首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach of combining flow cytometry (FCM) analysis with morphological and chemical profiling was used to assess the genetic stability and bioactive compound diversity in a Scutellaria baicalensis Georgi (Huang-qin) germplasm collection that was clonally maintained in in vitro for a period of over 6 years. Based on the FCM analysis of nuclei samples from young shoots, the nuclear DNA content of S. baicalensis was calculated as 0.84 pg/2C. FCM analysis showed no significant variation in the nuclear DNA contents and ploidy levels in the long-term in vitro maintained germplasm lines. Germplasm lines, acclimatized to ex vitro conditions, exhibited distinctive plant growth and bioactive compound production capacities. The high level of genetic stability observed in in vitro maintained S. baicalensis lines opens up a variety of opportunities such as allowing long-term aseptic preservation and easy distribution of well-characterized germplasm lines of this medicinal plant species. This study represents a novel approach for continuous maintenance, monitoring, and production of medicinal plant tissues with specific chemistry.  相似文献   

2.
Echinacea, better known as purple coneflower, has received a global attention because of its increasing medicinal value. There is enormous potential for the discovery of new medicinal compounds in this species and an immediate need for techniques to facilitate the production of high quality, chemically consistent plant material for drug development and clinical trials. In vitro tissue culture of Echinacea can play a vital role in the development of novel germplasm, rapid multiplication, and genetic modifications for an enhanced phytochemical production. Recent establishment of liquid culture techniques, large-scale bioreactors, and Agrobacterium-mediated transformation are changing the production parameters of the Echinacea species. This review provides an overview of the recent developments in in vitro technologies and challenges that remain in the Echinacea biotechnology.  相似文献   

3.
Caraway (Carum carvi L.) is a traditional medicinal and spice cross-pollinated plant species. Although in vitro techniques are recently extensively applied in plant breeding programmes, these are not commonly utilized in caraway. Therefore, based on the protocol for anther culture in carrot (Daucus carota L., a closely related species of caraway in Daucaceae family), in vitro androgenesis in caraway has been studied with the aim to produce completely homozygous inbred lines. Various induction conditions, such as temperature pretreatments, carbon sources and combination of growth regulators in a culture medium as well as the effect of genotype on in vitro androgenesis were examined. Ten breeding lines of winter caraway representing third generation of forced (artificial) self-pollination were used as donor plant material. Cultured anthers produced embryogenic calli, and subsequently two types of regenerated plants were obtained, namely haploids with evident microspore origin, and diploids which may represent somatic (anther wall) regenerants or spontaneous doubled haploids. The ploidy status of regenerated plants was determined by flow cytometry. This is the first report on androgenic doubled haploid production in caraway.  相似文献   

4.
To explore the possibility of an effectively long-term preservation of the germplasm of the HR lines of medicinal plant Astragalus membranaceus, Gentiana macrophylla Pall., and Eruca sativa Mill., both cold storage and cryopreservation approaches were attempted and compared. After 5-month cold storage on half strength Murashige and Skoog (1962) (1/2 MS) agar medium (AM), up to 82.9, 75.7, and 100% of the A. membranaceus, G. macrophylla and E. sativa hairy roots (HRs) recovered growth, respectively. The survival rates of A. membranaceus and G. macrophylla HRs significantly decreased, whereas that of E. sativa HR was unchanged with the addition of increased levels of exogenous abscisic acid (ABA) during cold storage. Using the encapsulation–vitrification (EV) method for cryopreservation, the G. macrophylla HRs died, whereas up to 6 and 73% of the A. membranaceus and E. sativa HRs survived, respectively. The HR lines evaluated with both methods showed no significant differences in morphology and growth rate compared with controls that were not subjected to preservation methods. These results suggest that cold storage is a more suitable alternative for the HR lines of the three studied plant species and that specificity of plant species have profound effects on the effectiveness of preservation.  相似文献   

