首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work reports a portion of our continuing effort to determine the mechanism(s) whereby aflatoxins cause toxic responses in in vitro cultured plant tissues. Few investigations have dealt with the mode of action of aflatoxin B1 (AFB1) in excised plant tissues. Here is detailed AFB1 influence on growth, uptake and incorporation of 14C-leucine by excised, incubated soya-bean roots. Pure AFB1 was added to culture medium prior to autoclaving. One gram fresh weight portions of roots from three-day old soya-bean seedlings were excised and incubated for 4, 8, 12 and 24 hours. Growth was assayed by following changes in root dry weight. Aflatoxin B1 inhibited root dry weight at both 20 and 30 g/ml. Uptake of 14C-leucine was checked by following its depletion from the medium. Reduced 14C-leucine uptake by roots exposed to 20 g/ml AFB1 suggests that the toxin may alter the plasmalemma. A possible role for AFB1 in modification of membrane-associated amino acid transport mechanisms is discussed. Incorporation of 14C-leucine into trichloroacetic acid-precipitable cytoplasm was assayed. Inhibition of this incorporation at 20 g/ml AFB1 was most apparent at 12 hours. Thus, AFB1 may also impair the ability of excised soya-bean roots to carry out protein synthesis.Direct communications to: Gerald C. Llewellyn, Ph. D. Associate Professor of Biology Life Science Building Virginia Commonwealth University Richmond, Virginia 23284 U.S.A.  相似文献   

2.
3.
In the presence of NH4Cl and hypotonic solutions, Rana balcanica red cells respond by increasing their volume. The stimulation of cellular volume by hypotonicity is more rapid than that of NH4Cl, while the maximum value is less than that observed in the presence of NH4Cl. Depending on the cause of swelling, (net uptake of NH4Cl or decrease in external osmolality) cells show specific responses. The NH4Cl treatment causes a significant increase in intracellular Na+, from 5·14±0·78 to 29·84±0·47 mmoles l−1 cell, while hypotonicity leads to a significant decrease of this cation, to 3·85±0·25 mmoles l−1 cell in relation to the control, after 30 min of incubation of Rana balcanica erythrocytes. In addition, amiloride significantly reverses the NH4Cl effect with respect to intracellular Na+. Both treatments cause a significant K+ loss in comparison with controls. Two glycolytic enzymes glyceraldehyde phosphate dehydrogenase (GAPDH) and pyruvate kinase (PK) of Rana balcanica haemolysate were found to respond to the NH4Cl effect by significantly decreasing their activity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Kinetin promoted the uptake of K+ and Rb+ into detached sunflower cotyledons. This action was concomitant with an acceleration of growth. A slighter promotion of Li+ uptake was also noted, but there was no consistent influence on that of Na+. A small inhibitory effect on NH4+4 uptake was apparent when the latter was computed per average weight of sample during the course of incubation. Light also promoted the growth of the cotyledons, but depressed their capacity to absorb potassium. The action of kinetin on cotyledons removed from 5–7 day old seedlings was weaker than on those removed from 2–4 day old seedlings with regard to growth but stronger with regards to K+ uptake. When K+ uptake by cotyledons taken from 7-day old seedlings was followed with time the kinetin effect was already detectable within a few hours, but it became more pronounced after 10 hours' incubation. Kinetin did not accelerate growth or K+ uptake in hypo-cotyl segments. IAA, which was previously shown to promote these processes in hypocotyl segments, inhibited them in cotyledons. A working hypothesis is suggested according to which endogenous auxins and cytokinins regulate the absorption of K+ in shoot cells of the intact plant in a manner similar to that in which they act in excised tissues and in this way affect the distribution and redistribution of K+ in the shoot; and that they are among the factors which determine the selectivity of ion uptake in the intact plant.  相似文献   

5.
Germination of phaseolus vulgaris I. Resumption of axis growth   总被引:10,自引:10,他引:0       下载免费PDF全文
Walton DC 《Plant physiology》1966,41(2):298-302
Growth of the excised axis of Phaseolus vulgaris L. (var. White Marrowfat) begins after a 7-hour incubation in buffer or water at 26°. Growth, as measured by axis elongation or fresh weight increase, is linear for at least 8 hours with a resultant fresh weight increase of approximately 65%. Cell elongation begins 4 or 5 hours prior to cell division and 5 or 6 hours prior to radicle protrusion in the intact seed.

