首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detoxification of aluminum (Al) in root tips of the Al accumulator buckwheat by exudation of oxalate leading to reduced Al uptake (Al resistance) is difficult to reconcile with the Al accumulation (Al tolerance). The objective of this study was to analyze resistance and tolerance mechanisms at the same time evaluating particularly possible stratification of Al uptake, Al transport and oxalate exudation along the root apex. The use of a minirhizotron made it possible to differentiate between spatial responses to Al along the root apex with regard to Al uptake and organic acid anion exudation, but also to measure at the same time Al and organic acid transport in the xylem. Al accumulates particularly in the 3‐mm root apex. The study showed that Al taken up by the 10‐mm root apex is rapidly transferred to the xylem which differentiates in the 10 to 15‐mm root zone as revealed by a microscopic study. Al induces the release of oxalate from the root apex but particularly from the subapical 6–20 mm root zone even when Al was applied only to the 5‐mm root apex suggesting a basipetal signal transduction. Citrate proved to be the most likely ligand for Al in the xylem because Al and citrate transport rates were positively correlated. In conclusion, the data presented show that the Al‐induced release of oxalate, and Al uptake as well as Al accumulation are spatially not separated in the root apex.  相似文献   

2.
Summary The structure of xylem parenchyma cells is examined in relation to transport of ions through the root. Measurement of uptake of 86Rb+ and its transport through the root at different distances from the apex show that this is a general activity along the length of the root and not confined to a limited region. Thus transport through the root is not stopped by removal of that part of the root tip containing metaxylem vessels with living contents. The structure of xylem parenchyma appears to be suitable for involvement in ion transport from the stele to the xylem. At 1 cm behind the tip, where metaxylem vessels have no living contents but ion uptake and transport are going on at high rates, xylem parenchyma cells are rich in cytoplasm with extensive rough endoplasmic reticulum and well-developed mitochondria. Their cell walls contain numerous plasmodesmata, establishing the possibility of a symplastic pathway across the stele up to the vessels. The results are discussed in relation to regulation of ion transport to the xylem vessels in roots.Dedicated to Professor O. Stocker on the occasion of his 85th birthday.  相似文献   

3.
Melchior W  Steudle E 《Plant physiology》1993,101(4):1305-1315
The hydraulic architecture of developing onion (Allium cepa L. cv Calypso) roots grown hydroponically was determined by measuring axial and radial hydraulic conductivities (equal to inverse of specific hydraulic resistances). In the roots, Casparian bands and suberin lamellae develop in the endodermis and exodermis (equal to hypodermis). Using the root pressure probe, changes of hydraulic conductivities along the developing roots were analyzed with high resolution. Axial hydraulic conductivity (Lx) was also calculated from stained cross-sections according to Poiseuille's law. Near the base and the tip of the roots, measured and calculated Lx values were similar. However, at distances between 200 and 300 mm from the apex, measured values of Lx were smaller by more than 1 order of magnitude than those calculated, probably because of remaining cross walls between xylem vessel members. During development of root xylem, Lx increased by 3 orders of magnitude. In the apical 30 mm (tip region), axial resistance limited water transport, whereas in basal parts radial resistances (low radial hydraulic conductivity, Lpr) controlled the uptake. Because of the high axial hydraulic resistance in the tip region, this zone appeared to be "hydraulically isolated" from the rest of the root. Changes of the Lpr of the roots were determined by measuring the hydraulic conductance of roots of different length and referring these data to unit surface area. At distances between 30 and 150 mm from the root tip, Lpr was fairly constant (1.4 x 10-7 m s-1 MPa-1). In more basal root zones, Lpr was considerably smaller and varied between roots. The low contribution of basal zones to the overall water uptake indicated an influence of the exodermal Casparian bands and/or suberin lamellae in the endodermis or exodermis, which develop at distances larger than 50 to 60 mm from the root tip.  相似文献   