5.
Stylosanthes seabrana (Maass and ‘t Mannetje) (2n = 2x = 20), commonly known as Caatinga stylo, is an important tropical perennial forage legume. In nature, it largely co-exist with S. scabra, an allotetraploid (2n = 4x = 40) species, sharing a very high similarity for morphological traits like growth habit, perenniality, fruit shape and presence of small appendage at the base of the pod or loment. This makes the two species difficult to distinguish morphologically, leading to chances of contamination in respective germplasm collections. In present study, 10 S. seabrana accessions were discovered from the existing global germplasm stock of S. scabra represented by 48 diverse collections, utilizing sequence-tagged-sites (STS) genome-specific markers. All the newly identified S. seabrana accessions displayed STS phenotypes of typical diploid species. Earlier reports have conclusively indicated S. seabrana and S. viscosa as two diploid progenitors of allotetraploid S. scabra. With primer pairs SHST3F3/R3, all putative S. seabrana yielded single band of ~550 bp and S. viscosa of ~870 bp whereas both of these bands were observed in allotetraploid S. scabra. Since SHST3F3/R3 primer pairs are known to amplify single or no band with diploid and two bands with tetraploid species, the amplification patterns corroborated that all newly identified S. seabrana lines were diploid in nature. Flow cytometric measurement of DNA content of the species, along with distinguishing morphological traits such as flowering time and seedling vigour, which significantly differ from S. scabra, confirmed all identified lines as S. seabrana. These newly identified lines exhibited high level of similarity among themselves as revealed by RAPD and STS markers (>92% and 80% respectively). Along with the enrichment in genetic resources of Stylosanthes, these newly identified and characterized accessions of S. seabrana can be better exploited in breeding programs targeted to quality.  相似文献   

6.
Development of an efficient in vitro propagation system for Huang-qin (Scutellaria baicalensis), a traditional Chinese medicinal plant used in the treatment of a wide range of human ailments, is described. Thidiazuron [TDZ: N-phenyl-N′- (1,2,3-thidiazol-5-ylurea)] effectively induced regeneration on cultured intact seedlings, etiolated hypocotyl explants and sterile stem segments of Huang-qin. Histological examinations of excised hypocotyl or nodal explants revealed that adventitious shoots formed through an intermediate callus. Comparison of TDZ-induced regeneration in the three tissue types indicated that isolation of explants was not essential for optimal regenerative efficiency. Significantly more regenerants formed along hypocotyls of intact seedlings (20 shoots/explant) than were observed on excised hypocotyls (9.7 shoots/explant) indicating that endogenous metabolites produced in adjacent tissues provided resources for the shoot initiation. More than 95% of de novo regenerants formed roots and then intact plantlets under either sterile culture or greenhouse conditions. Regeneration protocols developed in this study may provide the basis for improvement of this crop through the identification of medicinally active constituents and eventual development optimized pharmaceutical products. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
樊智丰  韩露  马长乐 《广西植物》2021,41(10):1755-1766
大头茶属(Polyspora Sweet)为山茶科常绿树木,共50种,主要分布于南亚和东南亚地区。大头茶属植物均具有较高观赏价值,可作为热带和亚热带地区的园林绿化树种,部分种类兼具食用和药用价值。该文在对大头茶属种质资源和应用情况简要介绍的基础上,对其系统演化及分类、繁殖特征、生理特性、生态习性、育苗技术、化学成分及药理活性等方面的研究进展进行了较为详细的综述,提出了目前研究中存在的问题,并对今后的研究方向进行了展望,指出未来应扩大大头茶属的研究范围和种类,加强种质资源搜集、系统发育、遗传多样性等研究,重点关注大头茶属的引种栽培与种质创新,充分发掘其药用价值,开展临床转化和药物研制工作,可为合理开发利用野生大头茶属种质资源提供理论依据和研究思路。  相似文献   