The initiation of axis elongation is apparently dependent on synthesis of RNA and protein. Both actinomycin D and puromycin inhibit the initiation of elongation. Actinomycin I) inhibits the incorporation of ATP-8-C14 into axis RNA and C14-leucine into protein, while puromycin inhibits the incorporation of C14-leucine into axis protein.

The respiratory rate of the axes increases sharply at about the time of initiation of cell elongation. Dinitrophenol initially increases O2 uptake by the axes, but at the end of 15 hours the rates of O2 uptake by control or dinitrophenol-treated axes are approximately the same.

  相似文献   

6.
Supply of KNO3, NH4Cl or NH4NO3 to the maize seedlings increased total chlorophyll and carotenoids (over zero nitrogen control) amounts per fresh matter unit of the primary leaves. The increase was most apparent when the pigment level in control plants started declining,i.e. between days 14 and 16. Supply of inorganic nitrogen increased pigment synthesis in excised leaf segments from dark grown seedlings, although the increase during a 24 h incubation was not as high as with either glycine or glutamine. Salicylic acid at 0.01 to 1 mM concentration increased and at 10 mM lowered the pigment biosynthesis. The increase at lower concentrations of salicylic acid was unaffected by KNO3 but it was suppressed by NH4Cl. When 12-day seedlings were transferred to the dark, total chlorophyll and carotenoids declined appreciably, but the supply of inorganic nitrogen protected them from decline to same extent. Thus inorganic nitrogen, especially the nitrate, is more important in protecting from degradation of chlorophyll and carotenoids than in increasing their biosyntheses.  相似文献   

7.
Jackson  Louise E.  Bloom  Arnold J. 《Plant and Soil》1994,164(2):195-202
We tested radioactive methylammonium (14CH3NH inf3 sup+ ) as a tracer for ammonium (NH4 +) in root uptake measurements from soil. Tomato (Lycopersicon esculentum Moll. cv T5) in 3 L pots filled with loamy sand soil received 40, 200, or 600 μmol 14CH3NH3 + or 15NH4 +. During a 4 h period, the plants absorbed 14CH3NH3 + at slower rates than 15NH4 +. Estimates of NH4 + absorption based on 15NH4 + absorption were 0.9–7.9 μmol NH4 + g−1 plant dry weight h−1, whereas those based on 14CH3NH3 + absorption were 0.2–1.0 μmol NH4 + g−1 plant dry weight h−1. After 4 h, approximately one-half of the applied 15N was not recovered in the plants or soil KCl extracts; apparently, this 15N was either immobilized or nitrified and denitrified by soil biota. By contrast, almost all the 14CH3NH3 + remained in the soil solution after 4 h, but after a 10 d incubation, approximately 20% had been released as 14CO2. These differences in plant absorption rates and movement through soil pools indicate that CH3NH3 + cannot be used reliably as an NH4 + analog in soil.  相似文献   

8.
NH4 + transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3 +) into the intact cells. 14CH3NH3 + uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3 + as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3 + completely inhibited 14CH3NH3 + uptake. These results indicate that 14CH3NH3 + uptake in this bacterium is mediated via an NH4 + transport system and not by a specific carrier for CH3NH3 +. The respiratory substrate succinate was required to drive 14CH3NH3 + uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3 + uptake. The 14CH3NH3 + uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0° and 15°C, and the apparent K m value for CH3NH3 + of the uptake did not change significantly over the temperature range from 0° to 25°C. Thus, the NH4 + transport system of this bacterium was highly active at low temperatures. Received: August 1, 1998 / Accepted: October 8, 1998  相似文献   

9.
In experiments with isolated hepatocytes, Seglen [1] has shown that in the combined presence of NH4Cl and high concentrations of valine, incorporation of this amino acid into cell protein is inhibited. He has proposed that NH4Cl, in addition to inhibiting protein degradation in lysosomes, inhibits protein synthesis in these cells as part of a general toxic effect. To determine if NH4Cl inhibits protein synthesis in cultured cells we incubated rat embryo fibroblasts, prelabeled with [14C]leucine, in the presence of 10 mM NH4Cl and 15 mM leucine in both growth and serum-free media. We did not detect any effect of NH4+ on protein synthesis or cell growth over a 3-day period. A partial inhibition of protein degradation was observed, particularly during the first 24 h of the experiment. In pulse-labeling experiments, NH4Cl had no effect on the incorporation of [3H]leucine in the media. High concentrations of leucine, however, reduced re-utilization of endogenously derived leucine and inhibited the transport of valine into the cellular acid-soluble pool.These experiments show that at least in cultured fibroblasts 10 mM NH4Cl shows no significant toxicity beyond an inhibition of lysosomal function. In addition these data suggest the possibility that high chase concentrations of one amino acid in the medium may be saturating a common transport mechanism, in effect reducing the transport of other amino acids utilizing this mechanism. A combined blockade by both NH4Cl and a high concentration of a single amino acid may in certain sensitive cells result in a significant reduction in protein synthesis.  相似文献   

