首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rozema  Jelte  Broekman  Rob  Lud  Daniela  Huiskes  Ad H.J.  Moerdijk  Tanja  de Bakker  Nancy  Meijkamp  Barbara  van Beem  Adri 《Plant Ecology》2001,154(1-2):101-115
Mini UV lamps were installed over antarctic plants at Léonie Island, Antarctic peninsula, and shoot length measurements of Deschampsia antarctica were performed during the austral summer January–February 1999.We studied the response of the antarctic hairgrass, Deschampsia antarctica to enhanced UV-B. In a climate room experiment we exposed tillers of Deschampsia antarctica, collected at Léonie Island, Antarctic peninsula, to ambient and enhanced levels of UV-B radiation. In this climate room experiment with 0, 2.5 and 5 kJ m–2 day–1 UV-BBE treatments we observed that length growth of shoots at 2.5 and 5 kJ m–2 day–1 UV-BBE was markedly reduced compared to 0 kJ m–2 day–1 UV-BBE. In addition, there was an increased number of shoots and increased leaf thickness with enhanced UV-B. The Relative Growth Rate (RGR) was not affected by UV-B, possibly because reduced shoot length growth by enhanced UV-B was compensated by increased tillering. Light response curves of net leaf photosynthesis of plants exposed to 5 kJ m–2 day–1 UV-BBE did not differ from those exposed to 0 kJ m–2 day–1 UV-BBE. The content of UV-B absorbing compounds of plants exposed to increasing UV-B did not significantly change.Mini UV-B lamp systems were installed in the field, to expose the terrestrial antarctic vegetation at Léonie Island to enhanced solar UV-B. In that study, the increment of shoot length of tagged plants of Deschampsia antarctica during the January-February 1999 at Léonie Island, was recorded and compared to shoot length growth under controlled conditions.The consequences of enhanced UV-B radiation as a result of ozone depletion for the terrestrial antarctic ecosytems are discussed.  相似文献   

2.
Lud  D.  Huiskes  A.H.L.  Moerdijk  T.C.W.  Rozema  J. 《Plant Ecology》2001,154(1-2):87-99
We report a long-term experiment on the photosynthetic response of natural vegetation of Deschampsia antarctica (Poaceae) and Turgidosculum complicatulum (Lichenes) to altered UV-B levels on Léonie Island, Antarctica.UV-B above the vegetation was reduced by filter screens during two seasons. Half of the screens were transparent to UV-A and UV-B (ambient treatment) or absorbing UV-B and part of the UV-A (below-ambient treatment). Half of the wedge- shaped filters had side walls leading to an enhancement of the daily mean temperature in summer by 2–4 °C, simulating rising mean air temperature on the Antarctic Peninsula. The other half of the filters were without side walls resulting in close-to-ambient temperature underneath. Plots without filters served as controls.UV-B supplementation of an extra 1.3 kJ UV-BBE was achieved using UV-mini-lamp systems during 15 days in the second season.We found no evidence that altered incident UV-B levels and temperature had an effect on maximum photosystem II efficiency (F v/F m) and effective photosystem II efficiency (F/F m) in both species. UV-B reduction did not influence contents of chlorophyll, carotenoids and methanol-soluble UV absorbing compounds in D. antarctica.Flowering shoot length of D. antarctica was not affected by UV-B reduction. Temperature enhancement tended to result in longer inflorescence axes. Results of two austral summer seasons of UV- reduction in natural stands of D. antarctica and T. complicatulum suggest that current ambient levels of UV-B do not have a direct effect on the photosynthetic performance and pigment contents of these species. Cumulative effects on growth have not been recorded after two years but can not be excluded on a longer term.  相似文献   

3.
Rozema  J.  Noordijk  A.J.  Broekman  R.A.  van Beem  A.  Meijkamp  B.M.  de Bakker  N.V.J.  van de Staaij  J.W.M.  Stroetenga  M.  Bohncke  S.J.P.  Konert  M.  Kars  S.  Peat  H.  Smith  R.I.L.  Convey  P. 《Plant Ecology》2001,154(1-2):9-26

The morphology, size and characteristics of the pollen of the plant species Antarctic hairgrass (Deschampsia antarctica, Poaceae) and Antarctic pearlwort (Colobanthus quitensis, Caryophyllaceae) are described by scanning electron microscopy and light microscopy. Based on the number of pores the pollen of Colobanthus quitensis is classified as periporate or polypantorate, while that of Deschampsia antarctica is monoporate.

