首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用光镜和电镜技术研究了HL-60细胞在诱导分化过程中的显微与亚显微结构变化,10~(-6)M的维A酸处理6天,细胞按粒系途径定向分化,其核质比例降低,核浓缩、分叶,核仁减少或消失。经RA处理的细胞在电镜下出现下列明显的变化:细胞核浓缩和分叶,异染色质区域增加,约46%细胞显示出类似成熟粒细胞核的亚显微形态特征,胞质中嗜天青颗粒减少,特异颗粒显著增加,两种颗粒的比率发生明显变化;细胞质中微管、微丝的量增加;多聚和单个分散的游离核糖体减少,有些??细胞胞质空泡化;出现主要以微丝为筑架的大型钝形伪足和不规则的表面突起。上述这些变化似可作为HL-60细胞形态分化的标志。维A酸诱导HL-60细胞形态分化具有明显的时间效应关系。1.4%DMSO对HL-60细胞分化的诱导作用类似于10~(-6)MRA,而等剂量的(10~(-6)M)R Ⅰ、RⅡ其作用弱于RA。  相似文献   

2.
Dorsal lips of Xenopus laevis may differentiate into pancreas after treatment with retinoic acid in vitro. The dorsal lip region is fated to be dorsal mesoderm and anterior endoderm. Dorsal lip cells isolated from stage 10 early gastrula differentiate into tissues such as notochord, muscle and pharynx. However, in the present study, dorsal lips treated with 10(-4) M retinoic acid for 3 h differentiated into pancreas-like structures accompanied by notochord and thick endodermal epithelium. Sections of the explants showed that some cells gathered and formed an acinus-like structure as observed under microscopes. In addition to the morphological changes, expressions of the pancreas-specific molecular markers, XIHbox8 and insulin, were induced in retinoic acid-treated dorsal lip explants. Therefore, it is suggested that retinoic acid may induce the dorsal lip cells to differentiate into a functional pancreas. However, continuous treatment with retinoic acid did not induce pancreas differentiation at any concentration. Dorsal lips treated with retinoic acid within 5 h after isolation differentiated into pancreas-like cells, while those treated after 15 h or more did not. The present study provided a suitable test system for analyzing pancreas differentiation in early vertebrate development.  相似文献   

3.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G(1)/G(0) growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1alpha,25-dihydroxyvitamin D(3) and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G(1)/G(0) growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

4.
5.
We have recently reported that neolacto series gangliosides (NeuAc-nLc) are increased during granulocytic differentiation of human myelogenous leukemia cell line HL-60 cells induced by retinoic acid and that HL-60 cells are differentiated into mature granulocytes when the cells are cultivated with NeuAc-nLc (Nojiri, H., Kitagawa, S., Nakamura, M., Kirito, K., Enomoto, Y., and Saito, M. (1988) J. Biol. Chem. 263, 7443-7446). In contrast to these wild-type-HL-60 cells, HL-60 cells resistant to differentiation induction by retinoic acid showed a markedly decreased content of gangliosides, especially NeuAc-nLc, and did not show any increase in the content of gangliosides when cultivated with retinoic acid. Neutral glycosphingolipids, the precursors of gangliosides, were not accumulated in these resistant cells. When retinoic acid-resistant HL-60 cells were cultivated in the presence of NeuAc-nLc, the cells were found to be differentiated into mature granulocytes on morphological and functional criteria. The differentiation of cells was dependent on the concentration of gangliosides and was accompanied by inhibition of cell growth. Wild-type HL-60 cells differentiated by NeuAc-nLc showed the changes in ganglioside composition, which were similar to those in wild-type HL-60 cells differentiated by retinoic acid; among the gangliosides changed, 2----3 sialylparagloboside and 2----3 sialylnorhexaosylceramide were increased. These findings suggest (a) that the synthesis of particular NeuAc-nLe molecules is an important step for retinoic acid-induced granulocytic differentiation and this step could be bypassed or replaced by exogenous NeuAc-nLc, and (b) that the defective synthesis of particular NeuAc-nLc molecules is responsible for the failure of differentiation induction in retinoic acid-resistant HL-60 cells by retinoic acid.  相似文献   

