首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li J  Koski MH  Ashman TL 《Annals of botany》2012,109(3):545-552

Background and Aims

Gynodioecy is a phylogenetically widespread and important sexual system where females coexist with hermaphrodites. Because dioecy can arise from gynodioecy, characterization of gynodioecy in close relatives of dioecious and sub-dioecious species can provide insight into this transition. Thus, we sought to determine whether Fragaria vesca ssp. bracteata, a close relative to F. chiloensis and F. virginiana, exhibits the functional and population genetic hallmarks of a gynodioecious species.

Methods

We compared reproductive allocation of females and hermaphrodites grown in the greenhouse and estimated genetic diversity (allelic diversity, heterozygosity) and inbreeding coefficients for field-collected adults of both sexes using simple sequence repeat (SSR) markers. We estimated mating system and early seed fitness from open-pollinated families of both sex morphs.

Key Results

Under greenhouse conditions, females and hermaphrodites allocated similarly to all reproductive traits except flower number, and, as a consequence, females produced 30 % fewer seeds per plant than hermaphrodites. Under natural conditions, hermaphrodites produce seeds by self-fertilization approx. 75 % of the time, and females produced outcrossed seeds with very little biparental inbreeding. Consistent with inbreeding depression, seeds from open-pollinated hermaphrodites were less likely to germinate than those from females, and family-level estimates of hermaphrodite selfing rates were negatively correlated with germination success and speed. Furthermore, estimates of inbreeding depression based on genetic markers and population genetic theory indicate that inbreeding depression in the field could be high.

Conclusions

The joint consideration of allocation and mating system suggests that compensation may be sufficient to maintain females given the current understanding of sex determination. Fragaria vesca ssp. bracteata exhibited similar sex morph-dependent patterns of mating system and genetic diversity, but less reproductive trait dimorphism, than its sub-dioecious and dioecious congeners.  相似文献   

2.

Background and Aims

Plants exhibit a variety of reproductive systems where unisexual (females or males) morphs coexist with hermaphrodites. The maintenance of dimorphic and polymorphic reproductive systems may be problematic. For example, to coexist with hermaphrodites the females of gynodioecious species have to compensate for the lack of male function. In our study species, Geranium sylvaticum, a perennial gynodioecious herb, the relative seed fitness advantage of females varies significantly between years within populations as well as among populations. Differences in reproductive investment between females and hermaphrodites may lead to differences in future survival, growth and reproductive success, i.e. to differential costs of reproduction. Since females of this species produce more seeds, higher costs of reproduction in females than in hermaphrodites were expected. Due to the higher costs of reproduction, the yearly variation in reproductive output of females might be more pronounced than that of hermaphrodites.

Methods

Using supplemental hand-pollination of females and hermaphrodites of G. sylvaticum we examined if increased reproductive output leads to differential costs of reproduction in terms of survival, probability of flowering, and seed production in the following year.

Key Results

Experimentally increased reproductive output had differential effects on the reproduction of females and hermaphrodites. In hermaphrodites, the probability of flowering decreased significantly in the following year, whereas in females the costs were expressed in terms of decreased future seed production.

Conclusions

When combining the probability of flowering and seed production per plant to estimate the multiplicative change in fitness, female plants showed a 56 % and hermaphrodites showed a 39 % decrease in fitness due to experimentally increased reproduction. Therefore, in total, female plants seem to be more sensitive to the cost of reproduction in terms of seed fitness than hermaphrodites.  相似文献   

3.

Background and Aims

Gynodioecy (coexistence of females and hermaphrodites) is a sexual system that occurs in numerous flowering plant lineages. Thus, understanding the features that affect its maintenance has wide importance. Models predict that females must have a seed fitness advantage over hermaphrodites, and this may be achieved via seed quality or quantity. Females in a population of Fragaria vesca subsp. bracteata, a long-lived gynodioecious perennial, do not demonstrate a seed quantity advantage, so this study explored whether females produced better quality seed via maternal sex effects or avoidance of inbreeding depression (IBD).

