首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of nutrient addition on the in situ biodegradation of polycyclic aromatic hydrocarbons in creosote contaminated soil were studied in soil columns taken from various soil strata at a wood preserving plant in Norway. Three samples were used: one from the topsoil (0–0.5 m), one from an organic rich layer (2–2.5 m) and one from the sandy aquifer (4.5–5 m). The addition of inorganic nitrogen and phosphorous stimulated the degradation of polycyclic aromatic hydrocarbons (PAHs) in the top soil and the aquifer sand. These two soils, which differed strongly in contamination levels, responded similarly to nutrient addition with the corresponding degradation of 4-ring PAHs. The ratio between available nitrogen (N) and phosphorous (P) might explain the degree of degradation observed for the 4-ring PAHs. However, the degree of degradation of 3-ring PAHs did not significantly increase after nutrient addition. An increase in the respiration rate, after nutrient addition, could only be observed in the topsoil. In the aquifer sand, 4-ring PAH degradation was not accompanied by an increase in the respiration rate or the number of heterotrophic micro-organisms. PAH degradation in the organic layer did not respond to nutrient addition. This was probably due to the low availability of the contaminants for micro-organisms, as a result of sorption to the soil organic matter. Our data illustrate the need for a better understanding of the role of nutrients in the degradation of high molecular weight hydrocarbons for the successful application of bioremediation at PAH contaminated sites.  相似文献   

2.
Biological treatment methods are effective at destroying polycyclic aromatic hydrocarbons (PAHs), and some of the highest rates of PAH degradation have been achieved using two-phase-partitioning bioreactors (TPPBs). TPPBs consist of a cell-containing aqueous phase and a biocompatible and immiscible organic phase that partitions toxic and/or recalcitrant substrates to the cells based on their metabolic demand and on maintaining the thermodynamic equilibrium of the system. In this study, the degradation of a 5-component mixture of high and low molecular weight PAHs by a defined microbial consortium of Sphingomonas aromaticivorans B0695 and Sphingomonas paucimobilis EPA505 in a TPPB was examined. The extremely low aqueous solubilities of the high molecular weight (HMW) PAHs significantly reduce their bioavailability to cells, not only in the environment, but in TPPBs as well. That is, in the two-phase system, the originally selected solvent, dodecane, was found to sequester the HMW PAHs from the cells in the aqueous phase due to the inherent high solubility of the hydrophobic compounds in this solvent. To circumvent this limitation, the initial PAH concentrations in dodecane were increased to sufficient levels in the aqueous phase to support degradation: LMW PAHs (naphthalene, phenanthrene) and fluoranthene were degraded completely in 8 h, while the HMW PAHs, pyrene and benzo[a]pyrene, were degraded by 64% and 11%, at rates of 42.9 mg l−1 d−1 and 7.5 mg l−1 d−1, respectively. Silicone oil has superior PAH partitioning abilities compared to dodecane for the HMW PAHs, and was used to improve the extent of degradation for the PAH mixture. Although silicone oil increased the bioavailability of the HMW PAHs and greater extents of biodegradation were observed, the rates of degradation were lower than that obtained in the TPPB employing dodecane.  相似文献   

3.
4.
Residues of aliphatic and polycyclic aromatic hydrocarbons (PAHs) were monitored in some fish species collected from Temsah Lake, near Ismailia, Egypt. Fish were selected to represent different feeding habits and ecological niches in the lake's ecosystem. Fish samples were extracted using organic solvents, and residues of aliphatic and PAHs were separated using column chromatography and detected using gas liquid chromatography. Fish species were Clupea sirm, Mugil sehli, Mugil capito, Morone labrax, and Sciasna sp. Clupea sirm, a surface feeder fish had the highest concentration of aliphatic hydrocarbons, 320 ± 54 ng g?1, while Morone labrax, a predatory fish that live in the water column, had the highest concentration of PAHs, 315.87 ± 46 ng g?1. Even-number aliphatic hydrocarbons were more frequently detected in all fish species in comparison to odd-number aliphatic hydrocarbons, suggesting a petrogenic origin of these compounds. Meanwhile, the pattern of PAHs detected in the present study suggested that they originate from atmospheric deposition rather than land-based runoff. Morone labrax fish and Clupea sirm fish were the most suitable candidate bioindicators of exposure to aliphatic hydrocarbons and PAHs through fish consumption of the five fish species examined in this study.  相似文献   

5.
A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg·L−1) in a minimal salts medium (MSM) within 48 hours at an initial pH of 7.0 and a temperature of 30°C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam), invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg·L−1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.  相似文献   