Pollen of Vicia faba plants, exposed to enhanced UV-B (10.6 kJ m?2 day?1 UV-BBE) in a greenhouse, showed an increased content of UV-B absorbing compounds. There was also an increase of UV-B absorbing compounds in response to exposure to UV-A. By sequential chemical extraction three `compartments' of UV-B absorbance of pollen can be distinguished: a cytoplasmic fraction consisting of, e.g., flavonoids (acid-methanol extractable), a wall-bound fraction, consisting of, e.g., ferulic acid (NaOH extractable) and aromatic groups in the bioresistant polymer sporopollenin possibly consisting of, e.g., para-coumaric acid monomers (fraction remaining after acetolysis). The sporopollenin fraction in the pollen of Helleborus foetidus showed considerable UV-B absorbance (280–320 nm). There is evidence that enhanced solar UV-B induces increased UV-B absorbance (of sporopollenin) in pollen and spores of mosses, which may be preserved in the fossil record. As there are no instrumental records of solar UV-B in the Antarctic before 1970 and no instrumental records of stratospheric ozone over the Antarctic before 1957, the use of UV-B absorbing polyphenolics in pollen (and spores) as bio-indicator, or proxy of solar UV-B, may allow reconstruction of pre-ozone hole and subrecent UV-B and stratospheric ozone levels. Pollen and spores from herbarium specimens and from frozen moss banks (about 5000–10?000 years old) in the Antarctic may, therefore, represent a valuable archive of historical UV-B levels.

  相似文献   

4.
Stratospheric ozone depletion by anthropogenic chlorofluorocarbons has lead to increases in ultraviolet‐B radiation (UV‐B; 280–320 nm) along the Antarctic Peninsula during the austral spring. We manipulated UV‐B levels around plants of Antarctic hair grass (Deschampsia antarctica; Poaceae) and Antarctic pearlwort (Colobanthus quitensis; Caryophyllaceae) for one field season near Palmer Station along the west coast of the Antarctic Peninsula. Treatments involved placing frames over naturally growing plants that either (1) held filters that absorbed most biologically effective radiation (UV‐BBE; ‘reduced UV‐B’, 22% of ambient UV‐BBE levels), (2) held filters that transmitted most UV‐BBE (‘near‐ambient UV‐B’, 87% of ambient UV‐BBE levels), or (3) lacked filters (‘ambient UV‐B’). Leaves on D. antarctica exposed to near‐ambient and ambient UV‐B were 16–17% shorter than those exposed to reduced UV‐B, and this was associated with shorter epidermal cells at the leaf base and tip. Leaves on C. quitensis exposed to near‐ambient and ambient UV‐B tended to be shorter (P=0.18) and epidermal cells at the leaf base tended to be smaller than those under reduced UV‐B (P<0.10). In order to further explain reductions in leaf length, we examined leaf concentrations of insoluble (cell‐wall bound) phenylpropanoids, since it has been proposed that wall‐bound phenylpropanoids such as ferulic acid may constrain cell expansion and leaf elongation. In both species, HPLC analysis revealed that ferulic and p‐coumaric acid were major components of both insoluble and soluble phenylpropanoids. Although there were no significant differences in concentrations between UV‐B treatments, concentrations of insoluble ferulic acid in D. antarctica tended to be higher under ambient and near‐ambient UV‐B than under reduced UV‐B (P=0.17). We also examined bulk‐leaf concentrations of soluble (methanol extractable) UV‐B‐absorbing compounds and found that concentrations were higher in plants exposed to near‐ambient and ambient UV‐B than in plants exposed to reduced UV‐B. We also assessed the UV‐B‐screening effectiveness of leaves that had developed on plants at the field site with a fiber‐optic microprobe. Leaf epidermal transmittance of 300‐nm UV‐B was 4.0 and 0.6% for D. antarctica and C. quitensis, respectively, which is low compared to grasses and herbaceous dicotyledonous plants found in more temperate climates. While the leaves of Antarctic vascular plants are relatively effective at screening UV‐B, levels of UV‐B in Antarctica are sufficient to reduce leaf epidermal cell size and leaf elongation in these species, although the mechanisms for these reductions remain unclear.  相似文献   

