首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung Es wurde der Verlauf der interterritorialen kollagenen Fibrillenzüge in verschiedenen Knorpeln des erwachsenen Menschen, einiger Säugetiere (Pferd, Rind, Hund, Kaninchen) und eines Haifisches mittels des Polarisationsmikroskopes untersucht.Alle untersuchten Knorpel zeigen das gleiche Konstruktionsprinzip: zwei Systeme von S-förmigen Fibrillenzügen (vgl. Schema Abb. 1b, S. 282 und Abb. 4a, S. 288), welche, sich unter einem Winkel von durchschnittlich 30–45° kreuzend, den Knorpel auf Quer- und Längsschnitten schräg durchziehen und beiderseits in das Perichondrium einbiegen.Dieses Verhalten entspricht demjenigen, welches zuerst von H. Bormuth für verschiedene Selachierknorpel beschrieben worden ist. Im übrigen werden die Ansichten verschiedener Autoren über den funktionellen Bau des Knorpels diskutiert, und besonders wird auf die Arbeiten von A. Benninghoff eingetreten.Das architektonische Prinzip mit den schräg verlaufenden, sich überkreuzenden Fibrillensystemen ist vielseitiger als das ältere Schema mit den senkrecht zur Oberfläche angeordneten Fibrillenzügen; zudem vermittelt es mit einem geringeren Materialaufwand eine größere Festigkeit.  相似文献   

2.
Zusammenfassung An dicken Hirnschnitten wird das Auftreten und die Verteilung der Succinodehydrogenase im Hirn von 122 Vögeln, 97 Säugetieren und 2 menschlichen Feten untersucht. Bei den Vögeln wurden neben ausgewachsenen Gehirnen von 4 Arten die Entwicklung des Fermentmusters bei 5 Arten studiert, von denen Gallus und Anas zur Gruppe der Nestflüchter und Columba, Passer und Melopsittacus zu den Nesthockern gehören. Bei den Säugern wurden vorzugsweise Entwicklungsstadien von Mus, Felis, Canis, Oryctolagus (Nesthocker) sowie Cavia, Sus, Ovis (Nestflüchter) bearbeitet.Für die erwachsenen Vögel wurden zum ersten Mal detaillierte Angaben über die Verteilung des Fermentes in verschiedenen Hirnregionen gemacht.Die Entstehung des Fermentmusters bei den Entwicklungsstadien folgt im allgemeinen der Regel, daß zum Zeitpunkt des Schlüpftermines bzw. der Geburt der Nestflüchter ein differenzierteres Fermentmuster im Gehirn aufweist als der Nesthocker. Melopsittacus zeigt als extremer Nesthocker nicht allein auf den Schlüpftermin bezogen eine verzögerte Fermentreifung, sondern in den übergeordneten Hirnbezirken des Telencephalons auch eine absolut späte Differenzierung. Columba nimmt auch hier — wie unter anderen Gesichtspunkten — eine Übergangsstellung ein. Als Nesthocker zeigt sie eine relativ frühzeitige Ausreifung.Bei Melopsittacus betrifft die verzögerte Fermentreifung nicht allein das Gehirn insgesamt, sondern speziell die übergeordneten Hirnzentren wie das Telencephalon. Der Zeitraum zwischen der beginnenden Differenzierung im Rhombencephalon und ihrem Abschluß im Telencephalon wird so gedehnt, daß ein Stadium, wie es zu dem des Nestflüchters beim Schlüpftermin passen könnte, nie vollkommen, d. h. in allen Hirnteiluen gleich gut entsprechend, erreicht wird.Die Reihenfolge der Fermentreifung zeigt bei Vögeln und Säugern eine caudokraniale Entwicklung, weiter Erscheinungen, die einerseits Anklänge an die phylogenetische Entwicklung erkennen lassen, andererseits solche, die an eine Reifung funktionell zusammengehöriger Kerngruppen denken lassen (akustisches System).Bei den Säugern zeigen die sechs untersuchten Formen bezüglich der Unterscheidung in Nestflüchter und Nesthocker weniger eine scharfe Gruppenbildung als eine Reihe, die von Mus, dem deutlichsten Nesthocker, über Felis, Canis, Oryctolagus, Cavia, Sus zu Ovis, dem extremen Nestflüchter, führt. Überraschend ist vor allem der Befund bei Oryctolagus, der trotz der bekannten Nesthockereigenschaften eine auffallend frühe Fermentdifferenzierung aufweist.Schon die wenigen bisher vom Menschen untersuchten Stadien zeigen, daß der menschliche Embryo durchaus dem Typ des Nestflüchters folgt und damit auch in diesem Zusammenhang Portmanns Vorstellungen vom sekundären Nesthockertum des Menschen rechtfertigt.Die Befunde werden im Rahmen der Ergebnisse amerikanischer Biochemiker (Flexner, Potter, Lowry, Greengard und McIlwain, Kimel und Kavaler, Meyer und Dixon, Richter u. a.) sowie im Zusammenhang mit den Untersuchungen aus der Portmann-Schule (Sutter, Schifferli, Helfer) diskutiert.

Abkürzungen

Vögel G Gallus dom. (Var. New Hampshire) - A Anas platyrhynchos dom - C Columba dom - P Passer montanus - M Melopsittacus undulatus Säuger Mu Mus musculus (Var. alba) - Fe Felis catus L - Ca Canis familiaris - Or Oryctolagus cuniculus dom - Cv Cavia porcella dom - Su Sus scrofa dom - Ov Ovis aries Die Arbeit wurde durch die Deutsche Forschungsgemeinschaft ermöglicht und stand unter Leitung von Prof. Ortmann.  相似文献   

3.
Zusammenfassung Für den Zwergwels (Amiurus nebulosus) werden die absoluten Hörschwellen im Frequenzbereich von 60–10000 Hz bestimmt. Die in der Arbeit angegebene Methode gestattet nur Messungen, deren Fehler etwa auf ±10 db geschätzt werden muß.Das Gehörorgan der Zwergwelse ist ein Schalldruckempfänger, so daß die Hörschwellen in Schalldruckeinheiten (bar = dyn/cm2) angegeben werden können.Im Bereich von 60–1600 Hz ist der Schwellenschalldruck annähernd konstant; oberhalb von 1600 Hz steigt er steil mit der Frequenz an (s. Abb. 7).Nach beidseitiger Exstirpation des Malleus ist die Empfindlichkeit auf 1/30–1/100 (um 30–40 db) abgesunken, die Form der Hörschwellenkurve bleibt jedoch erhalten (s. Abb. 8).Versuche, die Schwimmblase auszuschalten, waren erfolglos.Eigenfrequenz und Dämpfung der Pulsationsschwingungen der isolierten Camera aerea (vordere Schwimmblasenkammer) der Elritze wurden gemessen. Die Eigenfrequenz der Schwimmblase ist ihrem mittleren Durchmesser umgekehrt proportional. Das logarithmische Dekrement der Schwingungen beträgt im Mittel 0,25. Es ist anzunehmen, daß die Dämpfung im Fischkörper größer ist.Die Form der Schwellenschalldruckkurve läßt sich aus den akustischen Eigenschaften des Weberschen Apparates verstehen, wenn man annimmt, daß für die Schwellenerregung der Sinneszellen eine frequenzunabhängige Mindestamplitude der Endolymphschwingungen im Labyrinth erforderlich ist.Ein Vergleich der Schwingungsamplituden einer kugelförmigen Luftblase in Wasser und der Teilchen in einem Wasserschallfeld mit fortschreitenden Wellen bei gleichem Schalldruck zeigt den Vorteil, den die Transformation des Schalldrucks in Bewegungen der Schwimmblasenwand für das Hörvermögen der Ostariophysen bietet.Die Schallempfindlichkeit der Zwergwelse (dargestellt durch die Schwellen-Energiedichte eines ungestörten Schallfeldes) ist im optimalen Frequenzbereich (etwa 800 Hz) gleich der des Menschen und des Vogels (Dompfaff) in ihren optimalen Frequenzbereichen (etwa 3200 Hz); dagegen ist die Schallempfindlichkeit des Zwergwelses bei tiefen Frequenzen (z. B. 60 Hz) wesentlich größer, bei hohen Frequenzen (z. B. 10000 Hz) jedoch wesentlich kleiner als die von Mensch und Vogel (s. Abb. 13). Die berechneten Schwellenamplituden der Schwimmblasenwand sind nur wenig größer als die des Trommelfells von Mensch und Vogel.Für die Anregung zu dieser Arbeit bin ich Herrn Prof. Dr. H. Autrum zu Dank verpflichtet. Für Unterstützung und Beratung danke ich ferner Herrn Prof. Dr. R. W. Pohl (I. Physikalisches Institut Göttingen), Herrn Prof. Dr. F. H. Rein (Physiologisches Institut Göttingen) und Herrn Dr. K. Tamm (III. Physikalisches Institut Göttingen).Die Untersuchungen wurden mit Apparaten ausgeführt, die die Deutsche Forschungsgemeinschaft Herrn Prof. Autrum zur Verfügung gestellt hat.  相似文献   