6.
Spilled crude petroleum from oil wells contains numerous hydrocarbons, some of which are toxic and threaten life. We have studied the mobility and persistence of hydrocarbons in waterlogged soils that contain large proportions of fermented organic matter (Histosols) and large concentrations of dissolved organic carbon (DOC) in the State of Tabasco, Mexico. We sampled soil and phreatic water at sites polluted by oil spills for several decades, as well as at sites that had only recently (few weeks) been polluted, and compared their hydrocarbon contents with those of unaffected sites in the same area. Samples were analyzed for 16 non-alkylated polyaromatic hydrocarbons (PAHs) and n-alkanes from nC9 to nC34. The spilled hydrocarbons had remained predominantly in the organic surface horizons of the soil where spillage occurred; there was little evidence of movement within the soil. The fraction of low molecular weight compounds was larger at sites of recent spills than where spills happened several decades ago. Nevertheless, sites of old spills still contained large concentrations of hydrocarbons, among which those of low molecular weight represented from 30 to 49% of total PAHs and from 50 to 84% of total n-alkanes, indicating that volatilization or microbial degradation is slow in these soils. In the peat horizons the measured organic carbon partition coefficients (K oc ) for the higher molecular weight PAHs were consistently smaller than those estimated by empirical equations by up to two orders of magnitude. The dissolved organic carbon of these peat soils seems to influence this behavior. At sites of old spills, partition coefficients for the PAHs were larger than at sites of recent spills.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) are common ubiquitous pollutants existing in nature with high recalcitrance and toxicity. In this study a bacterium capable of aerobic degradation of high molecular weight PAHs (with special reference to pyrene) was isolated by selective enrichment culture technique from oil refinery effluent sludge. The isolate was characterized as Achromobacter xylooxidans by 16S rRNA gene sequence analysis technique. For the first time it is hereby reported a bacterium capable of effectively degrading pyrene (up to 80%), as evident by reverse phase high performance liquid chromatographic analysis (RP-HPLC). After incubation of Achromobacter xylooxidans in minimal salt medium (MSM) containing pyrene, at concentration of 200 mg/L, as sole source of carbon and energy, there was decrease in pyrene concentration concomitant with increase in bacterial cell protein concentration. RP-HPLC analysis revealed that pyrene was degraded into three metabolites viz. I, II and III. The RP-HPLC eluent fraction were collected from 2.5 to 32.0 min by repeated injection of degraded sample, concentrated and analyzed on gas chromatography mass spectroscopy (GC-MS) for metabolite identification. The fraction shows 1-hydroxypyrene, 1-hydroxy-6-methoxypyrene and 1,6dimethoxypyrene as metabolic product of pyrene degradation, on the basis of their m/z values. On contrary to the reported PAH degradation with reference to pyrene by different isolates till date; the efficient degradation, as evident by RP-HPLC, by this isolate holds a promising potential for planning of bioremediation strategies of contaminated sites.  相似文献   

8.
Detoxification of polycyclic aromatic hydrocarbons by fungi   总被引:8,自引:0,他引:8  
Summary The polycyclic aromatic hydrocarbons (PAHs) are a group of hazardous environmental pollutants, many of which are acutely toxic, mutagenic, or carcinogenic. A diverse group of fungi, includingAspergillus ochraceus, Cunninghamella elegans, Phanerochaete chrysosporium, Saccharomyces cerevisiae, andSyncephalastrum racemosum, have the ability to oxidize PAHs. The PAHs anthracene, benz[a]anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, as well as several methyl-, nitro-, and fluoro-substituted PAHs, are metabolized by one or more of these fungi. Unsubstituted PAHs are oxidized initially to arene oxides,trans-dihydrodiols, phenols, quinones, and tetralones. Phenols andtrans-dihydrodiols may be further metabolized, and thus detoxified, by conjugation with sulfate, glucuronic acid, glucose, or xylose. Although dihydrodiol epoxides and other mutagenic and carcinogenic compounds have been detected as minor fungal metabolites of a few PAHs, most transformations performed by fungi reduce the mutagenicity and thus detoxify the PAHs.  相似文献   