4.
Susann F. Biddulph 《Planta》1967,74(4):350-367
Summary Microautoradiographic techniques were used to determine the distribution of Ca45 and S35 in regions of the bean root where anatomical features may influence the processes of ion uptake and translocation. Root tissue from intact plants was prepared by methods that preserve both soluble and insoluble Ca and S. Ca45 distribution was determined after 1 hour and 15 min, of uptake, after 2 efflux periods, and after replacement by non-tracer Ca.S35 distribution was determined after 1 hour and 15 min of uptake.The quantity of Ca45 that entered the root was greater than the quantity of S35. Ca45 concentration within the root increased with linear distance from the 8-mm level behind the tip. The pathways of Ca and S across the cortex appeared to be different since Ca45 was particularly associated with cell walls and S35 was distributed more evenly through the cells. There was no evidence that the endodermis was a diffusion barrier for Ca; the small parenchyma cells associated with conducting elements acquired a high concentration of Ca45 and thus appear to be implicated in absorption and perhaps in transfer to the xylem. The evidence suggests that the endodermis may have been a barrier for S, but if so, certain parenchyma cells inside the stele, especially at xylem poles, were equally involved. The region from 30 to 80 mm from the tip appeared to participate in Ca uptake and transfer to the xylem; because of tissue immaturity the 8-mm region, which contained the least Ca45, was thought not to translocate to the shoot. Deposition of Ca45 in oxalate crystals represented almost complete immobilization. Calcium oxalate metabolism was most active in the 30-mm region of secondary roots and in their small branches. S35-labelled nuclei occurred in the cortex 2.5 to 3 mm behind the root tip.  相似文献   

5.
Pea roots have open apical organization, where discrete initial cells do not exist. Differentiation of all tissues occurs in cylinders and vascular sectors that blend gradually with each other. This study reports the distribution of dividing cells and their relationship to maturation events in the 2 mm root tip, and in the 8–10 and 18–20 mm segments. Up to 200 μm from the root body/cap junction, cell division is uniformly distributed throughout all meristem regions. By 350 to 500 μ, xylem tracheary elements and cells of the pith parenchyma and middle cortex have stopped dividing. At this level cell division is almost entirely restricted to two cylinders, one composed of the inner root cap, the epidermis, and the outer cortex (outer cortex cylinder) and another composed of cells of the inner cortex, the pericycle and vascular tissue (inner cortex cylinder). When the protophloem matures, all cells in the phloem sector of the inner cortex cylinder, including the 1 layered pericycle, the endodermis and the phloem parenchyma, stop dividing. The 3–4 layered pericycle in the xylem sectors continues dividing until about 10 mm from the body/cap junction following the maturation of the protoxylem tracheary elements.  相似文献   

6.
Sodium exclusion from leaves is an important mechanism for salt tolerance in durum wheat. To characterize possible control points for Na(+) exclusion, quantitative cryo-analytical scanning electron microscopy was used to determine cell-specific ion profiles across roots of two durum wheat genotypes with contrasting rates of Na(+) transport from root to shoot grown in 50 mm NaCl. The Na(+) concentration in Line 149 (low transport genotype) declined across the cortex, being highest in the epidermal and sub-epidermal cells (48 mm) and lowest in the inner cortical cells (22 mm). Na(+) was high in the pericycle (85 mm) and low in the xylem parenchyma (34 mm). The Na(+) profile in Tamaroi (high transport genotype) had a similar trend but with a high concentration (130 mm) in the xylem parenchyma. The K(+) profiles were generally inverse to those of Na(+). Chloride was only detected in the epidermis. These data suggest that the epidermal and cortical cells removed most of the Na(+) and Cl(-) from the transpiration stream before it reached the endodermis, and that the endodermis is not the control point for salt uptake by the plant. The pericycle as well as the xylem parenchyma may be important in the control of net Na(+) loading of the xylem.  相似文献   

7.
To mark the apoplastic pathway of ions in the root of the dicotyledonous plant Lepidium sativum we used the heavy element lanthanum, which can be identified by analytical electron microscopy (EELS and ESI). In the front root tip, the primary walls of all meristematic cells contained lanthanum. 10-15 mm behind the root apex, lanthanum was found in the cortex cell walls up to the endodermis, but not in the stele. 20-25 mm from the tip, lanthanum was accumulated in the radial cell walls of the hypodermis, which, however, is not a complete diffusion barrier for ions, so that traces of lanthanum also were found in the cortex cell walls up to the endodermis. This study provides evidence for the presence of two apolastic diffusion barriers in the region of highest water uptake in cress roots.  相似文献   