6.
Extracellular vesicles (EVs) are thought to mediate the transport of proteins and RNAs involved in intercellular communication. Here, we show dynamic changes in the buoyant density and abundance of EVs that are secreted by PC12 cells stimulated with nerve growth factor (NGF), N2A cells treated with retinoic acid to induce neural differentiation, and mouse embryonic stem cells (mESCs) differentiated into neuronal cells. EVs secreted from in vitro differentiated cells promote neural induction of mESCs. Cyclin D1 enriched within the EVs derived from differentiated neuronal cells contributes to this induction. EVs purified from cells overexpressing cyclin D1 are more potent in neural induction of mESC cells. Depletion of cyclin D1 from the EVs reduced the neural induction effect. Our results suggest that EVs regulate neural development through sorting of cyclin D1.  相似文献   

7.
Monolayer cultures of F9 teratocarcinoma stem cells and P19 stem cells differentiate into endoderm, and fibroblast-like cells, respectively, when treated with retinoic acid. We demonstrate that this differentiation is associated with a large increase (greater than 40-fold) in the activity of an enzyme, prolyl-4-hydroxylase, involved in the posttranslational modification of collagens. This large increase in prolyl-4-hydroxylase activity occurs between 42 and 72 h after retinoic acid addition, and is associated with an increased amount of immunoprecipitable prolyl hydroxylase enzyme. This enzyme should be a useful marker for certain differentiated cell types produced during differentiation of teratocarcinoma stem cell lines.  相似文献   

8.
9.
miRNA let-7e is involved in stem cell differentiation, and metalloproteinases are among its potential target genes. We hypothesized that the inhibitory action of let-7e on regulation of MMP9 expression could represent a crucial mechanism during differentiation of adipose-derived stem cells (ASCs). ASCs were differentiated with all-trans retinoic acid (ATRA) to promote differentiation, and the effect of let-7 silencing during differentiation was tested. Results indicate that ASCs cultured with ATRA differentiated into cells of the epithelial lineage. We found that ASCs cultured with ATRA or transfected with miRNA let-7e expressed epithelial markers such as cytokeratin-18 and early renal organogenesis markers such as Pax2, Wt1, Wnt4 and megalin. Conversely, the specific knockdown of miRNA let-7e in ASCs significantly decreased the expression of these genes, indicating its vital role during the differentiation process. Using luciferase reporter assays, we also showed that MMP9 is a direct target of miRNA let-7e. Thus, our results suggest that miRNA let-7e acts as a matrix metalloproteinase-9 (MMP9) inhibitor and differentiation inducer in ASCs.  相似文献   

10.
Single cells of the feeder-layer-dependent mouse embryonal carcinoma (EC) cell line, NG2, can spontaneously give rise to colonies containing a wide variety of differentiated cell types in vitro. When cultured with retinoic acid at a concentration of 10(-7) M, single NG2 cells irreversibly differentiated to parietal endoderm, as identified by morphological criteria and immunohistochemical staining. Parietal endoderm was also the first product of spontaneous differentiation. However, when retinoic acid was added to monolayer groups of NG2 cells, not all of the cells were induced to differentiate. The parietal-endoderm cells which did form were generally found at the periphery of cell colonies, as is the case during spontaneous differentiation. Differentiation in the centre of these colonies yielded a variety of cell types over a 21-day period. These results are consistent with the hypothesis that retinoic acid induces the differentiation of EC cells by accelerating cellular response to intrinsic stimuli, rather than by overriding these stimuli.  相似文献   