10.
The effect of trifluralin (,,-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) on protein synthesis in corn (Zea mays) root tips was determined. 14C-leucine uptake and subsequent incorporation into protein in intact and excised root tips was measured. Root tips were treated with and without 15 µM trifluralin for 2 hr; incorporation of 14C-leucine was observed during a 20-min interval. Total amino acid content in the soluble pool and protein hydrolysate was reduced in the excised tissue by the herbicide. Kinetic analysis showed trifluralin had no effect on endogenous leucine pool size nor on the rate of protein synthesis in intact tissue. Uptake was unaffected; however, in excised tissue uptake increased 100% over the control. While 14C-leucine content was greater in both the soluble pool and protein in treated, excised root tips, analysis showed the apparent increase in protein synthesis was in response to increased pool size.  相似文献   

11.
The incorporation of 14C-leucine into the total-protein fraction of needles of Norway spruce (Picea abies [L.] Karst.) during short time incubation was used as a measure of protein synthesis in the light and in the dark. Light saturation curves, obtained for needles of different ages (new flush and 1 and 2 years old) or at different seasons (summer-winter) followed the Michaelis-Menten algorithm, exhibiting marked differences with regard to light saturation (Vmax) and the half-saturation constant (K5. 2). The light saturation curves of ATP level (mg g?1 fresh weight) and of leucine incorporation into protein (nmol mg?1 h?1) matched each other, suggesting that photophosphorylation may be decisive for the rate of protein synthesis in the light. This is confirmed by the action spectrum of leucine incorporation. which resembled an action spectrum of leaf photosynthesis, and also by partial inhibition of protein synthesis by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of non-cyclic photophosphorylation. Light stimulated protein synthesis showed pronounced seasonal fluctuations with a summer maximum. Furmigation of 5 years old spruce trees for 3 months with SO2 in combination with O3 and/or NO2 caused a distinct enhancement of the protein synthesis rate in the light and, at a reduced absolute level, also in the dark. A similar result was obtained for 40 to 70 years old spruce stands when healthy and sick trees were compared: the latter being afflicted by the novel type of forest decline, which is characterized by yellowish bronze discolouration of sun-exposed older needles and partial loss of older needle generations (3 to 4 years old). The 1 year old needles of the unhealthy trees showed a markedly increased 14C-leucine incorporation rate which, in the dark, was even more pronounced than in the light. Stress-physiological mechanisms, which could possibly explain this stimulation, are discussed.  相似文献   

12.
Protein turnover was found to take place in cells of the asporogenic strain ofBacillus mega, terium KM during the stationary phase brought about by exhaustion of a nitrogen source. Its rate measured by degradation of prelabelled proteins varied around 4%/h. however, the synthesis of proteins at the beginning of the stationary phase was slightly higher (7–8%/h). Protein turnover started already during growth in the medium with a limiting nitrogen concentration. Addition of low doses of ammonium chloride (2 μg NH4Cl/ml and higher) to the nongrowing population at thirty min intervals stimulated protein synthesis. This resulted both in the increased incorporation of14C-leucine into proteins and in the increased synthesis of exocellular protease. On the other hand, the intracellular degradation of proteins decreased only slightly. The number of “colony forming units” in the starving population as well as in the population which was given 2 μg NH4Cl/ml/30 min did not change during 4 h. The number of cells not exhibiting protein synthesis was negligible in both cases. Received July 22, 1 97  相似文献   

13.
Summary Metabolic activity ofA. aegypti cells grown in vitro has been studied by incorporation of3H-uridine and14C-leucine. “Chase” experiments with unlabeled precursors, and the use of actinomycin D and puromycin, showed that3H-uridine was incorporated into cellular RNA, and that14C-leucine was incorporated into protein of these cells. Incorporation of3H-uridine was inhibited when actinomycin D was used at a concentration of 10 μg/ml, and14C-leucine incorporation was inhibited to the same extent by puromycin at a concentration of 100 μg/ml medium. Contribution No. 148.  相似文献   