4.
Zusammenfassung Bei Calliphora erythrocephala wurden die Belichtungspotentiale nach schrittweiser, operativer Entfernung der optischen Ganglien untersucht. Es wurde eine Reihe von Belichtungspotentialen erhalten, deren positive Anteile mehr und mehr zurücktreten, je mehr von den optischen Ganglien entfernt ist.Das Belichtungspotential der, isolierten Retina ist monophasisch und rein negativ (Abb. 13). Es gleicht in seiner Form den Kurven, die sich beim intakten Auge aus der Höhe der Aus-Effekte in Abhängigkeit von der Reizdauer ergeben, und den monophasischen Potentialen, wie sie bei Insekten mit geringem zeitlichem Auflösungsvermögen des Auges (Dytiscus, Tachycines) und bei Limulus gefunden wurden.Das diphasische Belichtungspotential von Calliphora und der Imago von Aeschna kommt durch das Zusammenwirken einer negativen, retinalen und einer oder mehrerer positiver, aus den optischen Ganglien stammender Komponenten zustande.Das negative Potential der Retina ist das Generator- und Steuerpotential für die positiven ganglionären Potentiale.Die positiven Komponenten entstehen im wesentlichen im Ganglion opticum I, und zwar mit großer Wahrscheinlichkeit die schnellen Phasen in den Lokalzellen der inneren Körnerschicht, die langsamen in den Ganglienzellen der äußeren Körnerschicht.Den positiven, ganglionären Potentialen wird eine restitutive Wirkung auf die infolge des Lichtreizes depolarisierten Sinneszellen der Retina zugeschrieben.Bei Aeschna cyanea nähert sich während der larvalen Entwicklung die Lamina ganglionaris (= Ganglion opticum I) der Retina (Abb. 19). Parallel mit dieser Annäherung geht das zunächst monophasische Belichtungspotential der jungen Larve in ein diphasisches über, das am vollkommensten bei der Imago ausgebildet ist. Zugleich nimmt die Trägheit des Auges ab (Verschmelzungsfrequenz bei der jungen Larve 40, bei der Imago 170 Lichtreize/sec).Für die Primärvorgänge im Auge der Insekten lassen sich folgende Annahmen durch die Versuchsergebnisse begründen : Der Initialvorgang ist die Lichtabsorption in einem Sehstoff. Dieser zerfällt bei Belichtung nicht. Die Empfindlichkeit der Sehzellen (ihr Adaptationszustand) hängt nicht — wie bei den Wirbeltieren — von der vorhandenen Menge an Sehsubstanzen ab, sondern von dem Abstand des Erregungsniveaus der Retinazellen vom Ruhewert. Die Höhe des Erregungsniveaus ist durch die Höhe des negativen Potentials der Retinazellen meßbar. Bei gleicher Reizintensität stellt sich nach einer gewissen Reizdauer stets die gleiche Höhe des Erregungsniveaus ein. Dieser Adaptationsvorgang kann durch restitutive (repolarisierende) Potentiale erheblich beschleunigt werden. Sie entstehen wahrscheinlich in der Lamina ganglionaris und breiten sich elektrotonisch retinawärts aus. Diese elektrotonischen Potentiale haben an den Sinneszellen selbst nur dann eine ausreichende Größe, wenn der Abstand zwischen Retina und Lamina ganglionaris klein ist.Die Untersuchungen wurden mit Unterstützung der Notgemeinschaft der deutschen Wissenschaft durchgeführt. Wir danken ferner Herrn Prof. Dr. R. W. Pohl, der in der Werkstatt des I. Physikalischen Institutes der Universität Göttingen Apparate für den Versuchsaufbau herstellen ließ.  相似文献   

5.
Karl Gentil 《Zoomorphology》1943,40(1-3):299-313
Zusammenfassung Die Schillerschuppen von Hoplia coerulea bestehen aus einer dicken Platte mit verdicktem und aufgewölbtem Rand als Unterseitenlamelle und einer unregelmäßig gerillten und gewölbten Platte als Oberseiten lamelle. Das Schuppenlumen ist — entgegen der Ansicht Biedermanns —mit 3—4 durch Luft getrennte Lamellen ausgefüllt. Die Oberseitenlamelle trägt ein Netzmaschenwerk, das sich den Unebenheiten der Oberseitenlamelle anschmiegt und mit sehr kurzen Trabekeln befestigt ist. Hiermit wird die Auffassung Dimmocks bestätigt. Das Netzmaschenwerk ist formdoppelbrechend und besteht aus dünnen, sublichtmikroskopischen Lamellen mit wechselnden Lagen zur Schuppenplatte. Die Lamellen wirken als Blättchensatz und erzeugen durch Interferenz des weißen Lichtes die Schillerfarben. Die Lamellierung der Schuppenplatte und die Eigenfarbe des Chitins sind für die Farbenerzeugung von geringer Bedeutung.Die Schillerschuppen von Hoplia farinosa sind sehr stark gewölbt und tragen auf der Schuppenplatte, die in ihrem Aufbau der von Hoplia coerulea gleicht, zahlreiche feinste Borsten, die der Erzeuger der Schillerfarbe sind. Die beobachtete Formdoppelbrechung der Borsten weist auf eine lamellöse Struktur hin, die als, Blättchensatz die Interferenzfarben erzeugt. Hinsichtlich des Verlaufs der Lamellen besteht keine volle Klarbeit.Herrn Professor Dr. W. J. Schmidt zum 60. Geburtstag gewidmet.  相似文献   

6.
Zusammenfassung Die Nieren von 34 Meerschweinchen beiderlei Geschlechts und verschiedenen Alters sowie von 6 Kaninchen wurden vor allem mit der Perjodsäwre-Leukofuchsin-Reaktion untersucht.Die Methode ergibt eine fast elektive Färbung der Glomerula, in welchen PAS-positive Sphäroidkörperchen gefunden werden.Der Bürstensaum der Hauptstücke zeigt die bereits von Leblond (1950) beschriebene Dreiteilung: eine aus kräftig PAS-positiven Körnchen bestehende basale Zone, eine darüber gelegene schwächere, zur Lichtung senkrecht stehende streifige Zone und drittens eine etwas stärker gefärbte abschließende, körnelige Zone.Die Hauptstückepithelien zeigen im allgemeinen eine sehr feine, schwach PAS-positive Granulierung. Gelegentlich wechselt diese in grobe, PAS-positive Partikel über. In solchen Fällen ist zumeist kein Bürstensaum nachzuweisen. Die Deutung dieses alternativen Befundes im Sinne von Sekretion (Exkretion) und Resorption wird erörtert.Auch im Hauptstückepithel finden sich gelegentlich Sphäroidkörper. Die Zellen des Überleitungs- und Mittelstückes (Henlesche Schleife) sind selten PAS-positiv. Allerdings gelingt hier und öfters auch im Schaltstück der Nachweis zweier Zelltypen, der eine mit größerem, lockerem Kern und wenig Cytoplasma, der andere, größere mit hellem Cytoplasma und kleinerem, dichterem, angedeutet PAS-positivem Kern.Im Bereich der Henleschen Schleife kommt es öfter zur streckenweisen Auffüllung des Lumens mit stark PAS-positiven Massen.Im Epithel der größeren Sammelrohre und Ductus papillares finden sich — nächst den Glomerula — am ehesten Sphäroidkörperchen.Die Untersuchung erfolgte mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