11.
As a single signal, retinoids induce terminal differentiation. This implies that they activate differentiation and apoptosis in a temporally defined order to allow expression of the differentiated phenotype well before death. We report that two apparently contradictory retinoid-induced programs have the capacity to define cellular life span. Anti-apoptotic factors are activated concomitantly with differentiation, while retinoids induce at the same time also pro-apoptotic signaling. We have assessed the roles of two key factors, Bcl2A1 and TRAIL, in the temporal programming of cell death and differentiation. We demonstrate that PLB985 are type II cells in which TRAIL induces apoptosis through the extrinsic and--via Bid activation--also the intrinsic death pathways. Bcl2A1, ectopically over-expressed, or endogenously induced by retinoic acid receptor agonists, protected cells from apoptosis triggered by TRAIL, whose induction required the activation of both the retinoic acid and retinoid X receptors. Bcl2A1 prevented loss of mitochondrial membrane potential and caspase-9, but not caspase-8, activation. The expression of anti-sense Bcl2A1 sensitized PLB985 cells to TRAIL. Co-culture experiments revealed protection from fraternicide if sister cells were pre-exposed to retinoic acid. Collectively, our data support a model in which retinoids orchestrate a life span-regulatory program comprising Bcl2A1 induction to temporally protect against concomitantly induced TRAIL death signaling. Termination of this life span in presence of Bcl2A1 is most likely a consequence of the Bid-independent TRAIL action. Thus, depending on the retinoic acid and retinoid X receptor activation potential of a ligand and the relative efficacies of the intrinsic and extrinsic death pathways in a given cell, a single retinoid triggers the life span of a differentiated phenotype.  相似文献   

12.
Human teratocarcinoma cells in culture offer an in vitro system for studying certain aspects of embryonic differentiation. To gain some insight into regulatory systems that might be operative during early human development, we have characterized the alterations that occur in the hormonal responsiveness of human embryonal carcinoma cell adenylate cyclase with differentiation in response to 10 microM retinoic acid. Two cell lines CL12 and CL13, cloned from Tera 2 cells by Dr. C. F. Graham, have been used in these studies. Adenylate cyclase of CL12 and CL13 cells is stimulated in the presence of 10 microM GTP by epinephrine and calcitonin, with calcitonin being the most potent stimulator of cyclic AMP production. Exposure of these cells to retinoic acid leads to an arrest in growth and within 6 days to a differentiated cell population with a stable nonreversible phenotype. No changes in basal, GTP- and fluoride-stimulated adenylate cyclase activities are observed with retinoic acid treatment, but the cyclase of differentiated cells exhibits a greater stimulation by calcitonin (7.5-fold) and the appearance of a somatostatin inhibitory effect. Somatostatin specifically inhibits, by 25%, the hormonal stimulation of adenylate cyclase of cells treated for 5 days with retinoic acid. The increase in calcitonin stimulation of adenylate cyclase activity of the differentiated cells is related to an increase (congruent to 3-fold) in the number of hormonal receptors and not to a significant change in receptor binding affinity (Kd 4.6 X 10(8) M-1). These alterations in calcitonin and somatostatin responsiveness suggest a possible regulatory role for these hormones during embryonic development. Furthermore, the results indicate that changes in adenylate cyclase hormonal responsiveness might serve as useful markers during early stages of human embryonal carcinoma cell differentiation.  相似文献   

13.
We obtained terminally differentiated chondrocytes in monolayer culture from chick embryonal growth plates, and examined the effect of retinoic acid on these cells. The cells treated with retinoic acid ceased type X collagen synthesis and showed decreased calcium incorporation into cell layers. Retinoic acid tended to stimulate proliferation of the cultured chondrocytes. It also increased DNA accumulation dose-dependently in the range from 1 nM to 1 microM. DNA synthesis in the growth phase and confluency was stimulated within 10 h after addition of 0.1 microM retinoic acid. [3H]Retinoic acid binding, which was inhibited by simultaneous addition of excess unlabeled retinoic acid, was detected in both the cytosolic and nuclear fractions of the chondrocytes. The retinoic acid binding capacity of the nuclear fraction was increased by pretreating the cells with retinoic acid. These results indicate that retinoic acid binds to both the cytosolic and nuclear fractions of cultured chondrocytes, and induces their proliferation and dedifferentiation.  相似文献   

14.
In a cDNA library prepared from the RNA of cultured murine F9 teratocarcinoma cells, we identified sequences exhibiting strong hybridization to double-stranded RNA (dsRNA) of F9 cells but weak hybridization to mouse liver dsRNA. Northern-blot hybridization of RNA extracted from F9 cells with or without treatment with retinoic acid revealed differences in the expression of some of these sequences in undifferentiated and differentiated cells. As shown by Southern-blot hybridization experiments, these differences of expression were not related to a gross rearrangement of the corresponding genomic DNA sequences of the differentiated cells. When RNA from F9 cells was used, one of the cloned dsRNA-related sequences selected mRNA which was translated in vitro to a polypeptide with an Mr of 24,000; the level of this mRNA was reduced in F9 cells that had been treated with retinoic acid. Our results show that the differentiation of F9 cells induced by retinoic acid results in the differential expression of some middle-repetitive sequences.  相似文献   