14.
1. The effect of ammonia on purine and pyrimidine nucleotide biosynthesis was studied in rat liver and brain in vitro. The incorporation of NaH14CO3 into acid-soluble uridine nucleotide (UMP) in liver homogenates and minces was increased 2.5–4-fold on incubation with 10mm-NH4Cl plus N-acetyl-l-glutamate, but not with either compound alone. 2. The incorporation of NaH14CO3 into orotic acid was increased 3–4-fold in liver homogenate with NH4Cl plus acetylglutamate. 3. The 5-phosphoribosyl 1-pyrophosphate content of liver homogenate was decreased by 50% after incubation for 10min with 10mm-NH4Cl plus acetylglutamate. 4. Concomitant with this decrease in free phosphoribosyl pyrophosphate was a 40–50% decrease in the rates of purine nucleotide synthesis, both de novo and from the preformed base. 5. Subcellular fractionation of liver indicated that the effects of NH4Cl plus acetylglutamate on pyrimidine and purine biosynthesis required a mitochondrial fraction. This effect of NH4Cl plus acetylglutamate could be duplicated in a mitochondria-free liver fraction with carbamoyl phosphate. 6. A similar series of experiments carried out with rat brain demonstrated a significant, though considerably smaller, effect on UMP synthesis de novo and purine base reutilization. 7. These data indicate that excessive amounts of ammonia may interfere with purine nucleotide biosynthesis by stimulating production of carbamoyl phosphate through the mitochondrial synthetase, with the excess carbamoyl phosphate in turn increasing pyrimidine nucleotide synthesis de novo and diminishing the phosphoribosyl pyrophosphate available for purine biosynthesis.  相似文献   

15.
Benzyladenine (BA) and KCl were applied to detached cucumber ( Cucumis sativus L. cv. Ohio) cotyledons in continuous light or in the dark with subsequent light. BA brought about an increase in fresh weight and in DNA, RNA and carotenoid contents in both treatments. KCl did not cause an increase in fresh weight and cellular constituents in the dark, but it did result in an increased fresh weight and DNA content after illumination or in continuous light. BA + KCl treatment resulted in increased carotenoid and DNA contents in the dark, and in increases in fresh weight and all cellular constituents upon subsequent exposure to light. The effects of BA and BA + KCl on growth and chlorophyll synthesis decreased with cotyledon age.
BA pretreatment in the dark eliminated the lag phase in chlorophyll synthesis and increased the rate of synthesis. Treatment in continuous light had little effect. KCl did not shorten the lag phase in chlorophyll synthesis, but it stimulated the rate of synthesis in the light. Dark pretreatment with BA + KCl markedly increased the effect of BA on chlorophyll synthesis. Chlorophyll content and fresh weight were higher in cotyledons treated with BA followed by KCl than in cotyledons treated in the reverse order. These results suggest that growth and greening in cucumber cotyledons are primarily controlled by BA and that KCl intensifies the BA effect after irradiation.  相似文献   

16.
Root formation was found to extend the life-span of excised cotyledons of Helianthus annuus L. markedly. Excised cotyledons of 12-day-old plants attained longer life-span, higher root number and total root length than cotyledons excised before or after 12 days. Protein content of attached cotyledons reached a maximum level 12 days after the commencement of germination followed by a decrease. Cotyledons excised 8 days after sowing showed maximum level of protein content 44 days after excision followed by a decrease. The increase was correlated with the full development of roots. The incorporation of 14C-glycine into protein followed a pattern similar to the protein content, both in attached and detached cotyledons.  相似文献   