7.
Zusammenfassung Die Satellitenzellen des Spinalganglions der Eidechse (Lacerta muralis) wurden im normalen und experimentell veränderten Zustand — d. h. nach Durchtrennung des afferenten Axons und während der Hypertrophie der Nervenzellen des Spinalganglions, die der Ausdehnung des peripheren Innervationsgebietes folgt — licht- und elektronenmikroskopisch untersucht.Die Grundeigenschaften der Satellitenzellen der Eidechse sind denjenigen ähnlich, die in Spinalganglien der Säugetiere und Amphibien beobachtet wurden. Auch bei der Eidechse sind die Satelliten einkernige Einzelzellen, die eine geschlossene Hülle um den Zelleib bilden. Die Verbindungen zwischen den anliegenden Satelliten sind bei der Eidechse im allgemeinen weniger kompliziert als bei den Säugetieren. Die Dicke der Satellitenhülle variiert von einer Strecke zur anderen; in einigen Strecken liegt sie unter 2000 Å.Im Zytoplasma der Satelliten findet man stets Mitochondrien — deren Zahl für jeden 2-Schnitt dreimal geringer ist als jene, die in den entsprechenden Neuronen gefunden wurde —, das endoplasmatische Reticulum, vorwiegend von regellos angeordneten Zisternen gebildet, einen wenig entwickelten Golgi-Apparat und Ribosomen. Manchmal findet man auch Centriolen, Cilien ohne das zentrale Fibrillenpaar, Filamente (zahlreicher als in den Satellitenzellen der Säugetiere und weniger als in jenen der Amphibien), den Lysosomen ähnliche Granula und Granula mit gleicher Ultrastruktur wie die Lipofuszinkörnchen. Kleine Vesikel, die aus dem Golgi-Apparat entstehen, fließen anscheinend später zu vesikelhaltigen und elektronendichten Körpern zusammen. Die Bedeutung des Verhältnisses zwischen dem Golgi-Apparat, den vesikelhaltigen und den elektronendichten Körpern sowie der Endverlauf der beiden letztgenannten konnte nicht festgestellt werden.Die Durchmesser der Neurone und die Zahl der entsprechenden Satelliten wurden an Serienschnitten lichtmikroskopisch gemessen. Auf diese Weise wurde das Verhältnis zwischen Satelliten und Neuronen quantitativ festgestellt: es entspricht etwa demjenigen, das bei der Ratte festgestellt wurde.Bei erhöhter Stoffwechsel-Aktivität der Neurone, d. h. während der Regeneration des Axons und Hypertrophie des Zelleibes, zeigen die entsprechenden Satelliten folgende Veränderungen: Ihr Kern nimmt an Volumen zu (etwa 46% im Durchschnitt), das Kernkörperchen zeigt Veränderungen der Ultrastruktur, der Golgi-Apparat erscheint hypertrophisch, die aus dem Golgi-Apparat entstandenen kleinen Vesikel und die elektronendichten Körper scheinen zahlreicher geworden zu sein. Die Durchschnittszahl der Mitochondrien für jeden 2-Schnitt ist dagegen nicht wesentlich geändert. Diese Veränderungen können dahingehend gedeutet werden, daß während der erhöhten Stoffwechsel-Aktivität der Neurone auch die Aktivität ihrer Satellitenzellen ansteigt.Die Zahl der entsprechenden Satellitenzellen wächst im Verlaufe der Hypertrophie des Zelleibes durch Mitose. Auf diese Weise paßt sich die Masse der Satellitenzellen der erhöhten Neuronenmasse an.Die ermittelten Befunde stützen die früher vorgetragenen Hypothesen (Pannese 1960): a) die Satellitenzellen sind in der Lage, ihren Stoffwechsel zugunsten der Neurone zu aktivieren, b) sie sind stabile Elemente im Sinne Bizzozeros.  相似文献   

8.
Zusammenfassung Auf einer vierzehnmonatigen Studeinreise 1949/50 in Iran wurde eine Reihe von Seen untersucht und auf Grund der Ergebnisse (nach Darstellung der geographischen und geologischen Situation der iranischen Binnengewässer) eine Einteilung derselben in die Seen des abflusslosen Hochlandes, der nördlichen und westlichen Gebirgsketten und der angrenzenden Tieflandgebiete getroffen.Es wird weiters eine Übersicht der Daten, vor allem in chemischer und biologischer Hinsicht von den untersuchten Seen gegeben und festgestellt, dass die abflusslosen Binnengewässer durchwegs Salzseen sind, von denen die grossen in ihrer chem. Beschaffenheit mit jener des Meeres gut übereinstimmen. Abweichungen in SO4 — und Ca — Gehalt finden ihre Erklärung vielleicht durch die Schwerlöslichkeit des ausgeschiedenen Gipses.Beim Nirissee muss es sich des geringen Salzgehaltes und der marinen Faunenelemente wegen um einen in jüngster Zeit isolierten See handeln, der wahrscheinlich während des Pleistozäns einen Abfluss in den Iranischen Golf hatte.Der Kurusch-Göl gleicht sowohl in seiner chem. Zusammensetzung als auch im Plankton dem Neusiedlersee bzw. den Natrongewässern Ungarns: Diaptomus spinosus ist bisher nur von diesen und einer Lokalität in der Türkei bekannt.Im Tarsee liegt der Typus eines Alpensees vor.Keiner der Seen zeigt eine echte marine Reliktfauna, ebenso treten beim Plankton keine endemischen Formen auf.An Hand des Nirissees wird der Typus der Flachseen definiert, dem mangels Totalaustausches der gesamten Wassermassen eine Horizontaldifferenzierung eigen ist. Die Vertikalordnung tiefer Seen ist hier durch eine horizontale ersetzt. Dies wirkt sich entsprechend in der Fauna aus.Unter den fünf gefundenen, sämtlich für Iran bisher unbekannten Rotatorien war eine Form neu, nämlich Pedalia fennica var. medica nov. var., welche sich von P. fennica selbst durch die grössere Anzahl der Zähne unterscheidet.Von acht Phyllopoden sind fünf für Iran neu, ebenso Diaptomus salinus und spinosus, zwei Harpactiden und die Gattung Caridinia. Für Onychocamptus mohammed wurde die bisherige untere Grenze der Salinitätstoleranz herabgestzt. Ebenso werden zur Charakteristik der übrigen Arten ökologische Daten gegeben.Im zoogeographischen Anhang wird hervogehoben, dass unter dem Plankton keine Charakterform für die Irano-Turanische Region gefuden wurde, tropische und paläarktische Cyclopsarten (nach Lindberg) unter Nichtberücksichtigung der Ubiquisten im Grossen und Ganzen die erforderliche Verbreitung erkennen lassen. Endemische nicht hier beschriebene Arten weisen manchmal auf Beziehungen zu Nachbargebieten hin.Vielleicht könnte Cyclops strenuus divergens Lindberg als solche angesehen werden, bisher nur aus Iran und Afghanistan bekannt.  相似文献   