9.
The aim of this work was to evaluate the effect of several non-ionic surfactants (Tween-80, Triton X-100 and Tergitol NP-10) on the ability of different bacteria (Enterobacter sp., Pseudomonas sp. and Stenotrophomonas sp.) to degrade polycyclic aromatic hydrocarbons (PAHs). Bacterial cultures were performed at 25 °C in an orbital shaker under dark conditions in BHB medium containing 1% of surfactant and 500 mg l−1 of each PAH. Experiments performed with Tween-80 showed the highest cell density values and maximum specific growth rate because this surfactant was used as a carbon source by all bacteria. High degree of PAHs degradation (>90%) was reached in 15 days in all experiments. Toxicity increased at early times using Tween-80 but decreased to low levels in a short time after the firsts 24 h. On the other hand, Triton X-100 and Tergitol NP-10 were not biodegraded and toxicity kept constant along time. However, PAHs-degradation rate was higher, especially by the action of Enterobacter sp. with Tween-80 or Triton X-100. Control experiments performed without surfactant showed a significant decrease in biomass growth rate with a subsequent loss of biodegradation activity likely due to a reduced solubility and bioavailability of PAHs in absence of surfactant.  相似文献   

10.
We examined monthly changes in polycyclic aromatic hydrocarbons (PAHs) in sediment trap samples collected from the northern basin of Lake Biwa, Japan, from September 2003 to July 2004 to elucidate the sources of PAHs in the lake. The most abundant concentrations were those of pyrene and fluoranthene, at μg g−1 levels throughout the sampling period, with a strong positive relationship (r = 0.996, n = 10, P < 0.01). From the monthly changes in each PAH concentration and their ratios, we suspected two different sources: petroleum sources of lighter PAHs and combustion sources of middle to heavier PAHs. Because pyrene and fluoranthene decreased significantly with time during the sampling period (P < 0.05) and an abnormally high ratio of phenanthrene to anthracene was reported in September 2003, it appears that petroleum was accidentally spilled in September 2003. Although perylene was commonly found at μg g−1 levels in the sediment, its concentration was comparable with those of the other PAHs in sediment trap samples. As perylene showed no significant relationship with other PAHs or other indicator molecules, we suspect that the source of perylene was different from those of other PAHs, and the perylene was mainly formed from its precursors after deposition.  相似文献   

11.
High‐throughput platforms for microalgae screening are not yet commercially available. In this study, the feasibility of 96‐well microplates was analyzed for microalgae research. Equivalence among wells, as culture microreactors, was investigated in controlled high CO2 conditions. Specific growth rates of two microalgae species, Scenedesmus sp. UTEX1589 and an environmental isolate, were significantly higher in border wells than in internal positions. Furthermore, growth rate gradients analyzed as contours throughout the platform were observed for Scenedesmus sp. However, the output variable exhibited high precision associated with a low coefficient of variation (CV), between 6.8 and 7.8%. In a demonstrative experiment to determine the effect of culture media dilution on six microalgae species, treatments were randomized in the central subset of a microplate. Results were consistent and statistically sound (CV 9.4–12.9%), and showed that microalgae species could grow with no detrimental effect in 50% (v/v) dilution of the culture medium. Provided border wells exclusion and a randomized design, 96‐well microplates are a practical and statistical robust platform for microalgae research. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:638–644, 2013  相似文献   

12.
A method to immobilize fungal hyphae onto the wells of 96-well microplates for use in an in-direct ELISA to screen for antifungal antibodies in sera and cell culture supernatants is described. The hyphae from three genera (Penicillium, Eurotium andFusarium) were successfully attached by overnight drying onto wells precoated with poly-L-lysine and glutaraldehyde. Microscopy revealed that the hyphae remained attached to the wells throughout the ELISA and antiserum titrations showed that the attached hyphae were uniformly coated and remained reactive. Background absorbances were low and the plates could be stored at –20 °C without loss of reactivity.  相似文献   

13.
The unintentional ingestion of carcinogenic xenobiotic substances leads to the high risk of cancer. Dietary fiber (DF) may protect against cancer by sorbing such chemicals. To this end, the sorption of four polycyclic aromatic hydrocarbons (PAHs) to DF extracted from wheat bran (WB) was studied. The strong affinity of PAHs to DF and WB indicated the effective binding of PAHs, and their distribution coefficients (Kd) positively increased with the increase in hydrophobicity of the PAHs. The DF had much higher Kd values for all PAHs compared to those of the unprocessed WB. The DF extraction process removed hydrophilic residues, such as starch, from WB, and increased the roughness of DF surface. Loss of hydrophilic components from WB to DF led to much higher affinity of DF with PAHs than WB. The results indicate that the DF can effectively sorb and remove xenobiotics, thereby having the potential to lower carcinogenic risk to humans.  相似文献   