Methods

Families of selfed and outcrossed seed were created using hermaphrodite mothers and families of outcrossed seed were created using female mothers. The effects of these pollination treatments were assessed under benign conditions early in life and under varied conditions later in life. To test for an effect of maternal sex, fitness components and traits associated with acclimation to variable environments of progeny of outbred hermaphrodites and females were compared. To test for expression of IBD, fitness parameters between inbred and outbred progeny of hermaphrodites were compared.

Key Results

Offspring of females were more likely to germinate in benign conditions and survive in harsh resource environments than outbred progeny of hermaphrodites. IBD was low across most life stages, and both the effect of maternal sex on progeny quality and the expression of IBD depended on both maternal family and resource condition of the progeny.

Conclusions

The effect of maternal sex and IBD on progeny quality depended on resource conditions, maternal lineage and progeny life stage. In conjunction with known lack of differences in seed quantity, the quality advantages and IBD observed here are still unlikely to be sufficient for maintenance of gynodioecy under nuclear inheritance of male sterility.  相似文献   

4.
Stressful ecological conditions have been implicated in the evolution of separate sexes in plants. Gender dimorphic species are often found in drier habitats than their sexually monomorphic relatives, and gynodioecious populations appear closer to a dioecious state as resources, particularly water, become limiting. This pattern could result if dry conditions decrease the relative seed fitness of cosexual plants, allowing female plants to become established in monomorphic populations. We studied geographical variation in gender expression and biomass allocation among 12 monomorphic and dimorphic populations of Wurmbea dioica along a latitudinal precipitation gradient in southwestern Australia to provide insight into mechanisms by which aridity might favor transitions between sexual systems. Plants in monomorphic and dimorphic populations exhibited contrasting gender expression and patterns of biomass allocation in areas with different levels of precipitation. Among dimorphic populations, lower precipitation was associated with a higher frequency of female plants, and reduced allocation to female function by hermaphrodites during flowering. In contrast, stress conditions had no effect on female allocation at flowering in monomorphic populations. Across latitudes, unisexuals and cosexuals exhibited consistent differences in above ground traits, with cosexuals having larger leaves, taller stems and larger flowers. Although all plants were smaller under drier conditions, cosexuals decreased above ground allocation to vegetative and reproductive structures with decreasing latitude. In contrast, unisexuals increased allocation to reproduction in drier areas at the expense of below ground size. Aridity was associated with reduced flower size among all gender classes, but not with changes in flower number. These data do not support the hypothesis that resource limitation of female allocation in cosexual populations favors the establishment of gender dimorphism in W. dioica. Alternative hypotheses, involving higher selfing rates and enhanced survival of unisexuals relative to cosexuals under resource-limited conditions, are discussed as possible explanations for the origin of dioecy in W. dioica. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
 A valuable approach to understanding the evolution of gender dimorphism involves studies of single species that exhibit intraspecific variation in sexual systems. Here we survey sex ratios in 35 populations of Wurmbea biglandulosa, previously described as hermaphroditic. We found pronounced intraspecific variation in sexual systems; populations in the northeastern part of the species' range were hermaphroditic, whereas other populations were gynodioecious and contained 2–44% females. Populations with lower annual rainfall were more likely to be gynodioecious, supporting the view that gender dimorphism evolves more frequently in harsher environments. In gynodioecious populations, however, female frequency was not related to either annual rainfall or habitat, indicating that other factors are important in determining sex ratio variation. Females had smaller flowers and shorter stems than did hermaphrodites, potentially providing a basis for resource compensation. A female fecundity advantage may contribute to the maintenance of females in populations because females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites. Received March 2, 2001 Accepted February 25, 2002  相似文献   

6.
A major obstacle for empirical tests of hypotheses concerning the evolution of dioecy in flowering plants is the limited number of species that possess both cosexual and dioecious populations. Wurmbea dioica (Liliaceae) is a diminutive, fly-pollinated geophyte native to temperate Australia. Marked geographical variation of floral traits is evident, particularly with respect to sex expression. A survey of phenotypic gender in 45 populations from Western Australia (WA), South Australia (SA), Victoria (Vic) and the Australian Capital Territory (ACT) revealed two contrasting patterns. Populations in SA, Vic, and ACT were uniformly dimorphic for gender, containing female and male plants, whereas populations in WA were either monomorphic or dimorphic. In most dimorphic populations varying numbers of male plants produced hermaphrodite flowers (male inconstancy). There was a significant negative relationship between female frequency and the proportion of inconstant male plants. Depending on region and population, male plants produced more flowers of larger size than females. In WA monomorphic populations often occurred on rich, moist soils at high density, whereas dimorphic populations were more commonly found at lower density on shallow soils in drier areas. In an area of sympatry, plants with contrasting sexual systems flowered at different times and were ecologically differentiated. The patterns of gender variation in W. dioica indicate that dioecy has evolved via the gynodioecious pathway. The spread of females in monomorphic populations may be favoured where ecological conditions result in increased selfing and inbreeding depression in hermaphrodites.  相似文献   

7.