9.
Zusammenfassung Nach den hier mitgeteilten Beobachtungen sind die venösen Kapillaren des Knochenmarkes vom Frosch allseitig durch eine dünne cytoplasmatische kernhaltige Membran gegen das Markgewebe abgeschlossen. Eine Kommunikation mit den Interzellularräumen des Retikulums durch konische Übergangsstellen oder präformierte Öffnungen in den Kapillarwänden konnte nicht festgestellt werden. Die Sinuswände zeichnen sich durch die Fähigkeit der Speicherung von Tusche und Trypanblau aus. Ein Grundhäutchen ließ sich an ihnen färberisch nicht nachweisen, doch zeigen die Wandungen der Venensinus — entgegen den Angaben von Tretjakoff (1929) — eine wohlausgebildete Gitterfaserstruktur, die fließend in die argyrophilen Netze des angrenzenden Retikulums übergeht. Die von Jordan u. Baker (1927) aufgestellte Behauptung, daß im Knochenmark des Frosches eine Kommunikation der Sinus mit den Interzellularräumen des Retikulums bestehe, läßt sich nicht aufrecht erhalten und kann auch auf das Knochenmark der Säuger nicht übertragen werden, dessen Sinus sich von denen des Froschmarkes prinzipiell nicht unterscheiden. Die venösen Kapillaren des Säugermarkes gehen aus langen, engen, relativ dickwandigen und kernreichen arteriellen Kapillaren hervor, auf deren Grundhäutchen typische Pericyten (Adventitialzellen) angetroffen werden. Die Einmündung in die weiten dünnwandigen Sinus erfolgt mit trichterartiger Erweiterung und gleichzeitiger Gabelung der Blutbahn. Das System der Venensinus stellt ein reichverzweigtes Wundernetz dar, das an keiner Stelle präformierte Öffnungen oder kontinuierliche Übergänge in das Markretikulum aufweist. Die Ausschwemmung der reifen Erythrocyten aus dem Parenchym in den Kreislauf ist durch periodische Durchbrechungen der histiocytären Wandmembran zu erklären. Die Darstellung eines Grundhäutchens war auch an den Sinus des Säugermarkes nicht möglich. Das Verhalten der Gitterfasern entspricht dem für das Froschmark geschilderten.Zum Schlüsse möchte ich mir erlauben, Herrn Priv.-Doz. Dr. K. Zeiger für die Anregung zu dieser Untersuchung und ihre Unterstützung herzlich zu danken.  相似文献   

10.
Zusammenfassung Die neue SektionJubo-Galium (Diagnose S. 212–213) umfaßt:G. jemense Kotschy,G. exstipulatum Davis,G. sinaicum (Dec.)Boiss.,G. petrae Oliver,G. kahelianum Deflers (Subsektion A);G. cappadocicum Boiss.,G. jungermannioides Boiss.,G. graecum L.,G. canum Req.,G. thiebautii Ehrendf.,G. dumosum Boiss. (Subsektion B);G. setaceum Lam. undG. cassium Boiss. (Subsektion C). Ein Schlüssel (S. 214–215) ermöglicht die Bestimmung der einzelnen Arten, die in der folgenden Aufzählung durch Angabe von Typus, Aufsammlungen, Verbreitung (Karte Abb. 1) und Standortsansprüchen weiter gekennzeichnet werden. Die phylogenetische Abfolge der verschiedenen Merkmalsausprägungen innerhalb der Sektion ist in einer Tabelle (S. 222–224) zusammengestellt.Die raum-zeitliche Entfaltung der alten, isolierten und heute stark zersplitterten GruppeJubo-Galium erscheint demnach gesteuert durch die allgemein zunehmende Austrocknung der Mediterraneis seit dem mittleren Tertiär und die damit gekoppelte Veränderung der Vegetation (Schema Abb. 2). Zwischen der jeweiligen rezenten morphologischen, chorologischen und ökologischen Struktur der einzelnen Sippen und ihrer Stammesgeschichte ergibt sich dabei ein enger Zusammenhang; damit werden die tieferen Ursachen der Formbildung, Arealgestaltung und Standortsansprüche erkennbar. Die ursprünglichsten, zum Teil noch chamaephytischen, mesophilen und epizoochoren Sippen der Subsektion A sind heute als Relikte auf Punktareale in den tropischen Gebirgen entlang dem Grabenbruch Rotes Meer-Totes Meer beschränkt, die chamae-phytisch-hemikryptophytischen, zunehmend xeromorphen und anemochoren Sippen der Subsektion B haben sich auf konkurrenzarme, immer extremere Felsstandorte spezialisiert und damit eine mäßige Verbreitung im östlichen Mittelmeerraum gefunden, die am stärksten abgeleiteten annuellen Therophyten der Subsektion C dagegen konnten mitG. setaceum den gesamten mediterranen und irano-turanischen Raum besiedeln.  相似文献   

11.
Zusammenfassung Im Blut der Urodelen kommen außer kernhaltigen roten Blutkörperchen stets auch kernlose vor. Ihre Zahl ist bei den einzelnen Arten sehr verschieden. Den höchsten bisher beobachteten Prozentsatz besitzt der lungenlose Salamander Batrachoseps attenuatus. Bei ihm ist die Mehrzahl (90–98%) der Erythrozyten kernlos. Die kernlosen roten Blutkörperchen sind kein Kunstprodukt, sondern ein normaler Bestandteil des Urodelenblutes. Die Kernlosigkeit ist ein Zeichen der höheren Differenzierung der Erythrozyten, nicht dagegen das Zeichen einer Degeneration. Sie ist eine funktionelle Anpassung des Blutes an die Lebensweise und die dadurch bedingte Atmungsweise des Tieres. Die lungenlosen, durch die Haut und die Buccopharyngealschleimhaut atmenden Urodelen haben mehr kernlose Erythrozyten als die mit Lungen atmenden.Die Bildung der kernlosen roten Blutkörperchen findet im zirkulierenden Blut statt und geschieht in Form einer Abschnürung größerer oder kleinerer Cytoplasmastücke von kernhaltigen Zellen. Sie sind infolgedessen ganz verschieden groß. Sehr deutlich läßt sich diese Art der Entstehung kernloser Erythrozyten in vitro beobachten. Vielleicht gibt es daneben auch noch eine zweite Art. Manche kernlosen Erythrozyten mit Jolly-Körperchen und Chromatinbröckelchen machen es wahrscheinlich, daß sie durch eine intrazelluläre Auflösung des Kernes aus einem kernhaltigen Erythrozyten hervorgegangen sind. Die Regel ist jedoch die Abschnürung. Eine Ausstoßung des Kernes kommt bei normalen Erythrozyten nicht vor, sondern nur bei zerfallenden. Sie ist ein Zeichen der Degeneration der Zelle. Der Zelleib geht kurz nach dem Austritt des Kernes zugrunde. Der Kern bleibt als freier oder nackter Kern etwas länger erhalten, um dann aber ebenfalls völlig zu zerfallen.Da im zirkulierenden Blut der Urodelen regelmäßig eine Anzahl von Erythrozyten zugrunde geht, sind in ihm immer freie Kerne zu finden. Sie haben nicht mehr das normale Aussehen eines Erythrozytenkernes, sondern sind bereits erheblich verändert. Schon vor der Ausstoßung des Kernes aus der Zelle tritt eine teilweise Verflüssigung des Kerninhaltes ein; es bilden sich mit Flüssigkeit gefüllte Vakuolen, die zu Kanälchen und größeren Hohlräumen zusammenfließen. Auf diese Weise kommt es zu einer starken Auflockerung und Aufquellung des Kernes. Wenn der Kern den ebenfalls aufgequollenen und sich allmählich auflösenden Cytoplasmaleib verlassen hat und als nackter Kern im Blut schwimmt, schreitet der Prozeß des Zerfalles weiter fort. Nach allen Seiten strömt schließlich der noch nicht völlig verflüssigte Kerninhalt in Form fädiger und körniger Massen aus.Nach Komocki sollen sich diese Massen als eine Hülle um den nackten Kern legen und in Cytoplasma verwandeln, in dem dann später Hämoglobin auftritt. Die nackten Kerne sollen die Fähigkeit haben, aus sich heraus eine neue Erythrozytengeneration aufzubauen. Das ist nicht richtig. Es hat sich kein Anhaltspunkt für eine Umwandlung der den freien Kernen entströmenden Massen in Cytoplasma ergeben. Die Bilder, die Komocki als Beleg für seine Theorien heranzieht, sind vielmehr der Ausdruck der letzten Phase in dem Degenerationsprozeß des Kernes.Andere sogenannte freie Kerne, die Komocki abbildet und als Ursprungselemente einer neuen Erythrozytengeneration in Anspruch nimmt, sind gar keine freien, nackten Kerne, sondern weiße Blutzellen, vor allem Lymphozyten und Spindelzellen. Das weiße Blutbild der Urodelen ist, abgesehen von den Spindelzellen, einer für Fische, Amphibien, Reptilien und Vögel charakteristischen Zellform des Blutes, ganz das gleiche wie das der Säugetiere und des Menschen. Es setzt sich aus Lymphozyten, Monozyten und den drei Arten von Granulozyten, neutrophilen, eosinophilen und basophilen, zusammen. Die Monozyten können sich unter gewissen Umständen, z. B. bei Infektionen oder in Blutkulturen, zu Makrophagen umwandeln und Erythrozyten bzw. Reste zerfallender Erythrozyten phagozytieren. Die phagozytierten Teile roter Blutkörperchen haben Komocki zu der falschen Annahme verleitet, daß bei Batrachoseps attenuatus, in dessen Blut er entsprechende Bilder beobachtet hat, die kernlosen Erythrozyten in besonderen Zellen, sogenannten Plasmozyten entstehen und sich ausdifferenzieren. Komockis Theorie über die Bildung roter Blutkörperchen aus dem Chromatin nackter Kerne ist nicht haltbar. Die Befunde, auf denen sie aufgebaut ist, sind keineswegs beweiskräftig. Sie verlangen eine ganz andere Deutung, als Komocki ihnen gegeben hat. Komockis Kritik an der Zellenlehre ist daher in keiner Weise berechtigt.  相似文献   