14.
We have investigated the effect of polycyclic aromatic hydrocarbons (PAHs) on expression of the estrogen-metabolizing genes CYP1A1, CYP1B1, CYP19 and also ERα, and cyclinD1 genes, regulating cell division in estrogen-depended tissues. Treatment of rats with benzo(a)pyrene (BP) or 3-methylcholantrene (MCA) significantly up-regulated CYP1A1, CYP1B1 gene expression in liver, uterus and ovary, whereas α-naphthoflavone (α-NF) did not have any effect. The high level of aromatase gene (CYP19) expression was detected in ovary only. Treatment of rats with BP or MCA significantly down-regulated expression of this gene (15- and 5,5-fold, respectively), whereas α-NF was ineffective. Administration of BP but not MCA or α-NF increased ERα and cyclinD1 gene expression in rat liver. The levels of ERα and cyclinD1 mRNA levels remained unchanged in uterus of after treatment of rats with these PAHs. BP administration increased ERα and cyclinD1 mRNA levels (3,5- and 2,5-fold, respectively) in ovary, while MCA and α-NF were ineffective. Thus, our results give evidence for tissue-specific effects of PAHs on expression of genes, which participate in hormonal carcinogenesis. On the other hand, the fact that BP and MCA treatments influenced the expression of estrogen-metabolizing genes and genes, which control cell division, supports the viewpoint that PAHs may be one of the causes of endocrine disorders and subsequent hormonal carcinogenesis.  相似文献   

15.
A total of 43 groundwater samples were collected from 9 multimonitoring wells at a petrochemical site, Baoding City, North China, from June 2008 to December 2009 to investigate the biogeochemical processes and/or bacterial conmmunity using both culture-dependent and -independent methods. The results showed that aromatic hydrocarbons and chlorinated hydrocarbons were the major pollutants in the groundwater. Denitrification and iron reduction might be the main biogeochemical processes in the aquifers at this site, which seemed to transform from denitrification-dominated to iron reduction-dominated in some sections. Denaturing gradient gel electrophoresis (DGGE) revealed that the dominant bacterial groups of the groundwater were related to some oil-degrading bacteria, which can grow under denitrifying, iron-reducing and sulfate-reducing anaerobic conditions. In some serious contaminated groundwater niches, there might be sulfur cycles, as sulfur oxidizer was also abundant, which was further confirmed by 16S rRNA gene cloning analysis. The operational taxonomic units (OTUs) that highly related to Pseudomonas sp., Hydrogenophaga sp., Sphingomonas sp., Ferribacterium sp. and Sulfuricurvum Kujiense etc. were predominant in the groundwater contaminated by chlorinated hydrocarbons (CHCs), benzene, toluene, ethylbenzene, and xylenes (BTEX) and/or polycyclic aromatic hydrocarbons (PAHs), respectively. Biodiversity seemed to be undermined by oil contamination, and varied with seasons. The bacterial community in the contaminated groundwater was largely determined by the groundwater geochemistry.  相似文献   

16.
We have developed a microtiter plate method for screening a large number of bacterial isolates for the ability to grow on different crystalline polycyclic aromatic hydrocarbons (PAHs). Growth on PAHs cannot easily be determined with standard growth assays because of the very low aqueous solubility and bioavailability of the PAHs. Our microtiter plate assay utilizes a new water-soluble respiration indicator, WST-1 {4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate}, in combination with easily degradable carbon sources. PAH-mineralizing strains were grown on PAHs in microtiter plates for 7 to 10 days. The tetrazolium dye WST-1 was added after incubation. Dehydrogenases in growing cells reduced WST-1 to a water-soluble colored formazan, and the intensity of the color was a measure of the respiration rate. Addition of easily degradable carbon to the wells along with WST-1 resulted in a 3- to 40-fold increase in the absorbance of positive wells within 90 min, which made it possible to detect growth on fluorene, phenanthrene, anthracene, fluoranthene, and pyrene. Addition of the electron transport blocker sodium azide unexpectedly decreased formazan formation. The method was adapted for most-probable-number enumeration of PAH degraders in soil.  相似文献   

17.
In this study, we investigated the treatability of co-mingled groundwater contaminated with polycyclic aromatic hydrocarbons (PAHs), gasoline hydrocarbons, and methyl tert-butyl ether (MtBE) using an ex-situ aerobic biotreatment system. The PAHs of interest were naphthalene, methyl-naphthalene, acenaphthene, acenaphthylene, and carbazole. The gasoline hydrocarbons included benzene, toluene, ethyl benzene, and p-xylene (BTEX). Two porous pot reactors were operated for a period of 10 months under the same influent contaminant concentrations. The contaminated groundwater was introduced into the reactors at a flow rate of 4 and 9 l/day, resulting in a hydraulic retention time (HRT) of 32 and 15 h, respectively. In both reactors, high removal efficiencies were achieved for the PAHs (>99%), BTEX and MtBE (>99.7%). All the PAHs of interest and the four BTEX compounds were detected at concentrations less than 1 μg/l throughout the study duration. Effluent MtBE from both reactors was observed at higher levels; nevertheless, its concentration was lower than the 5 μg/l Drinking Water Advisory for MtBE implemented in California.  相似文献   

