首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Aspergillus niger NRRL-3, an organism used for the industrial scale production of d-gluconic acid and glucose oxidase (EC 1.1.3.4), was subjected to mutagenesis and selection for acid production on diagnostic media containing methyl red. The plates contained 0.1 M d-glucose, a concentration that does not produce a color change in the medium surrounding mycelia of the parental strain under the conditions employed. Mutagenized spores yielded occasional colonies which were able to grow rapidly and were surrounded by a reddish zone. A number of such presumptive mutants were selected and isolated. Twenty-six such strains were grown in shaken cultures with liquid media containing 0.01, 0.1 or 0.5 M d-glucose, harvested, disrupted and the specific activity of d-glucose oxidase determined. Seven of the mutant strains had glucose oxidase specific activities markedly higher than the parental strain.Paper No. 8393, Nebraska Agricultural Research Division.  相似文献   

2.
The purpose of the present study was to ascertain the optimal concentration of dissolved oxygen in order to maximize the intracellular glucose oxidase formation in Aspergillus niger. Cultivations performed in a 3.5 l laboratory reactor showed that a dissolved oxygen concentration at 3% of saturation at a total pressure of 1.2 bar was optimal for maximizing intracellular glucose oxidase activity. Cultivations performed at higher dissolved oxygen concentrations did not produce as much glucose oxidase as those performed at 3%, although the formation rate was high. Experiments revealed that maximal intracellular glucose oxidase formation for the A. niger strain used, is accomplished by limiting the gluconic acid production rate by means of maintaining a low dissolved oxygen concentration. Several attempts to achieve higher intracellular glucose oxidase activity were also made by manipulating the glucose concentration at a 3% dissolved oxygen concentration. However, no enhancement in glucose oxidase activity was observed.  相似文献   

3.
Wild-type Aspergillus niger NRRL-3 was transformed with multiple copies of the glucose oxidase structural gene (god). The gene was placed under the control of the gpd A promoter of A. nidulans. For more efficient secretion the -amylase signal peptide from A oryzae was inserted in front of god. Compared to the wild type, the recombinant strain NRRL-3 (GOD3-18) produced up to four times more extracellular glucose oxidase under identical culture conditions. Addition of yeast extract (2 g l–1) to a mineral salts medium containing only glucose as carbon source increased volumetric and specific extracellular glucose oxidase activities by 130% and 50% respectively. With the same medium composition and inoculum size, volumetric and specific extracellular glucose oxidase activities increased more than ten times in bioreactor cultivations compared to shake-flask cultures.  相似文献   

4.
After mutagenization and selection, mutant Aspergillus niger strains resistant to certain agents were obtained. Seven of the mutants showed increased extracellular glucose oxidase (GOD), the level for individual cases ranged widely from 8.8 to over 138.5% in comparison with the parental strain. Studies of the relationship between method of selection and frequency of mutation showed that the highest frequency of positive mutations (15.8% and 17.3%) was obtained from mutants resistant to ethidium bromide (1 mmol 1-1) and sodium gluconate (45%), respectively. The time course of growth and enzyme production by the most active mutant AM-11 showed intra- and extracellular GOD activities to have increased about 2.2- and 2.4-fold, respectively, compared with the parental strain.  相似文献   

5.
The kinetics of glucose oxidase (GOD) excretion by recombinant Aspergillus niger NRRL-3 (GOD3-18) were investigated using enzymatic activity measurements as well as gel electrophoresis techniques. The majority of GOD was produced during rapid growth in the first phase of the cultivation. The high excretion rate during this phase did not prevent the endocellular accumulation of GOD up to 40% of the total soluble cell protein demonstrating that the production rate exceeded the excretion rate of the enzyme into the culture medium. During the second phase of the cultivation, excretion of GOD occurred at a slower rate, although the majority of GOD produced during the first phase was excreted during the second phase of the cultivation. At the end, about 90% of the total GOD produced was recovered from the culture medium. Two-dimensional gel electrophoresis provided evidence that endo- and exocellular GOD were indistinguishable, revealing identical posttranslational modifications (e.g., signal sequence cleavage, glycosylation pattern). The results demonstrate that the initial steps of the secretory pathway are fast and that the excretion of the enzyme into the culture fluid was most likely delayed due to retention by the cell wall. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
Action mechanism of glucose oxidase of Aspergillus niger   总被引:1,自引:0,他引:1  
  相似文献   

7.
Subunit structure of glucose oxidase from Aspergillus niger   总被引:2,自引:0,他引:2  
J J O'Malley  J L Weaver 《Biochemistry》1972,11(19):3527-3532
  相似文献   

8.
9.
The effects of various metal ions on the simultaneous production of glucose oxidase and catalase by Aspergillus niger were investigated. Calcium carbonate induced synthesis of both enzymes. The induction of calcium carbonate was accompanied by a metabolic shift from the glycolytic pathway (EMP, Embden-Meyerhof-Parnas) to direct oxidation of glucose by glucose oxidase. The time course of the biosynthesis of both enzymes is reported. The logistic model was in good agreement with the experimental growth results. The production of both enzymes was growth-associated. Finally, a model of growth and product formation was also proposed.  相似文献   

10.
The production of gluconic acid, extracellular glucose oxidase and catalase in submerged culture by a number of biochemical mutants has been evaluated. Optimization of stirrer speed, time cultivation and buffering action of some chemicals on glucose oxidase, catalase and gluconic acid production by the most active mutant, AM-11, grown in a 3-L glass bioreactor was investigated. Three hundred rpm appeared to be optimum to ensure good growth and best glucose oxidase production, but gluconic acid or catalase activity obtained maximal value at 500 or 900 rpm, respectively. Significant increase of dissolved oxygen concentration in culture (16-21%) and extracellular catalase activity were obtained when the traditional aeration was employed together with automatic dosed hydrogen peroxide.  相似文献   