5.
Long-term effects of ultraviolet (UV) radiation on flavonoid biosynthesis were investigated in Arabidopsis thaliana using the sun simulators of the Helmholtz Zentrum München. The plants, which are widely used as a model system, were grown (1) at high photosynthetically active radiation (PAR; 1,310 µmol m?2?s?1) and high biologically effective UV irradiation (UV-BBE 180 mW m?2) during a whole vegetative growth period. Under this irradiation regime, the levels of quercetin products were distinctively elevated with increasing UV-B irradiance. (2) Cultivation at high PAR (1,270 µmol m?2?s?1) and low UV-B (UV-BBE 25 mW m?2) resulted in somewhat lower levels of quercetin products compared to the high-UV-BBE conditions, and only a slight increase with increasing UV-B irradiance was observed. On the other hand, when the plants were grown (3) at low PAR (540 µmol m?2?s?1) and high UV-B (UV-BBE 180 mW m?2), the accumulation of quercetin products strongly increased from very low levels with increasing amounts of UV-B but the accumulation of kaempferol derivatives and sinapoyl glucose was less pronounced. We conclude (4) that the accumulation of quercetin products triggered by PAR leads to a basic UV protection that is further increased by UV-B radiation. Based on our data, (5) a combined effect of PAR and different spectral sections of UV radiation is satisfactorily described by a biological weighting function, which again emphasizes the additional role of UV-A (315–400 nm) in UV action on A. thaliana.  相似文献   

6.
Supplementary UV-B (12.2 kJ m−2 d−1 UV-BBE) provided to Vigna radiata for 2 h d−1 suppressed the length of root, shoot and whole plants, number of leaves, total leaf area, leaf area index, specific leaf mass, fresh and dry mass of leaves and shoot, relative growth rate and net productivity. In unstressed green gram plants (10 kJ m−2 d−1 UV-BBE), triadimefon (TRIAD) (20 mg dm−3) enhanced growth in all parameters over control. The growth promoting effect of TRIAD enabled the UV-B impacted plants to overcome the growth inhibitions to varying degrees indicating its protective potential against UV-B stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Deckmyn  Gaby  Impens  Ivan 《Plant Ecology》1998,137(1):13-19
The penetration of natural and artificial UV-BBE (Biologically Effective UV-B, Caldwell 1971) and PAR (400–700 nm) in a grass canopy with increasing LAI was followed during 2 months. Overall, the transmission of UV-BBE sunlight is significantly higher than of PAR sunlight. This is mainly due to the higher proportion of diffuse light in the UV-B. Under cloudy conditions no difference between UV-BBE and PAR could be found. Sun angle and intensity of the radiation were less important in determining the penetration of light. Artificial light penetrates much more through the canopy, resulting in higher irradiation levels in the lower part of the canopy, but a lower UV-BBE/PAR ratio (since UV-B transmittance of the leaves is lower). The UV-BBE/PAR ratio reaching the leaves was influenced by LAI, sun angle, percent diffuse light and leaf angle. The large differences in UV-BBE/PAR ratio per unit leaf area under natural and artificial light conditions are important in understanding the influence of UV-B on plants.  相似文献   

8.
Rozema  J.  Tosserams  M.  Nelissen  H. J. M.  van Heerwaarden  L.  Broekman  R. A.  Flierman  N. 《Plant Ecology》1997,128(1-2):285-294
This study reports changes in the plant's chemical composition and the decomposition of this plant material under enhanced solar UV-B radiation. Calamagrostis epigeios, a dominant grass species in the dune grassland in The Netherlands, was grown outdoor on an experimental field under ambient and enhanced solar UV-B (5 and 7.5 kJ m-2 day-1 UV-BBE, respectively), corresponding to about 15% stratospheric ozone depletion. After one growing season aerial plant parts were harvested. The decomposition of this harvested leaf material was studied in a dune grassland and on the above mentioned experimental field under ambient (5 kJ m-2 day-1 UV-BBE) and enhanced (7.5 kJ m-2 day-1 UV-BBE) radiation, using litter bags. The chemical quality of the leaves grown under enhanced solar UV-B changed. There was an increase in the leaf content of lignin, while no significant changes occurred for the content of -cellulose, hemicellulose and tannins under enhanced UV-B. In the field, the rate of decomposition of leaf material grown under enhanced UV-B (with an increased content of lignin) was reduced. The content of lignin of the decomposing leaf material increased, but less under exposure to enhanced UV-B. The latter may be explained by photodegradation of the lignin. The consequences of enhanced UV-B radiation for carbon fluxes in the dune grassland ecosystem are discussed.  相似文献   