18.
Sixteen environmental samples, from the United States, Germany and Norway, with histories of previous exposure to either creosote, diesel fuel or coal tar materials, were screened for bacteria which could degrade high molecular weight (HMW) polycyclic aromatic hydrocarbons (PAHs). A modified version of the spray plate technique was used for the isolations. Using fluoranthene (FLA) and pyrene (PYR) as model HMW PAHs, we isolated 28 strains on FLA and 21 strains on PYR. FLA degraders were defined as able to grow on FLA but not PYR. PYR degraders grew on both PAHs. All PYR degraders were found to be Gram-positive and all FLA degraders were Gram-negative. GC-FAME analysis showed that many of the PYR degraders were Mycobacterium spp and many of the FLA degraders were Sphingomonas spp. Comparison of the metabolic characteristics of the strains using the spray plate technique and direct growth studies revealed that more than half of the FLA degraders (59%) were able to cometabolize PYR (ie, they produced clearing zones or colored metabolites on spray plates but did not grow on the PAH) and the ability of many of these strains to cometabolize fluorene, anthracene, benzo[b]fluorene, benzo[a]anthracene and benzo[a]pyrene was significantly affected by pre-exposure to phenanthrene. Studies on the metabolic products produced from PYR cometabolism by strain EPA 505 suggested the possibility of attack at two different sites on the PYR molecule. However, the inability to derive degradable carbon from initial opening of one of the PYR rings probably accounted for the lack of growth on this PAH by the FLA-degrading strains. The PYR degraders on the other hand, were less able to cometabolize HMW PAHs, even following pre-exposure to PHE. Characterization of the FLA degradation pathway for several of the Sphingomonas isolates indicated oxidation and ring opening through to acenaphthenone as the principle metabolite. Strain CO6, however, also oxidized FLA through fluorenone, suggesting a dual attack on the FLA molecule, similar to that observed by others in Mycobacterium spp. Journal of Industrial Microbiology & Biotechnology (2000) 24, 100–112. Received 01 May 1999/ Accepted in revised form 01 November 1999  相似文献   

19.
Cell milking is a 100% renewable green energy for CO2 by extraction of biofuels inside the cytosol of photosynthetic micro-organisms as microalgae and bacteria. The cells are exposed to a hydrophobic solvent forming holes and cracks through their membranes from which the biofuels can leak out. In protein folding, the goal would be to find pathways to the unique functional protein conformer. However, in the lipid-bilayer interaction with the solvent for milking, the objective is to block the pathways for damaged membrane conformations of low free energy with undesired nanostructures, using the solvent properties, as shown with an ab initio structural bioinformatic model. Statistical thermodynamics is used to compute the free energy (including entropy) from the molecular dynamics trajectory of the biomolecular system with many conformational changes. This model can be extended to the general problem of biomolecules folding as for proteins and nucleic acids. Using an adaptation of the Einstein diffusion law, the conformational change dynamics of the lipid bilayer depends on the two diffusion coefficients of the solvent: D1 before the irreversible folding transition time and the much smaller D2 thereafter. In contrast to the n-hexane and n-heptane hydrocarbons of smaller size, the residual D2?=?4.7?×?10?7?cm2/s of the n-decane solvent, with the highest partition coefficient among the three extractors, is the only to present a D2 value that is significantly below the critical threshold of 10?6?cm2/s. Therefore, the membrane would resist to long hydrocarbons and the exposed cells would remain viable for milking.  相似文献   

20.
A finger rinse technique for counting micro-organisms on hands showed no significant difference in the level of recovered micro-organisms following hand drying using either warm air or paper towels. Contact plate results appeared to reflect the degree of dampness of hands after drying rather than the actual numbers of micro-organisms on the hands. In laboratory tests, a reduction in airborne count of Pseudomonas aeruginosa and Staphylococcus aureus of between 40 and 75% was achieved from 600 readings comparing inlets and outlets of warm air hand driers. In washroom trials, the number of airborne micro-organisms was reduced by between 30 and 75%. Air emitted from the outlet of the driers contained significantly fewer micro-organisms than air entering the driers. Drying of hands with hand driers was no more likely to generate airborne micro-organisms than drying with paper towels. Levels of micro-organisms on external surfaces of hand driers were not significantly different to those on other washroom surfaces. This work shows that warm air hand driers, of the type used in this study, are a hygienic method of drying hands and therefore appropriate for use in both the healthcare and food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号