11.
The effect of glucose concentration on glycolytic metabolism under conditions of citric acid accumulation by Aspergillus niger was studied with 13C-labelled glucose. The results show that during cultivation at high glucose (14%, w/v), most of the label in citric acid is in C-2/C-4, and is thus due to the pyruvate carboxylase reaction. However, a significant portion is also present in C-1/C-5, whose origin is less clear but most likely due to reconsumption of glycerol and erythritol. Formation of trehalose and mannitol is high during the early phase of fermentation and declines thereafter. The early fermentation phase is further characterized by a high rate of anaplerosis from oxaloacetate to pyruvate, which also decreases with time. At low glucose concentrations (2%, w/v), which lead to a significantly reduced citric acid yield and formation rate, labelling of citrate in C-2/C-4 is decreased and C-l/C-5 labelling increased. Growth on 2% glucose is also characterized by an appreciable scrambling of mannitol and considerable backflux from mannitol to trehalose (indicating tight glycolytic control at the fructose-6-phosphate step) and an increased anaplerotic formation of pyruvate from oxaloacetate. These data indicate that cultivation on high sugar concentrations shifts control of glycolysis from fructose-6-phosphate to the glyceraldehyde-3-phosphate dehydrogenase step.  相似文献   

12.
13.
Interaction of halide ions with Aspergillus niger glucose oxidase   总被引:1,自引:0,他引:1  
M J Rogers  K G Brandt 《Biochemistry》1971,10(25):4630-4635
  相似文献   

14.
Summary This report describes the expression of cloned glucose oxidase gene (god) in glucose-oxidase-deficient mutants (God) of Aspergillus niger NRRL-3, the use of this gene for the elevation of glucose oxidase (GOD) productivity in the parental strain, and the further improvement of GOD production by subjecting the transformants to nitrous acid mutagenesis.Correspondence to: F. A. Sharif  相似文献   

15.
16.
Summary The subcellular localization of glucose oxidase (E.C. 1.1.3.4) in mycelia of Aspergillus niger has been investigated using cytochemical staining techniques. Mycelia from fermenter cultures, which produced gluconic acid from glucose, contained elevated levels of glucose oxidase and catalase. Both enzymes were located in microbodies. In addition, when the organism was grown on glucose with methylamine as a nitrogen source, amine oxidase activity was detected in the microbodies. These organelles can therefore be designated as peroxisomes.  相似文献   

17.
18.
A procedure for the isolation of a sulfhydryl oxidase from an Aspergillus niger cell suspension involved three major steps and yielded enzyme preparations exhibiting a single but diffuse protein-containing zone when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a subunit molecular weight estimated to be 53,000. Sedimentation equilibrium experiments indicated a native molecular weight of 106,000. Analyses for sugar residues showed that the enzyme is a glycoprotein, containing 20.3% neutral hexose and 1.9% aminohexose by weight. This enzyme catalyzed the conversion of reduced glutathione (GSH) to its disulfide form, with concomitant consumption of O2 and release of H2O2. The ratio of GSH consumed to H2O2 produced was determined to be 2:1. At 25 degrees C, the optimum pH for the oxidation of GSH was 5.5. Under these conditions, the enzyme had a Michaelis constant of 0.3 mM for GSH. Other low molecular weight thiol compounds (cysteine, dithiothreitol, and 2-mercaptoethanol) were also oxidized, but the Michaelis constants for these substrates were substantially higher than that for GSH under identical conditions of temperature and pH. The rate of reactivation of reductively denatured ribonuclease A was enhanced by the presence of sulfhydryl oxidase, indicating that the latter is capable of oxidizing protein-associated thiol groups. The UV-visible spectrum of sulfhydryl oxidase solution had absorbance maxima at 274, 364.5, and 442.5 nm and was otherwise characteristic of the spectra of known flavoproteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The aim of this work was to select the operating conditions for the extraction and recovery of glucose oxidase (GOX) by reversed micelles from mixtures of commercial enzyme and Aspergillus niger homogenates. For this purpose, the influence of the main operating parameters (pH, surfactant concentration, and presence of cell debris or not) on GOX extraction was investigated at 25 degrees C. Without cell debris, the highest yield of GOX activity recovery (90.8%) was obtained performing (a) the forward extraction in isooctane as solvent and hexanol and butanol as cosolvents at 76/6/18 ratio, pH 7.0, 0.2 M cetyl trimethylammonium bromide as cationic surfactant, and electric conductivity of 5.0 mS cm(-1) and (b) the backward extraction at pH 5.5. Forward and backward extractions furnished comparable results when using raw homogenate, which demonstrates a negligible impact of the presence of cell debris on the process. The highest extraction yield (94%) was obtained under the same forward and backward conditions adopted without cell debris. The promising results of this work suggest that the proposed methodology could be profitably exploited at an industrial level.  相似文献   

20.
Summary Previous work in this laboratory has demonstrated that although Aspergillus niger can readily utilize galactose, no citric acid is produced from this carbon source (Hossain et al. 1984). Experiments were now conducted where galactose was added at various concentrations to synthetic growth medium containing glucose as carbon source, so that the effect of galactose on citric acid production from glucose could be observed. The results showed that the presence of galactose or a product of galactose metabolism caused inhibition of citric acid production, and also reduced the rate of glucose utilization. Enzyme analyses using mycelial cell-free extracts indicated that galactose interfered with the glucose-repression of the key enzyme 2-oxoglutarate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号