首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of Fe3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1,3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. These results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe2+ by oxygen.  相似文献   

2.
In the presence of Fe-3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1, 3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. The results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe-3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe-2+ by oxygen.  相似文献   

3.
Oxygen-dependent antagonism of lipid peroxidation   总被引:4,自引:0,他引:4  
Measurements of the rates for formation of conjugated dienes, malonylaldehyde, and lipid hydroperoxides show that increasing the concentration of O2 from 0.11 mM to 0.35 mM or 0.69 mM can slow the rate of linoleic acid peroxidation in a xanthine oxidase/hypoxanthine system. This effect is seen at pH 7.0 but not 7.4 and depends on the presence of monounsaturated fatty acids (oleic, cis, or trans vaccenic acid). Oxygen antagonism of ascorbic acid-iron-EDTA mediated lipid peroxidation is similarly dependent on fatty acid mixtures and occurs at pH 5.0 and 6.0 but not 7.0. The efficiency of initiation of peroxidation in the xanthine oxidase system is unaffected by monounsaturated fatty acids and O2 concentration. Increasing the O2 concentration increases the rate of superoxide radical production, but there is no change in salicylate hydroxylation (e.g., OH. production) or ferrous ion concentration. Oxygen-mediated slower rates of lipid peroxidation are associated with either increased H2O2 production or, based on an indirect assay, singlet O2 production. Increased O2 concentrations increase the rate of azobisisobutyronitrile-initiated lipid peroxidation as expected but addition of exogenous superoxide radicals slows the rate. Under similar conditions superoxide reacts with fatty acids to produce singlet O2. Overall, the data suggest that O2-mediated antagonism occurs because of termination reactions between hydroperoxyl (HO2.) and organic radicals, and singlet O2 or H2O2 are products of these reactions.  相似文献   

4.
5.
The effects of all-zinc metallothionein (Zn-metallothionein) and predominantly cadmium metallothionein (Cd/Zn-metallothionein) on free radical lipid peroxidation have been investigated, using erythrocyte ghosts as the test system. When treated with xanthine and xanthine oxidase, Zn-metallothionein and Cd/Zn-metallothionein underwent thiolate group oxidation and metal ion release that was catalase-inhibitable, but superoxide dismutase-non-inhibitable. Similar treatment in the presence of ghosts and added Fe(III) resulted in metallothioneen oxidation that was significantly inhibited by superoxide dismutase. Ghosts incubated with xanthine/xanthine oxidase/Fe(III) underwent H2O2- and O2-dependent lipid peroxidation, as measured by thiobarbituric acid reactivity. Neither type of metallothionein had any effect on xanthine oxidase activity, but both strongly inhibited lipid peroxidation when added to the membranes concurrently with xanthine/xanthine oxidase/iron. This inhibition was far greater and more sustained than that caused by dithiothreitol at a concentration equivalent to that of metallothionein thiolate. Significant protection was also afforded when ghosts plus Cd/Zn-metallothionein or Zn/metallothionein were preincubated with H2O2 and Fe(III), and then subjected to vigorous peroxidation by the addition of xanthine and xanthine oxidase. These results could be mimicked by using Cd(II) or Zn(II) alone. Previous studies suggested that Zn(II) inhibits xanthine/xanthine oxidase/iron-driven lipid peroxidation in ghosts by interfering with iron binding and redox cycling. Therefore, the primary determinant of metallothionein proteciion appears to be metal release and subsequent uptake by the membranes. These results have important implications concerning the antioxidant role of metallothionein, a protein known to be induced by various prooxidant conditions.  相似文献   

6.
Ferritin and superoxide-dependent lipid peroxidation   总被引:23,自引:0,他引:23  
Ferritin was found to promote the peroxidation of phospholipid liposomes, as evidenced by malondialdehyde formation, when incubated with xanthine oxidase, xanthine, and ADP. Activity was inhibited by superoxide dismutase but markedly stimulated by the addition of catalase. Xanthine oxidase-dependent iron release from ferritin, measured spectrophotometrically using the ferrous iron chelator 2,2'-dipyridyl, was also inhibited by superoxide dismutase, suggesting that superoxide can mediate the reductive release of iron from ferritin. Potassium superoxide in crown ether also promoted superoxide dismutase-inhibitable release of iron from ferritin. Catalase had little effect on the rate of iron release from ferritin; thus hydrogen peroxide appears to inhibit lipid peroxidation by preventing the formation of an initiating species rather than by inhibiting iron release from ferritin. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide was used to observe free radical production in this system. Addition of ferritin to the xanthine oxidase system resulted in loss of the superoxide spin trap adduct suggesting an interaction between superoxide and ferritin. The resultant spectrum was that of a hydroxyl radical spin trap adduct which was abolished by the addition of catalase. These data suggest that ferritin may function in vivo as a source of iron for promotion of superoxide-dependent lipid peroxidation. Stimulation of lipid peroxidation but inhibition of hydroxyl radical formation by catalase suggests that, in this system, initiation is not via an iron-catalyzed Haber-Weiss reaction.  相似文献   