9.
Hybridisation between certain willow species is a common feature leading to novel genotypes varying in growth rate and stress tolerance. The objective of this 4-week study was to investigate the effects of decreased watering, enhanced ultraviolet-B irradiation (UV-BBE, 280–315 nm, 7.2 kJ m−2 day−1) and combined decreased watering and enhanced UV-B irradiation on di- and polyamines in the leaves of Salix myrsinifolia and its hybrid with S. myrsinites. Control plantlets were well-watered and exposed to ambient UV-B irradiation (UV-BBE, 3.6 kJ m−2 day−1). HPLC analyses showed that the constitutive concentrations of soluble di- and polyamines varied markedly between S. myrsinifolia and its hybrids. The degree of responses to treatments also varied: in S. myrsinifolia, concentrations of free putrescine were clearly increased by reduced watering, while in the hybrid willow, change in putrescine was less pronounced and not significant. Results also showed that the increase in putrescine in S. myrsinifolia by reduced watering was mitigated by concurrent enhancement of UV-B irradiation. There were no direct UV-B effects on the soluble polyamines.  相似文献   

10.
DMSP (dimethyl sulphonium propionate) contents produced by an Antarctic marine phytoplankton species, Phaeocystis antarctica (Prymnesiophyta), which were incubated under light conditions with radiations of different UV wavebands, were measured by gas chromatography after various exposure times. Full light (UV-B + UV-A + PAR) caused the strongest decrease in the production of DMSP in the alga. A marked depression of DMSP content was also observed with short UV-B and UV-A wavebands after 3 h. It was therefore hypothesised that DMSP production in Phaeocystis antarctica was inhibited by UV radiation. There was a negative correlation on change of DMSP contents under UV radiation. There was a negative correlation on change of DMSP contents under UV radiation with exposure times. The conversion rate of DMSP dissolved to DMS (dimethyl sulphide) was significantly increased with UV radiation. The possibility could not be excluded that a high concentration of free chemical radicals in seawater due to UV radiation resulted in an increase of DMSP cleavage in seawater. The oxidation of DMS in seawater due to UV-B radiation could result in a decrease of its flux to the atmosphere. The effect of UV radiation on DMSP production and oxidation of DMS may be an important factor in the variability of DMSP and the global flux of DMS from ocean to atmosphere. Received: 17 June 1996 / Accepted: 17 July 1997  相似文献   

11.
Leaf respiration and photosynthesis will respond differently to an increase in temperature during night, which can be more relevant in sensitive ecosystems such as Antarctica. We postulate that the plant species able to colonize the Antarctic Peninsula – Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. – are able to acclimate their foliar respiration and to maintain photosynthesis under nocturnal warming to sustain a positive foliar carbon balance. We conducted a laboratory experiment to evaluate the effect of time of day (day and night) and nocturnal warming on dark respiration. Short (E0 and Q10) and long‐term acclimation of respiration, leaf carbohydrates, photosynthesis (Asat) and foliar carbon balance (R/A) were evaluated. The results suggest that the two species have differential thermal acclimation respiration, where D. antarctica showed more thermosensitivity to short‐term changes in temperature than C. quitensis. Experimental nocturnal warming affected respiration at daytime differentially between the two species, with a significant increase of R10 and Asat in D. antarctica, while no changes on respiration were observed in C. quitensis. Long thermal treatments of the plants indicated that nocturnal but not diurnal respiration could acclimate in both species, and to a greater extent in C. quitensis. Non‐structural carbohydrates were related with respiration in C. quitensis but not in D. antarctica, suggesting that respiration in the former species is likely controlled by total soluble sugars and starch during day and night, respectively. Finally, foliar carbon balance was differentially improved under warming conditions in Antarctic plants by different mechanisms, with C. quitensis deploying respiratory acclimation, while D. antarctica increased its Asat.  相似文献   