8.
Plants from the genus Miscanthus are potential renewable sources of lignocellulosic biomass for energy production. A potential strategy for Miscanthus crop improvement involves interspecific manipulation of ploidy levels to generate superior germplasm and to circumvent reproductive barriers for the introduction of new genetic variation into core germplasm. Synthetic autotetraploid lines of Miscanthus sacchariflorus and Miscanthus sinensis, and autoallohexaploid Miscanthus x giganteus were produced in tissue culture from oryzalin treatments to seed‐ and immature inflorescence‐derived callus lines. This is the first report of the genome doubling of diploid M. sacchariflorus. Genome doubling of diploid M. sinensis, M. sacchariflorus, and triploid M. x giganteus to generate tetraploid and hexaploid lines was confirmed by stomata size, nuclear DNA content, and chromosome counts. A putative pentaploid line was also identified among the M. x giganteus synthetic polyploid lines by nuclear DNA content and chromosome counts. Comparisons of phenotypic performance of synthetic polyploid lines with their diploid and triploid progenitors in the greenhouse found species‐specific differences in plant tiller number, height, and flowering time among the doubled lines. Stem diameter tended to increase after polyploidization but there were no significant improvements in biomass traits. Under field conditions, M. x giganteus synthetic hexaploid lines showed greater phenotypic variation, in terms of plant height, stem diameter, and tiller number, than their progenitor lines. Production of synthetic autopolyploid lines displaying significant phenotypic variation suggests that ploidy manipulation can introduce useful genetic diversity in the limited Miscanthus germplasm currently available in the United States. The role of polyploidization in the evolution and breeding of the genus Miscanthus is discussed.  相似文献   

9.
Developmental variability was introduced into Withania somnifera using genetic transformation by Agrobacterium rhizogenes, with the aim of changing withasteroid production. Inoculation of W. somnifera with A. rhizogenes strains LBA 9402 and A4 produced typical transformed root lines, transformed callus lines, and rooty callus lines with simultaneous root dedifferentiation and redifferentiation. These morphologically distinct transformed lines varied in T-DNA content, growth rates, and withasteroid accumulation. All of the lines with the typical transformed root morphology contained the TL T-DNA, and 90% of them carried the TR T-DNA, irrespective of the strain used for infection. Accumulation of withaferin A was maximum (0.44% dry weight) in the transformed root line WSKHRL-1. This is the first detection of withaferin A in the roots of W. somnifera. All of the rooty callus lines induced by strain A4 contained both the TL and the TR-DNAs. In contrast, 50% of the rooty-callus lines obtained with strain LBA 9402 contained only the TR T-DNA. All the rooty callus lines accumulated both withaferin A and withanolide D. The callusing lines induced by LBA 9402 lacked the TL T-DNA genes, while all the callusing lines induced by strain A4 contained the TL DNA. Four of these callus lines produced both withaferin A (0.15–0.21% dry weight) and withanolide D (0.08–0.11% dry weight), and they grew faster than the transformed root lines. This is the first report of the presence of withasteroids in undifferentiated callus cultures of W. somnifera.  相似文献   

10.
Dioscorea zingiberensis is an important medicinal plant and a source of diosgenin in China. We report research on the induction, characteristics, and chemical assays of polyploid plants of D. zingiberensis. Immersing calli in 0.3% colchicine solution for 16 h prior to culture induced a high number of autotetraploid plants. The induction rate reached as high as 36.7% of treated calli. More than 50 lines of autotetraploid plants were obtained. All tetraploid plants showed typical polyploidy characteristics. Twenty selected tetraploid lines were transferred to the field for determination of morphological characteristics and for chemical assays. Six elite lines have been selected for further selection and breeding into new varieties for commercial production.  相似文献   