15.
A potential role of the protein kinase C (PKC) system in differentiation of human neuroblastoma cell line LA-N-5 was investigated. It was found that neurite outgrowth induced by 12-O-tetradecanoylphorbol 13-acetate (TPA, 81 nM) was associated with a down-regulation of PKC as determined independently by immunocytochemistry, immunoblot, and enzyme activity assay. Down-regulation of PKC in cells induced to differentiate by retinoic acid (1 microM) was less pronounced, whereas it was undetected in cells induced to differentiate by nerve growth factor (100 ng/ml). The in vitro phosphorylation of an 80-kilodalton protein present in control LA-N-5 cells or in cells treated with TPA, retinoic acid, or nerve growth factor for 1 day decreased to various extents at days 4 or 7 concomitant with neuritogenesis. Pretreatment of LA-N-5 cells with a high concentration (1 microM) of TPA to deplete cellular PKC rendered the cells unresponsive to the differentiating effect of the agents. It was observed that CHP-100 cells, another human neuroblastoma line shown to be resistant to differentiation induced by the agents, had a reduced PKC level and the amount of in vitro phosphorylation of the 80-kilodalton protein was greatly reduced in control cells and remained relatively unchanged when the cells were treated with the agents for up to 7 days. The present studies suggested that PKC and its 80-kilodalton substrate protein were likely involved in initiation and/or progression of LA-N-5 cell differentiation induced by TPA and that separate PKC-independent pathways might also be involved in the differentiating effect of retinoic acid or nerve growth factor.  相似文献   

16.
17.
18.
Sertoli and peritubular myoid cells, the somatic cells of the seminiferous tubule, support growth and differentiation of developing germ cells. This action strictly depends on the availability of in situ synthesized retinoic acid and we have previously documented the ability of Sertoli, but not peritubular cell extracts, to support the oxidation of retinol to retinoic acid. Using primary cultures of somatic cells treated with a physiological concentration of free retinol, we show here that the same is essentially true also for whole cultured cells. Sertoli cells are capable of producing not only retinoic acid, but are also the major site of retinyl ester (mainly, retinyl palmitate) formation. Compared with retinyl palmitate accumulation, retinoic acid synthesis was both faster and positively influenced by prior exposure to retinol. This increase in retinoic acid synthesis was further augmented by treatment with the retinoic acid catabolic inhibitor liarozole, thus indicating that enhanced synthesis, rather than reduced catabolism, is responsible for such an effect. Myoid cells had a higher capacity to incorporate exogenously supplied retinol, yet retinoic acid synthesis, and even more so retinyl palmitate formation, were considerably lower than in Sertoli cells. Retinoic acid synthesis in myoid cells was not only depressed, but also very little influenced by prior retinol exposure and totally insensitive to liarozole. These data further support the view that myoid cells are involved in retinol uptake from the blood and its transfer to other cells, rather than in metabolic interconversion or long-term storage of vitamin A, two processes that mainly take place in Sertoli cells.  相似文献   

19.
20.
Two key enzymes of glycolysis, phosphofructokinase and pyruvate kinase, were studied in embryonal carcinoma cells (P19 EC cells) and three differentiated derivatives in relation to growth rate and differentiation state. The growth rates of P19 EC cells and its differentiated derivatives are positively correlated with both the specific activity of phosphofructokinase and the expression of the L-subunit of this enzyme. The specific activity of pyruvate kinase and its isozyme composition is not correlated with growth rate but seems to be correlated with the differentiation state of these cells. The decrease in specific activity of pyruvate kinase during differentiation of P19 EC cells induced by retinoic acid or dimethylsulfoxide preceded the shift from K- to M-type pyruvate kinase. In contrast to aggregates that were treated with dimethylsulfoxide, the specific activity of pyruvate kinase was reduced after aggregation in the presence of retinoic acid. Only after plating dimethylsulfoxide-treated aggregates again in the presence of dimethylsulfoxide, was a decrease in specific activity obtained. Both retinoic acid and dimethylsulfoxide are able to induce a K- to -M shift of pyruvate kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号