12.
The impact of elevated ultraviolet-B radiation (UV-B, 280–320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings were grown in a greenhouse for 10 days and then treated with biologically effective UV-B (UV-BBE) radiation for 28 days. Oxidative stress effects were evaluated by measuring superoxide anion (O2) generation rate, hydrogen peroxide (H2O2) content, malondialdehyde (MDA) concentration and relative electrolyte conductivity (EC) for IR74 and Dular at 0 (control), 6 or 13 kJ m?2 day?1 UV-BBE. Significant increases in these parameters were found in rice plants grown at 13 vs 0 kJ m?2 day?1 UV-BBE after 28 days; indicating that disruption of membrane systems may be an eventual reason for UV-B-induced injury in rice plants. There was a positive correlation between O2? generation and increases in EC or MDA in leaves. Activities of enzymatic and nonenzymatic free radical scavengers were measured for IR74 after 7, 14, 21 and 28 days of exposure to 13 or 0 UV-BBE to evaluate dynamics of these responses over time. Activities of catalase and superoxide dismutase (but not ascorbate peroxidase) and concentrations of ascorbic acid and glutathione were enhanced by 13 vs 0 UV-BBE after 14 days of UV-B exposure. Further exposure to 28 days of UV-B was associated with a decline in enzyme activities and ascorbic acid, but not glutathione. It is suggested that UV-B-induced injury may be associated with disturbance of active oxygen metabolism through the destruction and alteration of both enzymatic and nonenzymatic defense systems in rice.  相似文献   

13.
Summary Experiments were performed to determine the effects of UV-B (ultraviolet, 280–320 nm) radiation on motility and growth of phytoplankton from lakes and ponds in South Georgia. After 4 h of solar radiation and 4h artificial radiation (UV-BBE 11.6 kJ m-2 day-1, UV-B lamps) the swimming velocity of Cryptomonas sp. decreased. The growth rate of Botryococcus, Lyngbya sp. and Stauraslrum sp. did not show any significant variations between the different light conditions. The UV-B component was reduced by filtering solar radiation through glass bottles und cellulose acetate. Cloudy days had only 30% of the radiation of clear days in both the PAR (photosynthetic active radiation) and UV-B regions. The ponds contained large amounts of humic substances, which are responsible for the absorbance in the UV region.  相似文献   

14.
The long-term effects of enhanced UV-B radiation on the content and composition of leaf phenolics in Epilobium angustifolium L. and Eriophorum russeolum Fries ex Hartman were studied in northern Finland (68°N) using two UV-B enhancement experiments, both simulating UV-BCIE radiation and corresponding to a 20% loss of ozone layer. High proportions of hydrolyzable tannins (69%) and condensed tannins (66%) characterized both Epilobium and Eriophorum leaves, respectively. No UV treatment effect was detected in the content or composition of Epilobium leaf soluble phenolics, whereas significant UV effects were detected in Eriophorum leaves in a developmental-specific manner. At the end of the growing season, the proportion of total soluble phenolics was higher in leaves exposed to enhanced UV-A and UV-B radiation than in the control leaves, but the phenolic composition was not significantly modified. This study introduces a new example on plants’ phenolic response to UV radiation being species-specific and detectable only at certain developmental stages. Possible consequences of increased phenolic content in forage plants for selection and digestibility by reindeer are, however, not yet known.  相似文献   