11.
于玉龙  耿宇鹏  常娜  陈高 《广西植物》2020,40(9):1251-1258
为探究贯叶马兜铃(Aristolochia delavayi)在不同地理居群挥发性成分含量的变化情况,该文采用固相微萃取-气质联用技术分析了来自五个不同地理区域的贯叶马兜铃叶的挥发性成分,并用气相色谱面积归一化法对各成分进行了定量。结果表明:四个贯叶马兜铃居群植株叶挥发性主成分均为癸烯醛,且占有较高比例。香格里拉三坝乡、丽江大具、楚雄铁锁乡和禄劝则黑乡四个居群植株叶中挥发性成分癸烯醛分别占挥发性成分检出总量的63.5%、79.3%、69.9%、79.6%,其中大具和禄劝两居群含量相对较高并且稳定性较好。分布在鹤庆黄坪的居群,检测出其挥发性主成分为乙酸龙脑酯(30.1%),但癸烯醛含量仅占4.5%,该结果与其他居群有明显差异。通过对该物种不同居群植株叶片挥发性癸烯醛含量的分析,确定了质量更好的种源,同时结合该植物所含马兜铃酸的情况,提出了健康安全的食用方式。该研究结果为合理开发贯叶马兜铃的经济价值及保护该濒危物种提供了技术指导和理论支持。  相似文献   

12.
Ayurvedic medicine, which uses decoctions made of medicinal plants, is used to cure diseases in many Asian countries including Sri Lanka. Although proper storage facilities for medicinal plants are unavailable in Sri Lanka, neither the potential for growth of toxigenic fungi nor their ability to produce mycotoxins in stored medicinal plants has been investigated. We isolated three Fusarium species, F. culmorum, F. acuminatum and F. graminearum from the medicinal plant Tribulus terrestris. Culture extracts of the 3 Fusarium spp. were cytotoxic to mammalian cell lines BHK-21 and HEP-2. Three toxic metabolites produced by Fusarium spp; T-2 toxin, zearalenone, and diacetoxyscirpenol were also cytotoxic to the same mammalian cell lines. The 3 Fusarium spp. grown on rice media produced zearalenone. Plant material destined for medicinal use should be stored under suitable conditions to prevent growth of naturally occurring toxigenic fungi prior to its use.  相似文献   

13.
Rhubarb is an important Traditional Chinese Medicine. However, the wild resource has been declining. In order to design appropriate conservation methods for the official species across their natural distributions, it is important to characterize their genetic diversity. Here, we describe the development of 10 new microsatellite loci for AC/TG/CCA in Rheum tanguticum. The microsatellites were enriched using the combined biotin capture method. The polymorphism of each locus was further assessed in 12 individuals from four geographically distinct populations of this species. The number of alleles ranged from three to seven and the expected heterozygosity ranged from 0.53 to 0.73. All markers have been checked in the other three species in the genus and two of them together comprise the official medicinal rhubarb resource with R. tanguticum. These microsatellite markers could provide a useful tool for genetic and conservation studies of the rhubarb species.  相似文献   

14.
Conservation of identified germplasm is an important component for efficient and effective management of plant genetic resources. Since Chlorophytum species are important medicinal plants, studies were carried out for identification and establish genetic relationships in three species of Chlorophytum and two high yielding genotypes of Chlorophtum borivilianum using RAPD markers. Out of one hundred primers tested, 47 decamers amplified a total of 454 distinct bands ranging from 0.25–3.0 kbp to identify and to evaluate genetic relationships between and among three species of Chlorophytum and two genotypes of Chlorophtum borivilianum. The cluster analysis indicated that three species of Chlorophytum and two genotypes (NRCCB-1 and NRCCB-2) of C. borivilianum formed two major clusters. The first major cluster constituted C. arundinaceum and C. tuberosum, and the second major cluster composed of two subclusters; the first subcluster represented NRCB-1 and NRCB-2 where as the second subcluster represented C. borivilianum. Thus, the RAPD markers have the potential for identification and characterization of genetic relatedness among the species and genotypes. C. borivilianum along with two genotypes also showed similar banding patterns which could be chosen as candidate markers for differentiating the other two species such as C. arundinaceum and C. tuberosum. This would helpful for breeding programmes and provides an important input in conservation biology.  相似文献   