Background and Aims

Silene dioica and S. latifolia experience only limited introgression despite overlapping flowering phenologies, geographical distributions, and some pollinator sharing. Conspecific pollen precedence and other reproductive barriers operating between pollination and seed germination may limit hybridization. This study investigates whether barriers at this stage contribute to reproductive isolation between these species and, if so, which mechanisms are responsible.

Methods

Pollen-tube lengths for pollen of both species in styles of both species were compared. Additionally, both species were pollinated with majority S. latifolia and majority S. dioica pollen mixes; then seed set, seed germination rates and hybridity of the resulting seedlings were determined using species-specific molecular markers.

Key Results

The longest pollen tubes were significantly longer for conspecific than heterospecific pollen in both species, indicating conspecific pollen precedence. Seed set but not seed germination was lower for flowers pollinated with pure heterospecific versus pure conspecific pollen. Mixed-species pollinations resulted in disproportionately high representation of nonhybrid offspring for pollinations of S. latifolia but not S. dioica flowers.

Conclusions

The finding of conspecific pollen precedence for pollen-tube growth but not seed siring in S. dioica flowers may be explained by variation in pollen-tube growth rates, either at different locations in the style or between leading and trailing pollen tubes. Additionally, this study finds a barrier to hybridization operating between pollination and seed germination against S. dioica but not S. latifolia pollen. The results are consistent with the underlying cause of this barrier being attrition of S. dioica pollen tubes or reduced success of heterospecifically fertilized ovules, rather than time-variant mechanisms. Post-pollination, pre-germination barriers to hybridization thus play a partial role in limiting introgression between these species.  相似文献   

8.

Background and Aims

Within Chenopodioideae, Atripliceae have been distinguished by two bracteoles enveloping the female flowers/fruits, whereas in other tribes flowers are described as ebracteolate with persistent perianth. Molecular phylogenetic hypotheses suggest ‘bracteoles’ to be homoplastic. The origin of the bracteoles was explained by successive inflorescence reductions. Flower reduction was used to explain sex determination. Therefore, floral ontogeny was studied to evaluate the nature of the bracteoles and sex determination in Atripliceae.

Methods

Inflorescences of species of Atriplex, Chenopodium, Dysphania and Spinacia oleracea were investigated using light microscopy and scanning electron microscopy.

Key Results

The main axis of the inflorescence is indeterminate with elementary dichasia as lateral units. Flowers develop centripetally, with first the formation of a perianth primordium either from a ring primordium or from five individual tepal primordia fusing post-genitally. Subsequently, five stamen primordia originate, followed by the formation of an annular ovary primordium surrounding a central single ovule. Flowers are either initially hermaphroditic remaining bisexual and/or becoming functionally unisexual at later stages, or initially unisexual. In the studied species of Atriplex, female flowers are strictly female, except in A. hortensis. In Spinacia, female and male flowers are unisexual at all developmental stages. Female flowers of Atriplex and Spinacia are protected by two accrescent fused tepal lobes, whereas the other perianth members are absent.

Conclusions

In Atriplex and Spinacia modified structures around female flowers are not bracteoles, but two opposite accrescent tepal lobes, parts of a perianth persistent on the fruit. Flowers can achieve sexuality through many different combinations; they are initially hermaphroditic, subsequently developing into bisexual or functionally unisexual flowers, with the exception of Spinacia and strictly female flowers in Atriplex, which are unisexual from the earliest developmental stages. There may be a relationship between the formation of an annular perianth primordium and flexibility in floral sex determination.  相似文献   

9.