15.
Three cucumber (Cucumis sativus L.) cultivars were exposed to a daily dose of 11.6 kJ m-2biologically effective ultraviolet-B (UV-BBe) radiation in an unshaded greenhouse before and/ or after infection by Colletotrichum lagenarium (Pass.) Ell. and Halst. or Cladosporium cucumerinum Ell. and Arth. and analyzed for disease development. Two of these cultivars, Poinsette and Calypso Hybrid, were disease resistant, while the third cultivar, Straight-8, was disease susceptible. Preinfectional treatment of 1 to 7 days with UV-BBE in Straight-8 led to greater severity of both diseases. Postinfectional UV treatment did not lead to increased disease severity caused by C. lagenarium, while preinfectional UV treatment in both Straight-8 and Poinsette substantially increased disease severity. Although resistant cultivars Poinsette and Calypso Hybrid showed increased anthracnose disease severity when exposed to UV-B, this effect was apparent only on the cotyledons. Both higher spore concentration and exposure to UV-B radiation resulted in greater disease severity. Of the cucumber cultivars tested for UV-B sensitivity, growth in Poinsette was most sensitive and Calypso Hybrid was least sensitive. These preliminary results indicate that the effects of UV-B radiation on disease development in cucumber vary depending on cultivar, timing and duration of UV-B exposure, inoculation level, and plant age.  相似文献   

16.
IR68 and Dular rice cultivars were grown under ambient, 13.0 (simulating 20% ozone depletion) and 19.1 (simulating 40% ozone depletion) kJ m-2 day-1 of biologically effective ultraviolet-B (UV-BBE) for 4 weeks. Plant height and leaf area were significantly reduced by supplemental UV-BBE radiation. Greater reduction in leaf area than of plant height was observed. A decrease in indole-3-acetic acid (IAA) content and increase in peroxidase and IAA oxidase activities of UV-B treated plants in both cultivars were observed compared with ambient control. Calmodulin content also decreased after plants were treated with high supplemental UV-B for two weeks and medium UV-B treatment for four weeks. The results indicated that peroxidase and IAA oxidase activities in rice leaves were stimulated by supplemental UV-B, resulting in the destruction of IAA which in turn may cause inhibition of rice leaf growth. Although the mechanism is unclear, calmodulin is most likely involved in leaf growth.  相似文献   

17.
The photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica was examined by measuring whole-canopy CO2 gas exchange and chlorophyll (Chl) a fluorescence of plants growing near Palmer Station along the Antarctic Peninsula. Both species had negligible midday net photosynthetic rates (Pn) on warm, usually sunny, days (canopy air temperature [Tc]> 20°C), but had relatively high Pn on cool days (Tc<10°C). Laboratory measurements of light and temperature responses of Pn showed that high temperature, not visible irradiance, was responsible for depressions in Pn on warm sunny days. The optimal leaf temperatures (Tl) for Pn in C. quitensis and D. antarctica were 14 and 10°C, respectively. Both species had substantial positive Pn at 0°C Tl, which were 28 (C. quitensis) and 32% (D. antarctica) of their maximal Pn, and we estimate that their low-temperature compensation points occurred at ?2°C Tl (C. quitensis) and ?3°C (D. antarctica). Because of the strong warming trend along the peninsula over recent decades and predictions that this will continue, we were particularly interested in the mechanisms responsible for their negligible rates of Pn on warm days and their unusually low high-temperature compensation points (i.e., 26°C in C. quitensis and 22°C in D. antarctica). Low Pn at supraoptimal temperature (25°C) appeared to be largely due to high rates of temperature-enhanced respiration. However, there was also evidence for direct impairment of the photosynthetic apparatus at supraoptimal temperature, based on Chl fluorescence and Pn/intercellular CO2 concentration (ci) response curve analyses. The breakpoint or critical temperature (Tcr) of minimal fluorescence (Fo) was ≈42°C in both species, which was well above the temperatures where reductions in Pn were evident, indicating that thylakoid membranes were structurally intact at supraoptimal temperatures for Pn. The optimal Tl for photochemical quenching (qp) and the quantum yield of photosystem II (PSII) electron transfer (φPSII) were 9 and 7°C in C. quitensis and D. antarctica, respectively. Supraoptimal temperatures resulted in lower qp and greater non-photochemical quenching (qNP), but had little effect on Fo, maximal fluorescence (Fm) or the ratio of variable to maximal fluorescence (Fv/Fm) in both species. In addition, carboxylation efficiencies or initial slopes of their Pn/ci response were lower at supraoptimal temperatures, suggesting reduced activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Although continued warming along the peninsula will increase the frequency of supraoptimal temperatures, Tc at our field site averaged 4.3°C and was below the temperature optima for Pn in these species for the majority of diurnal periods (86%) during the growing season, suggesting that continued warming will usually improve their rates of Pn.  相似文献   