15.
Among Cucurbitaceae, Cucumis melo is one of the most important cultivated cucurbits. They are grown primarily for their fruit, which generally have a sweet aromatic flavor, with great diversity and size (50 g to 15 kg), flesh color (orange, green, white, and pink), rind color (green, yellow, white, orange, red, and gray), form (round, flat, and elongated), and dimension (4 to 200 cm). C. melo can be broken down into seven distinct types based on the previously discussed variations in the species. The melon fruits can be either climacteric or nonclimacteric, and as such, fruit can adhere to the stem or have an abscission layer where they will fall from the plant naturally at maturity. Traditional plant breeding of melons has been done for 100 years wherein plants were primarily developed as open-pollinated cultivars. More recently, in the past 30 years, melon improvement has been done by more traditional hybridization techniques. An improvement in germplasm is relatively slow and is limited by a restricted gene pool. Strong sexual incompatibility at the interspecific and intergeneric levels has restricted rapid development of new cultivars with high levels of disease resistance, insect resistance, flavor, and sweetness. In order to increase the rate and diversity of new traits in melon it would be advantageous to introduce new genes needed to enhance both melon productivity and melon fruit quality. This requires plant tissue and plant transformation techniques to introduce new or foreign genes into C. melo germplasm. In order to achieve a successful commercial application from biotechnology, a competent plant regeneration system of in vitro cultures for melon is required. More than 40 in vitro melon regeneration programs have been reported; however, regeneration of the various melon types has been highly variable and in some cases impossible. The reasons for this are still unknown, but this plays a heavy negative role on trying to use plant transformation technology to improve melon germplasm. In vitro manipulation of melon is difficult; genotypic responses to the culture method (i.e., organogenesis, somatic embryogenesis, etc.) as well as conditions for environmental and hormonal requirements for plant growth and regeneration continue to be poorly understood for developing simple in vitro procedures to culture and transform all C. melo genotypes. In many cases, this has to be done on an individual line basis. The present paper describes the various research findings related to successful approaches to plant regeneration and transgenic transformation of C. melo. It also describes potential improvement of melon to improve fruit quality characteristics and postharvest handling. Despite more than 140 transgenic melon field trials in the United States in 1996, there are still no commercial transgenic melon cultivars on the market. This may be a combination of technical or performance factors, intellectual property rights concerns, and, most likely, a lack of public acceptance. Regardless, the future for improvement of melon germplasm is bright when considering the knowledge base for both techniques and gene pools potentially useable for melon improvement.  相似文献   

16.
The hypervirulent Agrobacterium tumefaciens strain A281 formed frequent tumors (31%) on Picea abies (Norway spruce), an economically important tree species in Swedish forests. Three-month-old seedlings were inoculated and tumors were established that grew hormone-independently in culture. Tumors contained agropine and mannopine/mannopinic acid as determined by acid pH paper electrophoresis. In addition, DNA hybridization studies showed that the DNA from these tumor lines contained sequences homologous to Ti plasmid T-DNA, whereas wild-type spruce seedling DNA did not. These results suggest that Agrobacterium vectors can be used for gene transfer into this important forest species.  相似文献   