7.
Muraoka S  Miura T 《Life sciences》2004,74(13):1691-1700
We examined if phytic acid inhibits the enzymatic superoxide source xanthine oxidase (XO). Half inhibition of XO by phytic acid (IC50) was about 30 mM in the formation of uric acid from xanthine, but generation of the superoxide was greatly affected by phytic acid; the IC50 was about 6 mM, indicating that the superoxide generating domain of XO is more sensitive to phytic acid. The XO activity in intestinal homogenate was also inhibited by phytic acid. However, it was not observed with intestinal homogenate that superoxide generation was more sensitive to phytic acid compared with the formation of uric acid as observed with XO from butter milk. XO-induced superoxide-dependent lipid peroxidation was inhibited by phytic acid, but not by myo-inositol. Reduction of ADP-Fe3+ caused by XO was inhibited by superoxide dismutase, but not phytic acid. The results suggest that phytic acid interferes with the formation of ADP-iron-oxygen complexes that initiate lipid peroxidation. Both phytic acid and myo-inositol inhibited XO-induced superoxide-dependent DNA damage. Mannitol inhibited the DNA strand break. Myo-inositol may act as a hydroxyl radical scavenger. The antioxidative action of phytic acid may be due to not only inhibiting XO, but also preventing formation of ADP-iron-oxygen complexes.  相似文献   

8.
The weak luminescence that accompanies the aerobic xanthine oxidase reaction is inhibited by superoxide dismutase, by catalase, and by scavengers of hydroxyl radicals. It is also entirely dependent upon the presence of carbonate. It thus appears that the O2 and H2O2 produced during the aerobic action of xanthine oxidase interact to generate OH which, in turn, reacts with carbonate to yield the carbonate radical (CO3?). The species that is directly responsible for light emission appears to be produced by a dimerization of carbonate radicals, since the light intensity was a function of the square of the carbonate concentration. The data provide no reason to suppose that the light-emitting species is singlet oxygen.  相似文献   

9.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase.  相似文献   

10.
1. Xanthine oxidase acting aerobically upon acetaldehyde was found to cause the peroxidation of linolenate. This was demonstrated by increased absorbance at 233 nm due to diene conjugation and by the detection of a lipid peroxide spot on the thin layer chromatograms. 2. Superoxide dismutase inhibited this lipid peroxidation, as did catalase, thus indicating that both O2- and H2O2 were essential intermediates. Scavengers of singlet oxygen also inhibited the peroxidation of linolenate, whereas scavengers of hydroxyl radical did not. These effects, which were observed in the absence of iron salts, led to the proposal that O2- and H2O2 can directly give rise to a singlet oxygen, as follows: O2- + H2O2 leads to OH- + OH. + O2. 3. This proposal was further supported through the use of 2,5-dimethylfuran, as an indicating scavenger of singlet oxygen. Thus, when this compound was exposed to a known source of singlet oxygen, it gave a product which was detectable by thin layer chromatography. This product was also observed when 2,5-dimethylfuran was exposed to the xanthine oxidase system, in which case its accumulation was prevented by superoxide dismutase or by catalase, but not by scavengers of hydroxyl radical.  相似文献   

11.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O 2 and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-β-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O 2 -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive Superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria. These results are interpreted in terms of a possible lysosomal membrane permeability to O 2 causing organelle impairment by a process that, though leading to enzyme-marker leakage, does not involve lipid peroxidation.  相似文献   

12.
Incubation of human term placental mitochondria with Fe2+ and a NADPH-generating system initiated high levels of lipid peroxidation, as measured by the production of malondialdehyde. Malondialdehyde formation was accompanied by a corresponding decrease of the unsaturated fatty acid content. This NADPH-dependent lipid peroxidation was strongly inhibited by superoxide dismutase and singlet oxygen scavengers, markedly stimulated by paraquat, but was not affected by hydroxyl radical scavengers. Catalase enhanced the production of malondialdehyde by placental mitochondria. The effects of catalase and hydroxyl radical scavengers suggest that the initiation of NADPH-dependent lipid peroxidation is not dependent upon the hydroxyl radical produced via an iron-catalyzed Fenton reaction. These studies provide evidence that hydrogen peroxide strongly inhibits NADPH-dependent mitochondrial lipid peroxidation. The inhibitory effect of superoxide dismutase and stimulatory effect of paraquat, which was abolished by the addition of superoxide dismutase, suggests that superoxide may promote NADPH-dependent lipid peroxidation in human placental mitochondria.  相似文献   