Background and Aims

Differences in competitive ability between the sexes of dioecious plants are expected as a result of allocation trade-offs associated with sex-differential reproductive costs. However, the available data on competitive ability in dioecious plants are scarce and contradictory. In this study sexual competition was evaluated using the dioecious plant Antennaria dioica in a common garden transplantation experiment.

Methods

Male and female plants were grown for 3 years either in isolation, or in competition with a plant of the same sex or the opposite sex. Flowering phenology, sexual and asexual reproduction, plant growth, nutrient content and arbuscular mycorrhizal colonization in the roots were assessed.

Key Results

Our results showed little evidence of sexual differences in competitive ability. Both sexes suffered similarly from competition, and competitive effects were manifested in some traits related to fitness but not in others. Survival was unaffected by competition, but competing plants reduced their vegetative growth and reproductive investment compared with non-competing plants. In addition, differences in sexual competitive ability were observed in relation to flowering frequency, an important life history trait not reported in previous studies.

Conclusions

The findings indicate that female and male A. dioica plants possess similar intersexual competitive abilities which may be related to the similar costs of reproduction between sexes in this species. Nevertheless, intrasexual competition is higher in females, giving support for asymmetric niche segregation between the sexes.  相似文献   

10.

Background

The ‘gynodioecy–dioecy pathway’ is considered to be one of the most important evolutionary routes from hermaphroditism to separate sexes (dioecy). Despite a large accumulation of evidence for female seed fertility advantages in gynodioecious species (females and hermaphrodites coexist) in support of the first step in the gynodioecy–dioecy pathway, we still have very little evidence for the second step, i.e. the transition from gynodioecy to dioecy.

Scope

We review the literature to evaluate whether basic predictions by theory are supported. To establish whether females'' seed fertility advantage and frequencies are sufficient to favour the invasion of males, we review these for species along the gynodioecy–dioecy pathway published in the last 5 years. We then review the empirical evidence for predictions deriving from the second step, i.e. hermaphrodites'' male fertility increases with female frequency, selection favours greater male fertility in hermaphrodites in gynodioecious species, and, where males and hermaphrodites coexist with females (subdioecy), males have greater male fertility than hermaphrodites. We review how genetic control and certain ecological features (pollen limitation, selfing, plasticity in sex expression and antagonists) influence the trajectory of a population along the gynodioecy–dioecy pathway.

Conclusions

Females tend to have greater seed fertility advantages over hermaphrodites where the two coexist, and this advantage is positively correlated with female frequency across species, as predicted by theory. A limited number of studies in subdioecious species have demonstrated that males have an advantage over hermaphrodites, as also predicted by theory. However, less evidence exists for phenotypic selection to increase male traits of hermaphrodites or for increasing male function of hermaphrodites in populations with high female frequency. A few key case studies underline the importance of examining multiple components of male fertility and the roles of pollen limitation, selfing and plasticity, when evaluating advantages. We conclude that we do not yet have a full understanding of the transition from gynodioecy to dioecy.  相似文献   

11.

Background and Aims

Evolutionary transitions from heterostyly to dioecy have been proposed in several angiosperm families, particularly in Rubiaceae. These transitions involve the spread of male and female sterility mutations resulting in modifications to the gender of ancestral hermaphrodites. Despite sustained interest in the gender strategies of plants, the structural and developmental bases for transitions in sexual systems are poorly understood.

Methods

Here, floral morphology, patterns of fertility, pollen-tube growth and floral development are investigated in two populations of the scandent shrub Mussaenda pubescens (Rubiaceae), native to southern China, by means of experimental and open-pollinations, light microscopy, fluorescence microscopy and scanning electron microscopy combined with paraffin sectioning.

Key Results

Mussaenda pubescens has perfect (hermaphroditic) flowers and populations with two style-length morphs but only weak differentiation in anther position (stigma-height dimorphism). Experimental pollinations demonstrated that despite morphological hermaphroditism, the species is functionally dioecious. The long-styled (L) morph possesses sterile pollen and functions as a female, whereas the short-styled (S) morph is female sterile and functions as a male. Self- and intra-morph pollinations of the S-morph were consistent with those expected from dimorphic incompatibility. The two populations investigated were both S-morph (male) biased. Investigations of early stages of floral development indicated patterns typical of hermaphroditic flowers, with no significant differences in organ growth between the floral morphs. Meiosis of microspore mother cells was of the simultaneous type with tetrads isobilateral in shape. The tapetal cells in anther walls of the L-morph became vacuolized during meiosis I, ahead of the uninucleate microspore stage in the S-morph. In the L-morph, the microspore nucleus degenerated at the tetrad stage resulting in male sterility. Microsporogenesis and male gametophyte development was normal in the S-morph. Failure in the formation of megaspore mother cells and/or the development of megagametophytes resulted in female sterility in the S-morph, compared with normal megasporogenesis in the L-morph.