12.
Zusammenfassung Die den Sauropsiden obligat zukommende Amnionmuskulatur, die allen höheren Säugern fehlt, ist auch am Amnion des archaischen Säugers Didelphys marsupialis virginiana Kerr nicht festzustellen.Das Amnion des Opossums ist entwicklungsgeschichtlich ein mesodermfreies Proamnion. Die Amnionwandung besteht aus folgenden Anteilen: 1. Amnionepithel. 2. Atypisches, nämlich zellfreies Bindegewebsfaserwerk. 3. Nicht vaskularisiertes Dottersackentoderm.Die einzelnen Bauanteile werden beschrieben: 1. Das Amnionepithel ist ein einschichtiges Plattenepithel polygonaler Zellen. Die Zellen weisen eine relativ starke Überlappung ihrer Ränder auf. Die Kerne besitzen eine große Zahl von Kernkörperchen. Das Material erlaubt kein Urteil über das Vorkommen von Mitosen. Kernformen, die auf amitotische Vorgänge im Amnionepithel hinweisen könnten, werden beschrieben. — 2. Das Bindegewebe besteht nur aus einem kleinmaschigen Netz argyrophiler Fasern. Auffälligerweise fanden sich keine Fibrozyten und keine Histiozyten. — 3. Das Dottersackentoderm ist ebenfalls ein einschichtiges Plattenepithel. Es trägt die Merkmale starker Zelltätigkeit. Wie den Kernen des Amnionepithels ist auch jenen des Dottersackentoderms eine große Zahl von Nukleolen eigen. Interzellularbrücken werden beobachtet.Die Stellung des Amnions als wesentlich beteiligten Vermittlers an der Fruchtwasserzirkulation innerhalb des Fruchthüllensystems wird erörtert.Die Arbeit wurde unter Anleitung von Prof. Dr. H. Bautzmann () ausgeführt.  相似文献   

13.
Zusammenfassung Auf Zunahme des auf dem Wasser lastenden Luftdruckes reagiertNotonecta glauca mit Emporsteigen zur Oberfläche. Die Druckzunahme wirkt indirekt, und zwar dadurch, daß sie eine Volumverringerung des Luftvorrats und somit eine Abnahme des Auftriebs verursacht; diese Abnahme des Auftriebs wird perzipiert und veranlaßt ihrerseits das Emporsteigen zur Oberfläche. Auch das spontane Emporsteigen ist auf die durch den Atmungsprozeß bedingte Volumabnahme des Luftvorrats (und somit auf die Abnahme des Auftriebs) zurückzuführen. — Eine durch Anhängen eines Gewichts bedingte Abnahme des Auftriebs wird vonNotonecta durch Vergrößerung des mitgenommenen Luftvorrats kompensiert. — Bei dem Zustandekommen dieser Reaktionen spielen die Antennen keine Rolle; auch das Gleichgewicht ist bei antennenoperierten Tieren nicht gestört. Die abweichenden VersuchsergebnisseWebers sind wahrscheinlich durch die bei der Abtragung der Antennen leicht eintretende Störung der Luftschicht bedingt. — Inwieweit auch Sauerstoff- und Kohlensäuregehalt des Luftvorrats auf das Emporsteigen von Einfluß sind, wurde nicht weiter untersucht.  相似文献   

14.
Zusammenfassung Es wird festgestellt, daß der Verdauungssaft von Potamobius (Astacus) leptodactylus und anderen Invertebraten auf Fette und Fettsäuren auflösende (aufhellende) Wirkung hat, welche makroskopisch und mikroskopisch verfolgt werden kann.Es wird wahrscheinlich gemacht, daß der oberflächenaktive Stoff, welchen alle diese Säfte enthalten und welcher diesen eine Oberflächenspannung erteilt, die sogar niedriger ist als die der Galle, hierbei die Hauptrolle spielt. Dieser Stoff kann mittels Alkohol den Säften entzogen werden. Es ist merkwürdig, daß er bei so niedrigemph (5,0–5,6) seine Wirkung entfalten kann. Für die Fette spielt auch der Eiweißgehalt der Säfte, welcher 2–2,5% an genuinem Eiweiß und 2–2,5% an Albumosen und Peptonen beträgt, eine Rolle. Es wird die Meinung ausgesprochen, daß die Fettresorption der meisten Invertebraten durch diese Eigenschaften ihrer Säfte ermöglicht wird. Es wird darauf hingewiesen, daß der bei der Fettresorption beteiligte oberflächenaktive Stoff hier als Bestandteil des gesamten Verdauungssaftes vorkommt, während er bei den Vertebraten das Sekretionsprodukt einer besonderen Drüse ist.  相似文献   

