated and sequenced. Analysis of genomic DNA from 48 unrelated chimpanzees showed 42 to have all nine LIR genes, and six animals to lack just one of the genes. In structural diversity and functional type, the chimpanzee LIRs cover the range of human LIRs. Although both species have the same number of inhibitory LIRs, humans have more activating receptors, a trend also seen for KIRs. Four chimpanzee LIRs are clearly orthologs of human LIRs. Five other chimpanzee LIRs have paralogous relationships with clusters of human LIRs and have undergone much recombination. Like the human genes, chimpanzee LIR genes appear to be organized into two duplicated blocks, each block containing two orthologous genes. This organization provides a conserved framework within which there are clusters of faster evolving genes. Human and chimpanzee KIR genes have an analogous arrangement. Whereas both KIR and LIR genes can exhibit greater interspecies differences than the genome average, within each species the LIR gene family is more conserved than the KIR gene family.  相似文献   

17.
18.
19.
为鉴定MNSs血型单克隆细胞株6D7C9分泌的抗体类型,通过克隆、亚克隆、细胞转染等分子生物学技术建立了血型糖蛋白GPA、GPB的异源表达系统,并将其作为抗原,通过ELISA、Western 印迹法确定6D7C9分泌的McAb.结果显示,RT-PCR技术成功克隆获得了GPA、GPB血型糖蛋白编码基因,通过分别构建其重组逆转录病毒表达载体pEGZ/GPA及pEGZ/GPB,转染包装细胞293T,再感染L929细胞,经zeocin筛选2周后,RT PCR及流式细胞仪分析证实,L929/GPA和L929/GPB转基因细胞中分别有GPA、GPB目的基因的转录和蛋白表达.用稳定高表达GPA、GPB的转基因细胞通过ELISA和Western 印迹法证实单克隆细胞株6D7C9分泌的是抗GPA/GPB McAb.本研究成功地建立了血型糖蛋白GPA、GPB的异源表达系统,为MNSs血型McAb的检测及GPA、GPB蛋白的功能学研究奠定了基础.  相似文献   

20.
The human and nonhuman primate ABO blood group gene shows relatively large numbers of nucleotide differences around the exon 7 region. In this study we determined intron 6 sequences for 9 alleles of common chimpanzee and for 3 alleles of bonobo to estimate nucleotide diversities among them. Sequence length polymorphisms are observed in this region as a repeat appears one to five times. From a phylogenetic network of intron 6 sequences of ABO blood group genes for humans, common chimpanzee, and bonobo, parallel substitutions and/or some kinds of convergent events are predicted in the chimpanzee lineage. We also estimated nucleotide diversities for common chimpanzee and bonobo ABO blood group genes; these values were 0.219% and 0.208%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号