18.
Populations of the two native vascular plant species on the Antarctic Peninsula have increased over the past 40 years. This increase has been attributed to improved reproductive performance resulting from regional warming and increased growing season length. However, little is known of the influence that vascular plants have on the performance of neighboring plants in developing and well-established communities. We compared the aboveground growth and reproduction of Deschampsia antarctica plants growing alone or in close proximity to neighboring plants (D. antarctica, Colobanthus quitensis, or mosses) at a young, recently colonized and an older, well-developed plant community on the Antarctic Peninsula to assess whether neighboring plants had a positive or negative effect on D. antarctica performance, and whether these effects varied from young to old communities. In both communities, tillers on D. antarctica plants near neighbors produced 48–89% fewer leaves and 49–93% fewer tillers than those on D. antarctica plants growing alone. These tillers also had relative growth rates that were 25–66% lower- and tiller-size indices that were 42–87% less than those on plants growing alone. In addition, the biomass of tillers on plants growing near neighbors was 40–91% lower than those on plants growing alone. Leaf and tiller production was generally higher in the older, more developed community than in the younger community. Our findings illustrate that vegetative growth of D. antarctica is reduced when growing in close proximity to neighboring plants, suggesting that negative plant interactions are an important constraint at our field sites.  相似文献   

19.
In greenhouse experiments, selenium (Se) has been shown to defend plants against detrimental effects of heavy UV-B radiation stress. The aim of this study was to investigate whether this positive effect can be found in open-field conditions with enhancement of UV-B radiation. In the experiment, conducted with strawberry (Fragaria×ananassa, cultivars “Jonsok” and “Polka”) over two growing seasons, plants were exposed to UV-B radiation (including UV-A) and cultivated without Se or supplied with Se added at two levels (0.1 and 1.0 mg kg−1). The plants were monitored for growth, flavonoids, chlorophyll fluorescence, net photosynthesis as well as tissue and cell structure. Photosystem II was observed to be sensitive to UV-B stress under field conditions. In the leaves, a decrease in Fv/Fm was seen at the end of the growing season, implying a cumulative effect of UV-B stress. Several parameters, especially cell and tissue structures, were affected by UV-B and UV-A treatments, which proves the need for UV-A control in outdoor UV-B supplementation studies. Addition of Se did not ameliorate the harmful effects of UV-B but the lower Se-increment level increased leaf growth. The effects of UV-B and Se differed during the two experimental years, indicating the need to repeat experiments during several growing seasons.  相似文献   

20.
Due to anthropogenic influences, solar UV-B irradiance at the earth’s surface is increasing. To determine the effects of enhanced UV-B radiation on photosynthetic characteristics of Prunus dulcis, two-year-old seedlings of the species were submitted to four levels of UV-B stress, namely 0 (UV-Bc), 4.42 (UV-B1), 7.32 (UV-B2) and 9.36 (UV-B3) kJ m−2 d−1. Effects of UV-B stress on a range of chlorophyll (Chl) fluorescence parameters (FPs), Chl contents and photosynthetic gas-exchange parameters were investigated. UV-B stress promoted an increase in minimal fluorescence of dark-adapted state (F0) and F0/Fm, and a decrease in variable fluorescence (Fv, Fv/Fm, Fv/F0 and F0/Fm) due to its adverse effects on photosystem II (PSII) activity. No significant change was observed for maximal fluorescence of dark-adapted state (Fm). Enhanced UV-B radiation caused a significant inhibition of net photosynthetic rate (P N) at UV-B2 and UV-B3 levels and this was accompanied by a reduction in stomatal conductance (g s) and transpiration rate (E). The contents of Chl a, b, and total Chl content (a+b) were also significantly reduced at increased UV-B stress. In general, adverse UV-B effects became significant at the highest tested radiation dose 9.36 kJ m−2 d−1. The most sensitive indicators for UV-B stress were Fv/F0, Chl a content and P N. Significant P<0.05 alteration in these parameters was found indicating the drastic effect of UV-B radiation on P. dulcis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号