15.
Zusammenfassung o1.Das Temperaturregulationsvermögen von Myotis myotis Borkh. ist im Sommer besser entwickelt als im Winter. Die Höhe der Körpertemperatur ist im Sommer unabhängig von der Ruhe-Aktivitätsperiodik.Während die Tiere im Sommer selbst bei hoher Kältebelastung — bei täglich ausreichender Nahrungsaufnahme — zu Beginn ihrer Aktivi tätsperiode spontan erwachen, tritt im Winter unter gleichen Bedingungen nach viertägiger Kälteeinwirkung Winterschlaf ein.Der HVL zeigt deutliche jahresperiodische Veränderungen, hervorgerufen durch eine Verminderung der A-Zellen, besonders im äußeren Bereich der Adenohypophyse im Winter. Die Schilddrüsenfunktion und das Differentialblutbild sind deutlich vom jeweiligen Aktivitäts- bzw. Belastungszustand der Tiere abhängig.Der Eintritt des Winterschlafs wird durch erhöhte Schlafbereitschaft während der Ruheperiode (tiefe Tagesschlaflethargie) bestimmt. Temperaturen unter 10° C verkleinern die Amplitude des Stoffwechselanstiegs zu Beginn der Aktivitätsperiode.Das Fortbestehen tagesperiodischer Stoffwechseländerungen unter konstanten Umweltbedingungen konnte in den ersten Wochen des Winterschlafs nachgewiesen werden. Nach längerem natürlichem Winterschlaf war keine sichtbare Stoffwechselperiodik mehr zu erkennen. Für ein Weiterbestehen der endogenen Rhythmik (inneren Uhr) im tiefen Winterschlaf liegen Hinweise vor.Die Länge der Respirationspausen im tiefen Winterschlaf schwankt unregelmäßig zwischen 15 und 90 min.In der Höhe von Körpertemperatur und Stoffwechsel konnten deutliche Unterschiede bei Myotis myotis und Barbastella barbastella Schreb festgestellt werden. 2.Bei einjährigen Siebenschläfern (Glis glis L.) wurden in den Sommermonaten Absinken der Körpertemperatur und Lethargie während des Ruheschlafs beobachtet. Als primäre Ursache wird eine durch die Gefangenschaft bedingte, zeitlich verschobene Winterschlafbereitschaft verantwortlich gemacht.Stoffwechsel und Atmung beim Eintritt und im Verlauf des Winterschlafs des Siebenschläfers zeigen keine prinzipiellen Unterschiede gegenüber Myotis myotis. Die Länge der Respirationspausen im tiefen Winterschlaf variiert unregelmäßig zwischen 5 und 60 min. Eine Fortdauer der sichtbaren Stoffwechselperiodik konnte nicht festgestellt werden.Bei konstant niederer Temperatur (6° C) und Dauerdunkel konnte die Winterschlafbereitschaft der Buche trotz Fütterung bis in den Frühsommer verlängert werden. 3.Eine jahresperiodisch eintretende innere Winterschlafbereitschaft ist die Voraussetzung für den Eintritt des Winterschlafs beim Goldhamster (Mesocricetus auratus Waterh.).Konstant tiefe Temperatur verlängert die Dauer der Winterschlafperioden. Der Eintritt der Lethargie erfolgt während der normalen Ruheperiode, unabhängig von der Temperatur.Meinem verehrten Lehrer, Herrn Prof. F. P. Möhres, danke ich für die Überlassung des Themas und wertvolle Anregungen und Hinweise. Ebenfalls zu Dank verpflichtet bin ich Herrn Dr. H. Löhrl für die Beschaffung der Siebenschläfer und Herrn H. Frank und dem Heimat- und Höhleverein in Laichingen (Württemberg) für die freundliche Unterstützung beim Besuch der schwäbischen und slowenischen Höhlen. Die Arbeit wurde gefördert durch Mittel der Deutschen Forschungsgemeinschaft, die Prof. MÖhres zur Verfügung standen.  相似文献   

16.
Zusammenfassung Die vorliegende Arbeit verfolgt die Regeneration des abgetrennten Kopfabschnittes durch den Rumpf beiEuplanaria gonocephala während des Aufenthaltes der Tiere in verschiedenen Wässern: Trinkwasser der Stadt Salzburg, Wasser der Grabenbauern- Quelle vom nördlichen Rand der Stadt Salzburg sowie Gasteiner Thermalwässer der Quelle VII — Neue Franzens- Quelle und der Quelle IX — Elisabeth- Quelle; die erstere ist durch ihren äußerst geringen Radon-Gehalt gekennzeichnet, welcher schon beim Quellaustritt noch geringer ist als der im gewöhnlichen Gasteiner Trinkwasser; die letztere gehört zu den am stärksten radonhaltigen Gasteiner Thermalquellen, hatte allerdings im Zeitpunkt der Verwendung bei den vorliegenden Untersuchungen durch die Entgasung und den natürlichen Zerfall des Radons während des Transportes von Badgastein nach Salzburg ihren Radon-Gehalt zum allergrößten Teil bereits verloren.Die in verschiedener Art abgewandelten Untersuchungen ergaben, daß das Gasteiner Thermalwasser eine ausgesprochene Hemmung des Regenerationsverlaufes herbeiführt; im Vergleich zum Salzburger Trinkwasser wird im gleichen Zeitpunkt in den Thermalwässern nur eine Fläche des Regenerates von 50–60% erreicht. Wenn die operierten Tiere zuerst in das Salzburger Trinkwasser gebracht, dann später aber in Thermalwasser übertragen werden, so tritt die Hemmung erst nach einer Latenzzeit von etwa 3 Tagen auf. Die Ursache dieses Hemmungseffektes soll in weiteren Versuchen geklärt werden. Außerdem wurden eine Reihe von Nebenbefunden über den Regenerationsprozeß erhoben.Herrn Professor Dr. F.Scheminzky, Leiter des Forschungsinstitutes Gastein der Österreichischen Akademie der Wissenschaften und Vorstand des Physiologischen und Balneologischen Institutes der Universität Innsbruck habe ich für seine großzügige Hilfe und Aufgeschlossenheit für die vorliegende Problemstellung zu danken. Ebenso bin ich Herrn Professor Dr. O.Steinböck, Vorstand des Zoologischen Institutes der Universität Innsbruck für viele Hinweise und Literaturangaben zu großem Dank verpflichtet. Herrn Ing. E.Komma möchte ich danken für die Ausarbeitung der Kontrollanalyse der Grabenbauern-Quelle. Herrn DirektorBurgschwaiger, Bad Gastein, habe ich zu danken für die Entnahme und den Transport der Thermalwässer.  相似文献   

17.
Zusammenfassung Winterschlafende Kartoffelkäfer (Leptinotarsa decemlineata) verfügen über zwei Sicherungen gegen einen zu raschen Stoffwechsel. Der Sauerstoff verbrauch der intakten Tiere sowie der des Gewebes wird wie bei anderen echten Winterschläfern unter den Insekten gegenüber dem Fraßzustand erheblich herabgesetzt. Ferner zeigen Sauerstoffverbrauch der intakten Tiere, des Gewebes sowie die Aktivität der Fermente Succinodehydrase, Katalase und Glycerophosphatase eine Temperaturadaptation im Sinne des Typs 3. Der Winterschlafende Pappelblattkäfer (Melasoma populi) besitzt als weitere Sicherung gegen eine Stoffwechselsteigerung bei einem plötzlichen Temperaturanstieg im biologisch besonders wichtigen niederen Temperaturbereich auffallend niedrige Temperaturkoeffizienten. Sowohl Sauerstoffverbrauch wie auch die CO2-Abgabe zeigen den Adaptationstyp 3; der respiratorische Quotient ist von der Adaptationstemperatur unabhängig.Die Temperaturadaptation ist als echte Regulationserscheinung reversibel.Bei zu großen, plötzlichen Temperatursprüngen können Schockwirkungen auftreten. Beim winterschlafenden Kartoffelkäfer machten sie sich in einer Erhöhung des Sauerstoffverbrauchs bemerkbar. Die Gewebsatmung zeigte diese Erscheinung nicht.Nicht alle eurythermen Tiere verfügen über das Mittel der Temperaturadaptation entsprechend den häufigsten Typen 2–3. Sie fehlte (Typ 4) bei dem Sauerstoffverbrauch der intakten Larven und Puppen des Mehlkäfers (Tenebrio molitor), dem des Gewebes der Larven und der Dehydrasenaktivität beider Stadien, wahrscheinlich auch beim Sauerstoffverbrauch der im Fraßzustand befindlichen intakten Kartoffel- und Pappelblattkäfer. Kartoffelkäfer, die gerade aus dem Winterschlaf erwacht waren, zeigten eine viel geringere Abhängigkeit der Gewebsatmung von der Adaptationstemperatur als während des Ruhestadiums.Bei den Larven von Tenebrio molitor ist die Aktivität der Dehydrasen während der Häutung bedeutend geringer als zwischen den Häutungen.Die Untersuchungen an Larven der Weidenblattwespe (Pteronus salicis) in Diapause können deshalb schlecht eingeordnet werden, weil bei den hohen Adaptationstemperaturen im Gegensatz zu den niedrigen anscheinend eine latente Entwicklung einsetzte.Allgemein betrachtet kann man einer Adaptation des Sauerstoffver brauchs eine entsprechende fermentative Temperaturadaptation zuordnen.Gekürzte Wiedergabe einer Dissertation bei der Philosophischen Fakultät der Universität Kiel (Anregung und Anleitung: Prof. Dr. H. Precht). — Die photometrischen Messungen wurden mit einem Pulfrichphotometer ausgeführt, welches die Notgemeinschaft der deutschen Wissenschaft Herrn Prof. Precht zur Verfügung stellte.  相似文献   