8.
Short-term Al treatment (90 microM Al at pH 4.5 for 1 h) of the distal transition zone (DTZ; 1-2 mm from the root tip), which does not contribute significantly to root elongation, inhibited root elongation in the main elongation zone (EZ; 2.5-5 mm from the root tip) to the same extent as treatment of the entire maize (Zea mays) root apex. Application of Al to the EZ had no effect on root elongation. Higher genotypical resistance to Al applied to the entire root apex, and specifically to the DTZ, was expressed by less inhibition of root elongation, Al accumulation, and Al-induced callose formation, primarily in the DTZ. A characteristic pH profile along the surface of the root apex with a maximum of pH 5.3 in the DTZ was demonstrated. Al application induced a substantial flattening of the pH profile moreso in the Al-sensitive than in the Al-resistant cultivar. Application of indole-3-acetic acid to the EZ but not to the meristematic zone significantly alleviated the inhibition of root elongation induced by the application of Al to the DTZ. Basipetal transport of exogenously applied [(3)H]indole-3-acetic acid to the meristematic zone was significantly inhibited by Al application to the DTZ in the Al-sensitive maize cv Lixis. Our results provide evidence that the primary mechanisms of genotypical differences in Al resistance are located within the DTZ, and suggest a signaling pathway in the root apex mediating the Al signal between the DTZ and the EZ through basipetal auxin transport.  相似文献   

9.
Root-to-shoot cadmium (Cd) translocation in Solanum torvum is lower than that of the eggplant Solanum melongena; therefore, grafting S. melongena onto S. torvum rootstock can effectively reduce the Cd concentration in eggplant fruits. We hypothesized that Cd transport in S. torvum roots is restricted in the path between the epidermis and xylem vessel; hence, we investigated the Cd distribution in the roots at the micron-scale. Elemental maps of Cd, Zn and Fe accumulation in S. melongena and S. torvum root sections were obtained by synchrotron micro X-ray fluorescence spectrometry. The Cd was localized in both the stele and the epidermis of the S. melongena root cross sections regardless of the distance from the root apex. In S. torvum root sections taken at 30 and 40 mm above the root apex, a higher abundance of Cd was found within the cells of the endodermis and pericycle. The results suggested that the symplastic uptake and xylem loading of Cd in S. torvum roots were restricted, and thereby, the Cd that was unable to be loaded into the xylem accumulated in the endodermis and in the pericycle. Because symplastic uptake differs only slightly between the two species, the difference in xylem loading would explain the comparatively lower Cd concentration in S. torvum shoots.  相似文献   

10.
Abscisic acid in the xylem: where does it come from, where does it go to?   总被引:19,自引:0,他引:19  
Abscisic acid is a hormonal stress signal that moves in the xylem from the root to the different parts of the shoot where it regulates transpirational water loss and leaf growth. The factors that modify the intensity of the ABA signal in the xylem are of particular interest because target cells recognize concentrations. ABA(xyl), will be decreased as radial water flow through the roots is increased, assuming that radial ABA transport occurs in the symplast only. Such dilutions of the plant hormone concentration can be compensated in different ways, which help to keep the ABA-concentrations in the xylem constant: (i) apoplastic bypass flows of ABA, (ii) ABA flows between the stem parenchyma and the xylem during transport and (iii) the action of beta-D-glucosidases that release free ABA from its conjugates to the root cortex and the leaf apoplast. The significance of reflection coefficients (sigma(ABA)), permeability coefficients of membranes (P(S)(ABA)) and apoplastic barriers for ABA is discussed.  相似文献   

11.
七叶一枝花根的显微结构及其内生真菌分布研究   总被引:1,自引:1,他引:0  
本文采用石蜡永久制片和光学显微摄像的方法对七叶一枝花Parispolyphylla根的显微结构及其内生真菌的分布进行了研究。结果表明,七叶一枝花的根茎由栓皮层、薄壁组织及维管组织组成,其中栓皮层由4层细胞组成;薄壁组织的细胞含有丰富的营养物质,其内有时分布有针状结晶束。不定根由表皮层、皮层、内皮层及维管束构成,表皮上有根毛,皮层所占根径的比例达80%以上;木质部为三原型。在七叶一枝花的根茎和不定根的皮层细胞中均有内生真菌的分布。真菌由表皮、外皮层侵入到皮层薄壁组织,在皮层薄壁细胞中形成菌丝结,并扩展成一定的侵染区域,部分皮层细胞中菌丝结已被消化吸收。内生真菌只侵染皮层薄壁细胞,不侵染维管柱。七叶一枝花可以通过消化细胞内的菌丝作为营养的来源之一。  相似文献   