13.
N-substituted dehydroalanines react with and scavenge oxygen radicals. One of those compounds, the para-methoxyphenylacetyl dehydroalanine derivative, indexed as AD-5, inhibits the reduction of ferricytochrome c by superoxide anion (O2-.). It can also inhibit the oxidation of linolenic acid, another chemical process, which is mediated by hydroxyl radical (HO.). Furthermore, microsomal lipid peroxidation induced by iron salts was also inhibited by AD 5, but with a different degree of efficacy. In fact, lipid peroxidation initiated by a ferrous-oxygen complex (as in iron/NADPH-dependent peroxidation) was inhibited by AD 5 in a range of concentration of 2-4 mM. On the contrary, iron/NADPH-independent lipid peroxidation, where alkoxy radicals (RO.) have principally been involved, was inhibited in a range of concentration of 6-10 mM. The ESR studies by using the spin trapping agent DMPO, show that AD-5 reacts with HO. with a second order constant of 2.8 X 10(9)-4.5 X 10(9) M-1 s-1.  相似文献   

14.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O2.- and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-beta-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O2.- -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Xanthine oxidase suffers autoinactivation in the course of catalyzing the oxidation of acetaldehyde. When no special efforts were made to maintain a high pO2 in these reaction mixtures catalase protected the xanthine oxidase, but superoxide dismutase did not. However, when oxygen depletion was slowed or prevented by working at lower concentrations of xanthine oxidase, at lower temperatures or by vigorous agitation under an atmosphere of 100% oxygen, superoxide dismutase or catalase protected markedly when added separately and protected almost completely when added together. This result correlates with the greater production of O2-, relative to H2O2, by xanthine oxidase, at elevated pO2. Since histidine also provided some protection and the high levels of acetaldehyde used would have precluded any significant effect of OH., we conclude that singlet oxygen, or something with similar reactivity, was generated from O2- plus H2O2 and contributed significantly to the observed autoinactivation.  相似文献   

16.
The damaging effects of ascorbate (AH-) and superoxide (O-2) on resealed erythrocyte ghosts containing predetermined levels of lipid hydroperoxides (LOOHs) have been studied. Continuous blue light irradiation of membranes in the presence of protoporphyrin resulted in steadily increasing LOOH levels and enhanced release of a trapped marker, glucose 6-phosphate (G6P), after a 3- to 4-h lag. Neither superoxide dismutase (SOD) nor catalase inhibited these effects, ruling out O-2 and H2O2 as reactive intermediates. A 1-h light dose produced partially photoperoxidized ghosts, which, in the dark at 37 degrees C, released G6P no faster than unirradiated controls (approximately 7%/h). When xanthine oxidase plus xanthine (XO/X) was introduced as a source of O-2 and H2O2, the irradiated membranes lysed rapidly (t1/2 approximately 2 h). EDTA or SOD inhibited the reaction, whereas catalase had little or no effect. Unirradiated ghosts were not lysed by XO/X unless the system was supplemented with Fe(III), in which case total protection was afforded by SOD or catalase. In all experiments there was an excellent correlation between postirradiation lipid peroxidation (thiobarbituric acid reactivity) and G6P release. Similar observations were made with AH-. For example, dark incubation of photooxidized ghosts in the presence of 0.5 mM AH- resulted in rapid lysis (t1/2 approximately 1 h), which was stimulated approximately twofold by 50 microM Fe(III) and was inhibited by EDTA. By comparison, unirradiated ghosts showed no net peroxidation or lysis after 3 h exposure to Fe(III)/AH-. Neither SOD nor catalase protected against AH--stimulated damage. AH--promoted lipid peroxidation was inhibited by butylated hydroxytoluene, a lipophilic antioxidant, but was unaffected by 2,5-dimethylfuran or ethanol, singlet oxygen, and hydroxyl radical traps, respectively. These results suggest that a mechanism exists by which photogenerated LOOHs undergo redox metal-mediated reduction to alkoxy radicals (LO.), which trigger a burst of membrane-disrupting lipid peroxidation.  相似文献   