18.
Zusammenfassung Die Auffassung vom Gynözeum als einem verschieden festen, durch kongenitale oder postgenitale Verwachsung entstandenen Verband von verschieden stark peltaten Karpellen mit offenen oder geschlossenen Ventralspalten, die — nicht in dieser ausgeprägten Form, wohl aber in den Grundzügen — vonGoethe bisGoebel vertreten wurde, wird als die einfachste, ungezwungenste und umfassendste erwiesen.Jedes coenokarpe Gynözeum besitzt demnach einen die peltaten, sterilen, kongenital verwachsenen Karpellbasen umfassenden primär synkarpen Abschnitt, auf den, falls die Karpelle nicht völlig manifest peltat sind, nach oben eine Zone folgt, in der die Karpellränder stets ursprünglich frei und immer fertil sind. Bleiben die Karpellränder — im parakarpen Gynözeum — unverwachsen, so bleibt auch die Natur des fertilen Abschnittes offensichtlich. Verwachsen jedoch — in fast allen synkarpen Gynözeen — die fertilen Ränder postgenital (sekundär synkarper Abschnitt), so wird die eigentliche Natur des fertilen Abschnittes verwischt, so daß bei der Beobachtung des fertigen synkarpen Gynözeums der synkarpe Abschnitt im Gegensatz zum parakarpen fertil zu sein scheint, wasTroll bekannterweise veranlaßte, eine Verschiebung der Fertilität vom parakarpen in den synkarpen Abschnitt anzunehmen, welche Annahme also nicht nur nicht notwendig, sondern unrichtig ist, da sie auf der Nichtbeachtung der sekundär synkarpen Zone beruht. Die Homologie der fertilen (parakarpen) Zone im parakarpen Gynözeum und der fertilen (sekundär synkarpen) Region im synkarpen Fruchtknoten kann durch die ontogenetische Beobachtung eindeutig bewiesen werden.DaTroll und seine Schüler jede Postgenitalverwachsung zwischen den Karpellen eines typisch coenokarpen Gynözeums negieren und Gynözeen, deren Karpelle postgenital verwachsen als modifiziert apokarp bezeichnen, müßten konsequenterweise alle sekundär synkarpen Gynözeen — und es ist dies die überwiegende Mehrzahl der synkarpen Fruchtknoten — als modifiziert parakarp bezeichnet werden, wodurch 1. die Unrichtigkeit der Gegenüberstellung und Nichthomologisierung der parakarpen und synkarpen Zone erneut bestätigt wird, 2. deutlich gezeigt wird, daßTroll einen Abschnitt als synkarp bezeichnet, der nach seiner eigenen Auffassung gar nicht synkarp ist, und 3. erwiesen wird, daßTrolls Schema vom coenokarpen Gynözeum nur für Gynözeen mit völlig manifest peltaten Karpellen — d. h. nur für einen verschwindenden Bruchteil der synkarpen Gynözeen—Gültigkeit hat und daher hinfällig ist.  相似文献   