12.
Rae AL  Smith FW 《Planta》2002,215(4):565-568
  相似文献   

13.
A wide range of physiological disorders has been reported within the first few hours of exposing intact plant roots to moderate levels of Al3+. Past microanalytic studies, largely limited to electron probe x-ray microanalysis, have been unable to detect intracellular Al in this time frame. This has led to the suggestion that Al exerts its effect solely from extracellular or remote tissue sites. Here, freeze-dried cryosections (10 [mu]m thick) collected from the soybean (Glycine max) primary root tip (0.3-0.8 mm from the apex) were analyzed using secondary ion mass spectrometry (SIMS). The high sensitivity of SIMS for Al permitted the first direct evidence of early entry of Al into root cells. Al was found in cells of the root tip after a 30-min exposure of intact roots to 38 [mu]M Al3+. The accumulation of Al was greatest in the first 30 [mu]m, i.e. two to three cell layers, but elevated Al levels extended at least 150 [mu]m inward from the root edge. Intracellular Al concentrations at the root periphery were estimated to be about 70 nmol g-1 fresh weight. After 18 h of exposure, Al was evident throughout the root cross-section, although the rate of accumulation had slowed considerably from that during the initial 30 min. These results are consistent with the hypothesis that early effects of Al toxicity at the root apex, such as those on cell division, cell extension, or nutrient transport, involve the direct intervention of Al on cell function.  相似文献   

14.
植物对硅的吸收转运机制研究进展   总被引:2,自引:0,他引:2  
硅(Si)能缓解生物与非生物胁迫对植物的毒害作用,Si的吸收转运是由Si转运蛋白介导的.最近,多个Si转运蛋白(Lsi)基因相继在水稻、大麦和玉米中被克隆出来,并在Si的吸收转运机制方面取得了很大进展.水稻OsLsi在根组织中呈极性分布,OsLsi1定位在根外皮层和内皮层凯氏带细胞外侧质膜,负责将外部溶液中的单硅酸转运到皮层细胞内.OsLsi2定位在凯氏带细胞内侧质膜,在外皮层中负责将Si输出到通气组织质外体中,在内皮层与OsLsi1协同作用将Si转运到中柱中.导管中的Si通过蒸腾流转运到地上部,再由定位在叶鞘和叶片木质部薄壁细胞靠近导管一侧的OsLsi6负责木质部Si的卸载和分配.在大麦和玉米中,ZmLsi1/HvLsi1定位在根表皮和皮层细胞外侧质膜负责Si的吸收,然后Si通过共质体途径被转运到内皮层凯氏带细胞中,再由ZmLsi2/HvLsi2输出转运到中柱中.ZmLsi6在细胞中的定位和活性与OsLsi6相似,推测其可能具有类似的功能,但大麦Lsi6至今未见报道.所以,Si转运机制仍需要进一步研究.  相似文献   

15.
Aguilar  E. A.  Turner  D. W.  Gibbs  D. J.  Armstrong  W.  Sivasithamparam  K. 《Plant and Soil》2003,253(1):91-102
Excessive soil wetness is a common feature where bananas (Musa spp.) evolved. Under O2 deficiency, a property of wet soils, root growth and functions will be influenced by the respiratory demand for O2 in root tissues, the transport of O2 from the shoot to root and the supply of O2 from the medium. In laboratory experiments with nodal roots of banana, we examined how these features influenced the longitudinal and radial distributions of O2 within roots, radial O2 loss, solute accumulation in the xylem, root hydraulic conductivity, root elongation and root tip survival. In aerated roots, the stele respired about 6 times faster than the cortex on a volume basis. Respiratory O2 consumption decreased substantially with distance from the root apex and at 300–500 mm it was 80% lower than at the apex. Respiration of lateral roots constituted a sink for O2 supplied via aerenchyma, and reduced O2 flow towards the tip of the supporting root. Stelar anoxia could be induced either by lowering the O2 partial pressure in the bathing medium from 21 to 4 kPa (excised roots) or, in the case of intact roots, by reducing the O2 concentration around the shoot. The root hair zone sometimes extended to 1.0 mm from the root surface and contributed up to a 60% drop in O2 concentration from a free-flowing aerated solution to the root surface. There was a steep decline in O2 concentration across the epidermal-hypodermal cylinder and some evidence of a decline in the O2 permeability of the epidermal-hypodermal cylinder with increasing distance from the root apex. The differences in O2 concentration between cortex and stele were smaller than reported for maize and possibly indicated a substantial transfer rate of dissolved O2 from cortex to stele in banana, mediated by a convective water flow component. An O2 partial pressure of 4 kPa in the medium reduced net nutrient transfer into the vascular tissue in the stele within 1 or 2 h. Hypoxia also caused a temporary decrease in radial root hydraulic conductivity by an order of magnitude. In O2 deficient environments, the stele would be among the first tissues to suffer anoxia and O2 consumption within the root hair zone might be a major contributor to root anoxia/hypoxia in banana growing in temporarily flooded soils.  相似文献   

