首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Wang ZH  Li SJ  Qi Y  Zhao JJ  Liu XY  Han Y  Xu P  Chen XH 《Neurochemical research》2011,36(6):1027-1036
The candidate plasticity related gene 15 (cpg15) plays important roles in neural development and plasticity. In the present study, we studied the role of the cpg15 3′-untranslated region (UTR) in regulating the expression of the gene. The results showed that the presence of the 3′-UTR significantly decreases, while loss of a putative AU-rich element (ARE) in the 3′-UTR increases the cpg15 expression, indicating that the 3′-UTR and ARE may be essential for regulation of cpg15 expression. In addition, HuD, a neural-specific RNA binding protein, increased the cpg15 expression, which depends on the presence of the 3′-UTR and ARE. RNA-binding protein immunoprecipitation (RIP) assay demonstrated that HuD forms a complex with cpg15 mRNA in the cells of rat hippocampus. Deletion of HuD domains RRM1 plus RRM2 or Hinge region plus RRM3 attenuates the function of HuD in enhancing the cpg15 expression. The results suggest that HuD regulates the cpg15 expression via the 3′-UTR-mediated mechanism, which requires the presence of the ARE.  相似文献   

7.
8.
9.
This work describes the cloning and structural analysis of a Tpt1 cDNA coding for the porcine translationally controlled tumor protein (TCTP) molecule and its expression in porcine cells and tissues. Pig Tpt1 cDNA is 842-pb long that displays typical features of translationally controlled mRNAs, including a 5′-UTR containing a 5′-terminal oligopyrimidine tract (5′-TOP), and a 3′-UTR with a high CG-content and one AU rich element (ARE). Both 5′-UTR and 3′-UTR are highly conserved when they are compared with those of other mammals. The pig Tpt1 cDNA contains a 516-b open reading frame that encodes a predicted TCTP protein composed of 172 amino acids that exhibits extensive conservation compared with TCTP sequences from other species and a common structural feature with all the other TCTP proteins analyzed in mammals. Expression analysis demonstrated that Tpt1 mRNA is ubiquitously expressed in normal porcine tissues and cells, showing a higher expression in spleen, lymph nodes and lung, and a lower one in skin and heart. The pig Tpt1 gene localizes on the porcine chromosome 11, region p11.  相似文献   

10.
11.
12.
13.
Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3′ untranslated regions (3′-UTR). There are some similarities between the 3′-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3′-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments. Sequence data from this article were deposited with the DDBJ/EMBL/GenBank Data Libraries under Accession Nos. Genomic sequences of pea apyrase: AB023621, AB030444, AB030445, AB038554, AB038555. cDNA sequences of pea apyrase: AB022319, AB027614, AB038668, AB038669.  相似文献   

14.
15.
16.
17.
A putative implication 3′-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3′-terminal segment (nucleotides 1777–1811) of 18S rRNA including the last hairpin 45 was accessible for complementary interactions within 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA, when added to wheat germ cell-free protein synthesizing system, specifically inhibited translation of uncapped reporter mRNA encoding β-glucuronidase. In the 5′-untranslated region (UTR), the reporter mRNA contained a leader sequence of potato virus Y (PVY) genomic RNA with fragments complementary to the region 1777–1811. A sequence corresponding to nucleotides 291–316 of PVY, which was complementary to most of the 3′-terminal 18S rRNA segment 1777–1808, was shown to enhance translational efficiency of the reporter mRNAs when placed into 5′-UTR. The obtained results suggest that complementary interactions between 5′-UTR of mRNA and 3′-terminal segment of 18S rRNA can take place during cap-independent translation initiation.  相似文献   

18.
19.
Expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB-3) mRNA alternative splice variants was studied in different mouse tissues in hypoxic conditions in vivo. Significant increase of the expression of PFKFB-3 mRNA was observed in the mouse lungs, testes and brain in hypoxia. Several new alternative splice variants of PFKFB-3 mRNA were identified in the lung, testis, brain and skeletal muscle. They have different length and amino acid sequence of C-terminal regulatory part. However, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase catalytic domains were identical. Moreover, the expression of different alternative splice variants of PFKFB-3 mRNA has shown tissue specificity and different levels of induction in hypoxic conditions in vivo. Results of this investigation indicate a possible role of PFKFB-3 splice isoform in cell adaptation to hypoxic conditions.  相似文献   

20.
Recent studies have shown that miRNAs can target the promoter and CDS region. Thus, we predicted miRNA target sites in the 5′-UTR, CDS and 3′-UTR of Homo sapiens, Mus musculus and Drosophila melanogaster using miRanda and TargetScan. Target-site densities normalized with the average region length were higher in the 5′-UTR than 3′-UTR in all three organisms but were lower in the negative data set. Interestingly, the putative target sites were more conserved than non-target regions in both the 5′-UTR and 3′-UTR, implying that target sites in the 5′-UTR are subject to high selective pressure and might be functional. In Drosophila, 48 of 78 (61.5%) miRNAs showed high similarities with predicted siRNAs. Based on the results of previous experimental studies and a large-scale statistical analysis, we conclude that miRNA-mediated regulation is not limited to the 3′-UTR. However, the functionality of target sites in the 5′-UTR and CDS requires thorough investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号