17.
Treatment of bovine pulmonary artery smooth muscle microsomes with the superoxide radical generating system hypoxanthine plus xanthine oxidase stimulated iron release, hydroxyl radical production and lipid peroxidation. Pretreatment of the microsomes with deferoxamine or dime thy lthiourea markedly inhibited lipid peroxidation, and prevented hydroxyl radical production without appreciably altering iron release. The superoxide radical generating system did not alter the ambient superoxide dismutase activity. However,addition of exogenous superoxide dismutase prevented superoxide radical induced iron release,hydroxyl radical production and lipid peroxidation. Simultaneous treatment of the microsomes with deferoxamine, dimethylthiourea or superoxide dismutase prevented hydroxyl radical production and liqid peroxidation. While deferoxamine or dimethylthiourea did not appreciably alter iron release, superoxide dismutase prevented iron release. However, addition of deferoxamine, dimethylthiourea or superoxide dismutase even 2 min after treatment did not significantly inhibit lipid peroxidation, hydroxyl radical production and iron release. Pretreatment of microsomes with the anion channel blocker 4,4’- dithiocyano 2,′- disulphonic acid stilbine did not cause any discernible change in chemiluminiscence induced by the superoxide radical generating system but markedly inhibited lipid peroxidation without appreciably altering iron release and hydroxial radical production.  相似文献   

18.
The conversion of xanthine dehydrogenase to xanthine oxidase and lipid peroxidation were measured in brain from carbon monoxide- (CO) poisoned rats. Sulfhydryl-irreversible xanthine oxidase increased from a control level of 15% to a peak of 36% over the 90 min after CO poisoning, while the conjugated diene level doubled. Reversible xanthine oxidase was 3-6% of the total enzyme activity over this span of time but increased to 31% between 90 and 120 min after poisoning. Overall, reversible and irreversible xanthine oxidase represented 66% of total enzyme activity at 120 min after poisoning. Rats depleted of this enzyme by a tungsten diet and those treated with allopurinol before CO poisoning to inhibit enzyme activity exhibited no lipid peroxidation. Treatment immediately after poisoning with superoxide dismutase or deferoxamine inhibited lipid peroxidation but had no effect on irreversible oxidase formation. Biochemical changes only occurred after removal from CO, and changes could be delayed for hours by continuous exposure to 1,000 ppm CO. These results are consistent with the view that CO-mediated brain injury is a type of postischemic reperfusion phenomenon and indicate that xanthine oxidase-derived reactive oxygen species are responsible for lipid peroxidation.  相似文献   

19.
Chrysoeriol and its glycoside (chrysoeriol-6-O-acetyl-4'-beta-D-glucoside) are two natural flavonoids extracted from the tropical plant Coronopus didymus. The aqueous solutions of both the flavonoids were tested for their ability to inhibit lipid peroxidation induced by gamma-radiation, Fe (III) and Fe (II). In all these assays chrysoeriol showed better protecting effect than the glycoside. The compounds were also found to inhibit enzymatically produced superoxide anion by xanthine/xanthine oxidase system; here the glycoside is more effective than the aglycone. The rate constants for the reaction of the compounds with superoxide anion determined by using stopped-flow spectrometer were found to be nearly same. Chrysoeriol glycoside reacts with DPPH radicals at millimolar concentration, but the aglycone showed no reaction. Using nanosecond pulse radiolysis technique, reactions of these compounds with hydroxyl, azide, haloperoxyl radicals and hydrated electron were studied. The bimolecular rate constants for these reactions and the transient spectra of the one-electron oxidized species indicated that the site of oxidation for the two compounds is different. Reaction of hydrated electron with the two compounds was carried out at pH 7, where similar reactivity was observed with both the compounds. Based on all these studies it is concluded that chrysoeriol exhibits potent antioxidant activity. O-glycosylation of chrysoeriol decreases its ability to inhibit lipid peroxidation and reaction with peroxyl radicals. However the glycoside is a more efficient scavenger of DPPH radicals and a better inhibitor of xanthine/xanthine oxidase than the aglycone.  相似文献   

20.
《Phytochemistry》1986,25(2):367-371
Di- and polyamines are effective scavengers of free radicals generated in a number of chemical and in vitro enzyme systems. Free radical production was quantified spectrophotometrically using nitroblue tetrazolium and cytochrome c or by electron spin resonance. Levels of superoxide radical formed either enzymatically with xanthine oxidase or chemically from riboflavin or pyrogallol were significantly inhibited by spermine, spermidine, putrescine and cadaverine at 10 and 50 mM. The more reactive hydroxyl radical generated by the Fenton reaction was also effectively scavenged by di- and polyamines. In addition, the production of superoxide radical by senescing microsomal membranes was inhibited by di- and polyamines, as was the superoxide-dependent conversion of 1- aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The efficacy of polyamine-scavenging appears to be correlated with the extent of amination suggesting the involvement of amino groups. It is also apparent that some of the physiological effects of polyamines, in particular their propensity to inhibit lipid peroxidation and retard senescence, may be attributable to their radical-scavenging capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号