16.
植物钙素吸收和运转   总被引:9,自引:0,他引:9  
近年来,钙素在植物体内的吸收和运输研究主要集中在细胞和分子水平,但整株水平上的研究也同样重要.整株水平上的钙吸收和运输包括根细胞的钙吸收、钙离子横向穿过根系并进入木质部、在木质部运输、从木质部移出并进入叶片或果实及在叶片或果实中运转分配等环节,既经过质外体也穿越共质体.钙离子通道、Ca2 -ATP酶和Ca2 /H 反向转运器等参与根细胞的钙吸收.在钙离子横向穿根进入木质部的过程中,需要穿越内皮层和木质部薄壁细胞组织.根系内皮层凯氏带阻挡了Ca2 沿质外体途径由内皮层外侧向内侧的移动,部分Ca2 由此通过离子通道流进内皮层细胞而转入共质体并到达木质部薄壁细胞组织,而由木质部薄壁细胞组织进入中柱质外体可能需要Ca2 -ATP酶驱动;还有一些Ca2 由内皮层细胞运出,沿内皮层内侧的质外体途径进入木质部导管,并通过导管运向枝干.钙离子以螯合态的形式在枝干导管运输;水流速率是影响钙离子沿导管运输的关键因子.钙离子在果实和叶片中的运输和分配不仅通过质外体途径也通过共质体途径.  相似文献   

17.
Summary In both the seminal axis and lateral roots of Cucurbita pepo L. the formation of large central xylem elements and the commencement of secondary cambial activity occur 10–20 cm from the root tip. Concomitant with or slightly preceding these developments there are changes in the structure of the walls of endodermal cells where the lignified casparian band spreads along the radial wall and substances staining with Sudan IV are deposited in both radial and tangential walls. At distances more than 30 cm from the tip of primary roots the radius of the stele increases considerably causing splits in the cortex. The endodermis is stretched and the suberin becomes organized in a lamellar form.Against this background of anatomical change certain of the transport capabilities of the root are retained while others are lost. Using an apparatus for measuring the uptake of tracers by segments of intact roots it was found that neither the uptake nor translocation of potassium seem to be affected by the suberization of the endodermis or by secondary thickening, while the translocation of calcium is virtually eliminated when these processes begin. As the root ages its ability to absorb phosphate declines although the translocation of the phosphate absorbed is much less affected by structural development than that of calcium.The observed rates of potassium uptake by complete root systems could be predicted quite accurately from the average of segment uptake data suggesting that the method used gives reliable results.  相似文献   

18.
The short-term exposure of barley roots to low Al concentration caused significant root growth inhibition and radial swelling of roots. During Al treatment, the radial expansion of root cells occurred in root tissues representing elongation zone and meristem. Both low pH and Al treatments caused significant disruption of cell membranes in swollen roots. In contrast to Evans blue uptake callose formation was observed only at higher Al concentrations and was detected in both swollen and adjacent root areas. Similarly to Al, exogenous short-term application of indole-3-acetic acid, polar transport inhibitor triiodobenzoic acid, ethylene precursor 1-aminocyclopropane-1-carboxylic acid or H2O2 evoked root growth inhibition and radial cell expansion in barley root tip too.  相似文献   

19.
濒危药用植物桃儿七根的显微结构及其菌根真菌分布研究   总被引:1,自引:0,他引:1  
本文研究了桃儿七Sinopodophyllum hexandrum根的显微结构及其真菌分布。结果表明,桃儿七的根为根状茎,节状,不定根形成的须根系发达。根的结构主要由表皮、皮层、维管柱三部分构成,其中,皮层所占比例最大,超过80%。根的木质部有四原型和五原型两种类型,五原型较为常见;四原型的根和五原型的根在皮层细胞形态上存在一定差异。在桃儿七的不定根和其上的侧根观察到真菌菌丝分布,其数量和种类与根的直径有关,在不定根较细(先端)的部位真菌以暗色有隔内生真菌(DSE真菌)为主,侵染率为77.9%;而较粗根中真菌菌丝为无隔菌丝为主,分布很少且仅存在于皮层细胞的一至二层,不侵染皮层深部和维管柱。不定根侧根中真菌以丛枝菌根真菌为主,丛枝菌根常常占据大部分的皮层细胞,侵染率高达90%以上。桃儿七根中没有发现根毛存在,因此,侧根中共生的丛枝菌根真菌可能是桃儿七养分和水分吸收的主要途径。  相似文献   

20.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号