19.
Zusammenfassung Die langsamen Belichtungspotentiale der Facettenaugen von Calliphora und Dixippus werden beschrieben und aus den elektrischen Vorgängen am Insektenauge Folgerungen für die Physiologie der optischen Wahrnehmung gezogen.Die Potentiale werden mit Nadelelektroden abgegriffen. Der für die Untersuchungen entwickelte Gleichspannungsverstärker wird beschrieben.Das Belichtungspotential von Calliphora ist unter alien Versuchs-bedingungen diphasisch und besteht aus einem positiven Ein-Effekt und einem negativen Aus-Effekt. Bei hohen Intensitaten wird ein negatives Zwischenpotential deutlich. Bei Tachycines und Dixippus ist das Belichtungspotential stets monophasisch und rein negativ.Die Höhe der einzelnen Phasen hangt von der Intensität des Lichtreizes ab (Abb. 6) und nimmt in einfach logarithmischem Koordinaten-system linear (Dixippus) oder in Form einer sigmoiden Kurve (Calliphora) mit der Intensitat zu.Der Ein-Effekt von Calliphora ist bei genügenden Intensitäten spätestens nach 5 msec, wahrscheinlich schon früher, unabhangig von der Reizdauer (Abb. 11). Das Zwischenpotential hat erst nach 200 msec seine maximale Höhe erreicht. Der Aus-Effekt nimmt bis zu 100 sec Reizdauer an Höhe zu.Die Höhe des (negativen) Belichtungspotentials von Dixippus ist nach 30 msec, die der Aeschna-Larve nach 100 msec von der Reizdauer unabhängig.Die Höhe des Ein-Effektes von Calliphora ist für gleiche Produkte aus Intensität und Reizareal gleich.Für den Aus-Effekt von Calliphora gilt das Bunsen-Roscoesche Reizmengengesetz mindestens bis zu 200 msec, für das Belichtungs-potential von Dixippus und der Aeschna-Larve nur bis zu 30 msec.Mit der Zahl der gereizten Ommatidien (dem Reizareal), die von 1–50 Ommatidien variiert wird, nimmt die Höhe des Belichtungs-potentials logarithmisch zu.In Höhe und Form zeigt das Retinogramm von Calliphora keine Adaptation. Höhe und Form sind nach intensiver Belichtung und langem Dunkelaufenthalt gleich. Bei Dunkeladaptation treten lediglich Nach-schwankungen auf, die dem helladaptierten Auge fehlen (Abb. 22).Bei Dixippus und Tachycines hangt die Höhe des Belichtungs-potentials dagegen stark vom Adaptationszustand ab.Die Schwelle des helladaptierten Auges von Dixippus beträgt das 20000fache der Schwelle im Zustand maximaler Dunkeladaptation. Der Verlauf der Dunkeladaptation wird in Kurvenform dargestellt (Abb. 23).Bei Reizung mit Flimmerlicht bestehen die Belichtungspotentiale von Calliphora aus positiven und negativen Wellen, die von Dixippus und Tachycines nur aus Schwankungen in der Höhe des negativen Potentials.Bei Calliphora hat der erste Ein-Effekt bei Flimmerlicht stets die gleiche Höhe wie bei konstantem Lichtreiz. Die zunächst folgenden Ein-Effekte sind (als Ausdruck eines relativen Refraktärstadiums) verkleinert, nehmen aber schrittweis an Höhe zu und werden bei mittleren Flimmerfrequenzen (50 sec–1) sogar größer als der erste (Abb. 26 und 27).Mit zunehmender Reizfrequenz nimmt die Höhe der Flimmeraktions-potentiale ab, bis schließlich Verschmelzung eintritt (Abb. 27).Die Verschmelzungsfrequenzen bei Calliphora sind außerordentlich hoch: Die höchste beobachtete Verschmelzungsfrequenz beträgt 265 Lichtreize in der Sekunde, womit aber der Maximalwert sicher noch nicht erreicht ist. Ähnliche Werte ergeben sich für das Auge der Biene.Im Gegensatz dazu liegt die maximale Verschmelzungsfrequenz von Dixippus bei 40 Lichtreizen in der Sekunde.Die Abhängigkeit der Verschmelzungsfrequenz von Arealgröße und Reizintensität wird dargestellt (Abb. 31).Das Belichtungspotential von Dixippus kann in Übereinstimmung mit Bernhard (1942) in zwei negative Komponenten (R und S) zerlegt werden.Die Aus-Effekte von Calliphora sind der R-Komponente von Dixippus vergleichbar. Beide entstehen wahrscheinlich in der Retina und sind — trotz entgegengesetzten Vorzeichens — vielleicht mit P III der Wirbeltiere vergleichbar. Für alle drei gilt das Bunsen-Roscoesche Gesetz.Bei Mimmerlicht wird bei Calliphora durch die negativen Aus-Effekte die Refraktärperiode der positiven Ein-Effekte verkürzt. Diese Erscheinung wird als restitutive Wirkung durch ein Gegenpotential aufgefaßt und mit dem Wendungseffekt (Scheminzky) verglichen, der hier also unter natürlichen Bedingungen eine Rolle spielt.Mit dem Auftreten von Potentialen mit entgegengesetztem Vorzeichen stehen die hohen Verschmelzungsfrequenzen von Calliphora im Zusammenhang. Dixippus, dem positive Anteile im Retinogramm fehlen, hat wesentlich geringere Verschmelzungsfrequenzen.Der Verlauf des Retinogramms bei Calliphora läßt auf eine außerordentlich schnelle Adaptation schließen, die sich in Bruchteilen einer Sekunde abspielt. Infolgedessen ist das Retinogramm selbst schon nach wenigen Sekunden von der Voradaptation unabhängig. Die biologische Bedeutung dieser schnellen Adaptation wird erörtert.Aus diesen Ergebnissen wird für die Physiologie der optischen Wahrnehmung bei den Insekten gefolgert:Das im Verhältnis zu den Wirbeltieren gering entwickelte räumliche Auflosungsvermögen (Sehschärfe) des Facettenauges wird durch ein extrem entwickeltes zeitliches Auflösungsvermögen wettgemacht. Es lassen sich zwei Typen von Insektenaugen unterscheiden: Bei den einen geht hohe absolute Empfindlichkeit mit geringem zeitlichem Auflösungs-vermogen (niedrige Verschmelzungsfrequenz) und langsamer sich über Minuten erstreckender Adaptation parallel (Dixippus-Typ). Bei den anderen ist die absolute Empfindlichkeit geringer, das zeitliche Auflösungsvermögen außerordentlich groß, die Adaptation in Bruchteilen einer Sekunde beendet (Calliphora-Typ).Den beiden verschiedenen Leistungstypen entspricht ein verschiedenes ökologisches Verhalten. Hohes zeitliches Auflösungsvermögen ermöglicht ein Sehen in schneller Bewegung. also im Mug, trotz geringer raumlicher Sehschärfe. Nicht fliegende Insekten gewinnen unter Preisgabe des zeitlichen Auflösungsvermbögens an absoluter Empfind-lichkeit.Der Göttinger Akademie der Wissenschaften bin ich für die Förderung der vorliegenden Untersuchungen zu großem Dank verpflichtet.  相似文献   

20.
Zusammenfassung Es wurde das Auge der Süßwasserturbellarien Dugesia lugubris und Dendrocoelum lacteum mit dem Elektronenmikroskop untersucht. Im Feinbau stimmen die Augen beider Arten im wesentlichen überein. Das eigentliche Auge besteht aus dem Pigmentbecher und den zur Photorezeption differenzierten Nervenendigungen der bipolaren Sehzellen, den sog. Sehkolben. Das Cytoplasma der Pigmentzellen wird von durchschnittlich 1 großen kugeligen, mehr oder weniger homogenen Pigmentkörnchen erfüllt. Der Zellkern liegt in der äußeren pigmentfreien Zone des Cytoplasmas. Vor allem dort können auch das endoplasmatische Reticulum und die Mitochondrien beobachtet werden. Der sog. Pigmentbecher ist ein allseitig geschlossenes Gebilde, dessen pigmentfreier Teil von einer Verschlußmembran, der sog. Cornealmembran, gebildet wird. Diese Verschlußmembran ist ein cytoplasmatischer, nichtpigmentierter, lamellar gebauter Fortsatz der Pigmentzellen. Der distale Fortsatz der Sehzellen dringt durch die Verschlußmembran in das Innere des Auges ein. Im Inneren des Pigmentbechers wird der Raum zwischen den Sehkolben vom homogenen Glaskörper ausgefüllt. Dieser zeigt in osmiumbehandelten Präparaten eine mittlere Dichte und mit stärkerer Vergrößerung eine sehr feine fibrilläre Struktur. Der kernhaltige Teil der Sehzellen liegt außerhalb des Pigmentbechers. Der Kern ist verhältnismäßig locker gebaut, enthält einen kleinen exzentrisch liegenden Nucleolus und wird von einer doppellamellär gebauten Kernmembran begrenzt. Das Perikaryon besitzt eine feinkörnige Grundstruktur. Die Durchmesser der Körnchen wechseln von 50 bis zu mehreren 100 Å; ihre Struktur zeigt einen Übergang über die Vesiculae zu den Vakuolen des Cytoplasmas. Die verschieden großen Vakuolen des Cytoplasmas sind von einer hellen, homogenen Substanz erfüllt. Das Perikaryon enthält auch Mitochondrien. Die Grundstruktur der distalen Fasern der Sehzellen ist ähnlich wie die des Perikaryons, enthält aber auch 100–120 Å dicke Neurofilamente. Die Nervenfasern sind nackt und recht verschieden dick. Die distale Faser der Sehzellen durchbohrt die Verschlußmembran und setzt sich in den Sehkolben fort. Der Stiel — bei Dugesia lugubris — ist prinzipiell ebenso gebaut wie die Nervenfaser; er ist ihre intraokulare Fortsetzung. Auf diesem Stielteil sitzt der eigentliche Sehkolben. Er besteht im allgemeinen aus 2 verschiedenen Teilen: aus der in der Fortsetzung des Stieles liegenden Achsenzone und aus der Zone des Bürstensaumes (Stiftchenkappe). In der Achse des Sehkolbens liegen viele Mitochondrien. Die Struktur des Cytoplasmas der Achsenzone ist ähnlich wie jene im Perikaryon bzw. in der Nervenfaser. Auffallend sind in der Achsenzone viele von einer hellen, homogenen Substanz erfüllte, verschieden große Vakuolen. Ihre Zahl hängt vom Funktionszustand des Auges ab. Die Randzone des Sehkolbens ist der Bürstensaum, der von cytoplasmatischen Mikrozotten gebildet wird. Die Breite der Mikrozotten wechselt von 200–1000 Å. Die Dicke der etwas dunkleren Grenzmembran beträgt 50–70 Å, der Inhalt der Mikrozotten erscheint homogen. Der Bürstensaum gibt im Polarisationsmikroskop eine positive Doppelbrechung. Die Bürstensaumzone, die eine Vergrößerung der Membranoberfläche bewirkt, dürfte im Dienste der Photorezeption stehen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号