17.
Summary Hydrastis canadensis L. (Goldenseal) is an endangered medicinal plant used in the treatment of many ailments, such as gastrointestinal disturbances, urinary disorders, hemorrhage, skin, mouth and eye infections, and inflammation. Commercial preparations of wild-harvested goldenseal were found to contain heavy metal contaminants including aluminum (848 μgg−1), cadmium (0.4μgg−1), lead (18.7μgg−1), and mercury (0.1 μgg−1). As well, goldenseal is an endangered species listed in the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendix II. Therefore, the practice of wild-harvest is actually decimating natural populations of goldenseal and endangering its genetic diversity. In vitro propagation protocol by tissue culture was developed for producing high-quality tissues of goldenseal. Significantly more de novo regeneration was induced on stem explants of 3-mo.-old plants cultured on a medium containing 10 μM 6-benzylaminopurine (BA) (22 regenerants per explant) than any other treatment. Subculture of the regenerants on a medium devoid of growth regulators resulted in the development of complete plants that were acclimatized and thrived in standard greenhouse conditions. The plants regenerated in vitro contained the lowest levels of heavy metals. The findings of this study provide the first evidence that heavy metal contaminants bioaccumulate in goldenseal tissues and also provide a method for germplasm conservation, mass multiplication, and production of goldenseal tissues free from abiotic contamination.  相似文献   

18.
赤霉素GA3调节黄芩组织培养中芽和根的形成   总被引:1,自引:0,他引:1  
应用组织培养技术对黄芩进行外源激素调控研究。在培养不同时间进行的不同培养基之间的转移培养研究表明,组织培养条件下,在培养基中添加赤霉素,可显著刺激黄芩外植体芽的形成,同时抑制根的生长。在加有GA3的IAA培养基上,GA3显著影响黄芩组织培养物中的黄酮含量。在黑暗条件下,开始在2.5μmol/LIAA培养基中培养6d,随后转移到5μmol/LGA3培养基上培养,黄芩外植体中黄岑苷、黄岑素和汉黄芩苷的含量最高,分别为14.90,2.70和0.54μgmg-1(干重)。  相似文献   

19.
小花老鼠簕(Acanthus ebracteatus)是一种生长在红树生态系统的珍稀真红树植物,具有较高的药用价值。为研究小花老鼠簕内生及根际可培养细菌多样性,挖掘其潜在新物种及具有特殊生物学活性的菌株,该文利用7种不同培养基,通过传统稀释涂布法对小花老鼠簕各植物组织及根际土壤可培养细菌进行分离,基于16S rRNA基因序列解析其内生及根际细菌群落结构和多样性特征,应用植物病原菌平板对峙实验和平铺捕食活性测试分析其可培养细菌的抗菌活性。结果表明:(1)基于16S rRNA基因序列分析,发现从小花老鼠簕的根、茎、叶、花及根际土壤中分离得到144株可培养细菌,这些细菌隶属于18目26科37属66种,芽孢杆菌属(Bacillus)和链霉菌属(Streptomyces)为优势菌属,分别占细菌种数的15.1%和13.6%;(2)拮抗多种植物病原菌试验结果显示,获得29株具有拮抗植物病原菌活性的细菌,10株具有广谱抑菌活性,其中链霉菌属菌株拮抗作用最强且菌株Y129为潜在新物种。(3)捕食活性测试结果显示,有5株细菌对金黄色葡萄球菌(Staphylococcus aureus)、耐甲氧西林金黄色葡...  相似文献   

20.
This paper deals with strategies for agrobiodiversity conservation and promotion based on studies on four plant groups (selected from 50 plant groups) occurring in the Yunnan Province of China. These plants are edible konjac (Amorphophallus), medicinal Paris, Musella lasiocarpa and wild tea (Camellia sinensis and its wild relatives), including their cultivars and wild populations. After analyzing the target plants, we conclude that the following strategies should be adopted to conserve and promote agrobiodiversity: (1) in situ conservation of agrobiodiversity, including habitat protection of wild populations, maintenance of native species and varieties in traditional agroecosystems, and relevant environmental education; (2) ex situ conservation and promotion of agrobiodiversity, including establishment of living collections and germplasm banks, and introduction of species and varieties into agroecosystems for agricultural practice; and (3) promotion and conservation of agrobiodiversity through sustainable uses, including technique development of propagation, cultivation, pest and disease control, on farm and off farm management, and other activities such as new variety breeding and scientific studies. Strategies developed here will be helpful to conserve and promote agrobiodiversity at agroecosystem, species, variety or landrace, and management system levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号