Conclusions

In M. pubescens, cryptic dioecy has evolved from stigma-height dimorphism as a result of morph-specific sterility mutations.  相似文献   

12.

Background and Aims

The frequency at which males can be maintained with hermaphrodites in androdioecious populations is predicted to depend on the selfing rate, because self-fertilization by hermaphrodites reduces prospective siring opportunities for males. In particular, high selfing rates by hermaphrodites are expected to exclude males from a population. Here, the first estimates are provided of the mating system from two wild hexaploid populations of the androdioecious European wind-pollinated plant M. annua with contrasting male frequencies.

Methods

Four diploid microsatellite loci were used to genotype 19–20 progeny arrays from two populations of M. annua, one with males and one without. Mating-system parameters were estimated using the program MLTR.

Key Results

Both populations had similar, intermediate outcrossing rates (tm = 0·64 and 0·52 for the population with and without males, respectively). The population without males showed a lower level of correlated paternity and biparental inbreeding and higher allelic richness and gene diversity than the population with males.

Conclusions

The results demonstrate the utility of new diploid microsatellite loci for mating system analysis in a hexaploid plant. It would appear that androdioecious M. annua has a mixed-mating system in the wild, an uncommon finding for wind-pollinated species. This study sets a foundation for future research to assess the relative importance of the sexual system, plant-density variation and stochastic processes for the regulation of male frequencies in M. annua over space and time.  相似文献   

13.
Niu Y  Yang Y  Zhang ZQ  Li ZM  Sun H 《Annals of botany》2011,108(7):1257-1268

Background and aims

Pollination-induced floral changes, which have been widely documented in flowering plants, have been assumed to enhance the plant''s reproductive success. However, our understanding of the causes and consequences of these changes is still limited. Using an alpine gynodioecious species, Cyananthus delavayi, we investigated the factors affecting floral closure and estimated the fitness consequences of floral closure.

Methods

The timings of floral closure and fertilization were determined. The effects of pollen load, pollen type (cross- or self-pollen) and floral morph (female or perfect flower) on the occurrence of floral closure were examined. Ovule fertilization and seed production were examined to investigate the causes and consequences of floral closure. Flowers were manipulated to prevent closing to detect potential benefits for female fitness.

Key Results

Floral closure, which could be induced by a very low pollen load, occurred within 4–7 h after pollination, immediately following fertilization. The proportion of closed flowers was influenced by pollen load and floral morph, but not by pollen type. Floral closure was more likely to occur in flowers with a higher proportion of fertilized ovules, but there was no significant difference in seed production between closed and open flowers. Those flowers in which closure was induced by natural pollination had low fruit set and seed production. Additionally, seed production was not influenced by closing-prevented manipulation when sufficient pollen deposition was received.

Conclusions

The occurrence of floral closure may be determined by the proportion of fertilized ovules, but this response can be too sensitive to ensure sufficient pollen deposition and can, to some extent, lead to a cost in female fitness. These results implied that the control of floral receptivity by the recipient flowers does not lead to an optimal fitness gain in C. delavayi.  相似文献   

14.

Background and Aims

The palm tribe Chamaedoreeae displays flowers arranged in a complex partial inflorescence called an acervulus. This type of partial inflorescence has so far not been reported elsewhere in the largest palm subfamily Arecoideae, which is traditionally characterized by flowers predominantly arranged in triads of one central female and two lateral male flowers. The ontogenetic basis of the acervulus is as yet unknown and its structural diversity throughout the genera of the Chamaedoreeae poorly recorded. This study aims to provide critical information on these aspects.