17.
The effects of methionine sulfoximine and ammonium chloride on [14C] glutamate metabolism in excised leaves of Triticum aestivum were investigated. Glutamine was the principal product derived from [U14C]glutamate in the light and in the absence of inhibitor or NH4Cl. Other amino acids, organic acids, sugars, sugar phosphates, and CO2 became slightly radioactive. Ammonium chloride (10 mm) increased formation of [14C] glutamine, aspartate, citrate, and malate but decreased incorporation into 2-oxoglutarate, alanine, and 14CO2. Methionine sulfoximine (1 mm) suppressed glutamine synthesis, caused NH3 to accumulate, increased metabolism of the added radioactive glutamate, decreased tissue levels of glutamate, and decreased incorporation of radioactivity into other amino acids. Methionine sulfoximine also caused most of the 14C from [U-14C]glutamate to be incorporated into malate and succinate, whereas most of the 14C from [1-14C]glutamate was metabolized to CO2 and sugar phosphates. Thus, formation of radioactive organic acids in the presence of methionine sulfoximine does not take place indirectly through “dark” fixation of CO2 released by degradation of glutamate when ammonia assimilation is blocked. When illuminated leaves supplied with [U-14C] glutamate without inhibitor or NH4Cl were transferred to darkness, there was increased metabolism of the glutamate to glutamine, aspartate, succinate, malate, and 14CO2. Darkening had little effect on the labeling pattern in leaves treated with methionine sulfoximine.  相似文献   

18.
Hypocotyl hooks have been shown to influence greening in excised cucumber (Cucumis sativus) cotyledons. The properties of the lag phase are greatly affected by the presence or absence of the hook tissue. A 45-second light pretreatment followed by 4 hours of darkness is sufficient to remove the lag phase from cotyledons with hooks, while hookless cotyledons require 2 hours of continuous illumination followed by 1 hour of dark incubation to break the lag phase. The effect of hooks on cotyledon greening is enhanced if the hooks are shielded from light. Cutting off the hooks after lag phase removal caused a marked decrease in chlorophyll accumulation in the cotyledons. These observations may indicate that the hypocotyl hooks produce a substance or substances needed in the greening process, which are translocated to the cotyledons. Indoleacetic acid, abscisic acid, gibberellin A3, 6-benzylamino purine and δ-aminolevulinic acid do not show any activity; on the other hand, ethylene appears to replace partially the hypocotyl hooks.  相似文献   

19.
In vitro germination of 20-day old immature ovules of Impatiens platypetala Lindl. was inhibited at concentrations as low as 50 mM sucrose or mannitol and 100 mM glucose. Younger ovules (12, 14, and 16 days old) were similarly inhibited at 100 mM sucrose.Inorganic nitrogen concentration did not affect germination regardless of ovule age, but seedling fresh weight was significantly less and abnormal development of seedlings was significantly increased by total inorganic nitrogen concentrations higher or lower than 30 mM (at a ratio of 20: 10 mM NO3 -: NH4 +) in the culture medium.  相似文献   

20.
Nitrogen is available to the plant in the form of NH+ 4 in the soil solution. Here it is shown that a voltage-independent K+ channel in the plasma membrane of rye (Secale cereale L.) roots is permeable to NH+ 4. The channel was studied following its incorporation into planar 1-palmitoyl-2-oleoyl phosphatidyl ethanolamine bilayers. The unitary conductance of the channel was greater when assayed in the presence of 100 mm NH4Cl than 100 mm KCl. However, the probability of finding the channel open (P o ) was lower in the presence of 100 mm NH4Cl (P o = 0.63) than in 100 mm KCl (P o = 0.8), suggesting that P o can be regulated by the (permeant) ions present in solution. When assayed in equimolar concentrations of NH4Cl (cis) and KCl (trans), the zero-current (reversal) potential for the channel (E rev) exhibited a complex concentration dependence. At low cation concentrations, the apparent permeability of NH+ 4 relative to K+ (PNH4/PK) was greater than 1.0. However, as the cation concentration was increased, PNH4/PK initially decreased to a minimum of 0.95 at 3 mm before increasing again to a maximum of 1.89 at 300 mm. At cation concentrations above 300 mm, PNH4/PK decreased slightly. This implies that the pore of the channel can be occupied by more than one cation simultaneously. Ammonium permeation through the pore was simulated using a model which is composed of three energy barriers and two energy wells (the ion-binding sites). The model (3B2S) allowed for single-file permeation, double cation occupancy, ion-ion repulsion within the pore and surface potential effects. Results indicated that energy peaks and energy wells were situated asymmetrically within the electrical distance of the pore, that cations repel each other within the pore and that the vestibules to the pore contain negligible surface charge. The energy profile obtained for NH+ 4 is compared with ones obtained for K+ and Na+. This information allows the fluxes through the K+ channel of the three major monovalent cations present in the soil solution to be predicted. Received: 16 October 1995/Revised 12 March 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号