Methods

Developmental series and mature inflorescences were sampled from plants cultivated in international botanical gardens and wild populations. The main techniques employed included scanning electronic microscopy and serial anatomical sectioning of resin-embedded fragments of rachillae.

Key Results

Inflorescence ontogeny in Hyophorbe lagenicaulis demonstrates that the acervulus and the inflorescence rachilla form a condensed and cymose branching system resembling a coenosome. Syndesmy results from a combined process of rapid development and adnation, without or with reduced axis elongation. Acervulus diversity in the ten taxa of the Chamaedoreeae studied is displayed at the level of their positioning within the inflorescence, their arrangement, the number of floral buds and their sexual expression.

Conclusions

The results show that a more general definition of the type of partial inflorescence observed within the large subfamily Arecoideae would correspond to a cyme rather than to a floral triad. In spite of their common cymose architecture, the floral triad and the acervulus present differences with respect to the number and arrangement of floral buds, the superficial pattern of development and sexual expression.  相似文献   

15.

Background and Aims

Flower morphology and inflorescence architecture affect pollinator foraging behaviour and thereby influence the process of pollination and the reproductive success of plants. This study explored possible ecological functions of the lever-like stamens and the floral design in Salvia cyclostegia.

Methods

Flower construction was experimentally manipulated by removing either the lower lever arms or the upper fertile thecae of the two stamens from a flower. The two types of manipulated individuals were intermixed with the control ones and randomly distributed in the population.

Key Results

Removing the sterile lower lever arms significantly reduced handling time per flower of the main pollinator, Bombus personatus. Interestingly, this manipulation did not increase the number of flowers probed per plant visit, but instead reduced it, i.e. shortened the visit sequence of the bumble-bees. Both loss of staminal lever function by removing lower lever arms and exclusion of self pollen by removing upper fertile thecae significantly reduced seed set per flower and seed set per plant. Both the manipulations interacted significantly with inflorescence size for the effect on female reproductive output.

Conclusions

Though the intact flowers demand a long handling time for pollinators, the reversible staminal lever is of advantage by promoting dispersal of pollen and thus the male function. The particular floral design in S. cyclostegia contributes to the floral constancy of B. personatus bumble-bees, with the lower lever arms acting as an optical cue for foraging cognition.  相似文献   

16.
Nepi M  Bini L  Bianchi L  Puglia M  Abate M  Cai G 《Annals of botany》2011,108(3):521-527

Background and Aims

Nectar is a very complex mixture of substances. Some components (sugars and amino acids) are considered primary alimentary rewards for animals and have been investigated and characterized in numerous species for many years. In contrast, nectar proteins have been the subject of few studies and little is known of their function. Only very recently have detailed studies and characterization of nectar proteins been undertaken, and then for only a very few species. This current work represents a first step in the identification of a protein profile for the floral nectar of Cucurbita pepo. In this regard, the species studied is of particular interest in that it is monoecious with unisexual flowers and, consequently, it is possible that nectar proteins derived from male and female flowers may differ.

Methods

Manually excised spots from two-dimensional (2-D) electrophoresis were subjected to in-gel protein digestion. The resulting peptides were sequenced using nanoscale LC–ESI/MS-MS (liquid chromatography–electrospray ionization/tandem mass spectrometry). An MS/MS ions search was carried out in Swiss-Prot and NCBInr databases using MASCOT software.

Key Results

Two-dimensional electrophoresis revealed a total of 24 spots and a different protein profile for male and female flower nectar. Four main proteins recognized by 2-D electrophoresis most closely resemble β-d-xylosidases from Arabidopsis thaliana and have some homology to a β-d-xylosidase from Medicago varia. They were present in similar quantities in male and female flowers and had the same molecular weight, but with slightly different isoelectric points.

Conclusions

A putative function for xylosidases in floral nectar of C. pepo is proposed, namely that they may be involved in degrading the oligosaccharides released by the nectary cell walls in response to hydrolytic enzymes produced by invading micro-organisms. Several types of oligosaccharides have been reported to increase the pathogenic potential of micro-organisms. Thus, it is possible that such a mechanism may reduce the virulence of pathogens present in nectar.  相似文献   

17.

Background and Aims

Andromonoecy, the presence of hermaphrodite and male flowers in the same individual, is genetically fixed or induced, e.g. by fruit set. Little is known about the forces triggering andromonoecy in the Apiaceae. In the present study, a natural population of the protandrous Chaerophyllum bulbosum was investigated to elucidate architectural constraints and effects of resource reallocation.

Methods

Three sets of plants (each n = 15) were treated by hand pollination, pollinator exclusion and removal of low-order inflorescences. Fifteen untreated plants were left as controls.

Key Results

Untreated plants produce umbels up to the third branch order, with increasing proportions of male flowers from 15 % (terminal umbel) to 100 % (third-order umbels). Fruit set correspondingly decreases from 70% (terminal umbel) to <10 % (second-order umbels). Insignificant differences from hand-pollinated plants do not reveal any sign of pollinator limitation at the study site. Bagged individuals show the same increase in male flowers with age as untreated plants, indicating that the presence of andromonoecy is not induced by fruit set. After umbel removal, individuals tend to present a higher number of hermaphrodite flowers and fruits in the umbels of second and third order. Three plants (25 %) produced an additional branch order composed of 100 % male umbels.

Conclusions

Inherited andromonoecy and the plastic response to environmental conditions are interpreted as a self-regulating system saving investment costs and optimizing fruit set at the same time.  相似文献   

18.

Background and Aims

The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered.

Methods

Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers.

Key Results

Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size.

Conclusions

The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers.  相似文献   

19.

Background and Aims

Bisexual flowers of Carica papaya range from highly regular flowers to morphs with various fusions of stamens to the ovary. Arabidopsis thaliana sup1 mutants have carpels replaced by chimeric carpel–stamen structures. Comparative analysis of stamen to carpel conversions in the two different plant systems was used to understand the stage and origin of carpeloidy when derived from stamen tissues, and consequently to understand how carpeloidy contributes to innovations in flower evolution.

Methods

Floral development of bisexual flowers of Carica was studied by scanning electron microscopy and was compared with teratological sup mutants of A. thaliana.

Key Results

In Carica development of bisexual flowers was similar to wild (unisexual) forms up to locule initiation. Feminization ranges from fusion of stamen tissue to the gynoecium to complete carpeloidy of antepetalous stamens. In A. thaliana, partial stamen feminization occurs exclusively at the flower apex, with normal stamens forming at the periphery. Such transformations take place relatively late in development, indicating strong developmental plasticity of most stamen tissues. These results are compared with evo-devo theories on flower bisexuality, as derived from unisexual ancestors. The Arabidopsis data highlight possible early evolutionary events in the acquisition of bisexuality by a patchy transformation of stamen parts into female parts linked to a flower axis-position effect. The Carica results highlight tissue-fusion mechanisms in angiosperms leading to carpeloidy once bisexual flowers have evolved.

Conclusions

We show two different developmental routes leading to stamen to carpel conversions by late re-specification. The process may be a fundamental aspect of flower development that is hidden in most instances by developmental homeostasis.  相似文献   

20.

Background and Aims

Heritable genetic variation is crucial for selection to operate, yet there is a paucity of studies quantifying such variation in interactive male/female sexual traits, especially those of plants. Previous work on the annual plant Collinsia heterophylla, a mixed-mating species, suggests that delayed stigma receptivity is involved in a sexual conflict: pollen from certain donors fertilize ovules earlier than others at the expense of reduced maternal seed set and lower levels of pollen competition.

Methods

Parent–offspring regressions and sib analyses were performed to test for heritable genetic variation and co-variation in male and female interactive traits related to the sexual conflict.

Key Results

Some heritable variation and evolvability were found for the female trait (delayed stigma receptivity in presence of pollen), but no evidence was found for genetic variation in the male trait (ability to fertilize ovules early). The results further indicated a marginally significant correlation between a male''s ability to fertilize early and early stigma receptivity in offspring. However, despite potential indirect selection of these traits, antagonistic co-evolution may not occur given the lack of heritability of the male trait.

Conclusions

To our knowledge, this is the first study of a plant or any hermaphrodite that examines patterns of genetic correlation between two interactive sexual traits, and also the first to assess heritabilities of plant traits putatively involved in a sexual conflict. It is concluded that the ability to delay fertilization in presence of pollen can respond to selection, while the pollen trait has lower evolutionary potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号